
University of AlbertaLibrary Release Form
Name of Author: Steven BromlingTitle of Thesis: Meta-programming with Parallel Design PatternsDegree: Master of SieneYear this Degree Granted: 2002
Permission is hereby granted to the University of Alberta Library to reprodue singleopies of this thesis and to lend or sell suh opies for private, sholarly or sienti�researh purposes only.The author reserves all other publiation and other rights in assoiation with theopyright in the thesis, and exept as hereinbefore provided, neither the thesis norany substantial portion thereof may be printed or otherwise reprodued in anymaterial form whatever without the author's prior written permission.

. . . . . . . . . . . . . . . . . . .Steven Bromling#1010, 10149 Saskathewan DriveEdmonton, ABCanada, T6E 6B6
Date: . . . . . . . . .



University of Alberta
Meta-programming with Parallel Design PatternsbySteven Bromling

A thesis submitted to the Faulty of Graduate Studies and Researh in partialful�llment of the requirements for the degree of Master of Siene.
Department of Computing Siene

Edmonton, AlbertaSpring 2002



University of AlbertaFaulty of Graduate Studies and Researh
The undersigned ertify that they have read, and reommend to the Faulty of Grad-uate Studies and Researh for aeptane, a thesis entitled Meta-programmingwith Parallel Design Patterns submitted by Steven Bromling in partial ful�ll-ment of the requirements for the degree of Master of Siene.

. . . . . . . . . . . . . . . . . . .Dr. Jonathan Shae�er. . . . . . . . . . . . . . . . . . .Dr. Duane Szafron. . . . . . . . . . . . . . . . . . .Dr. Mike Carbonaro. . . . . . . . . . . . . . . . . . .Dr. Paul Lu
Date: . . . . . . . . .



AknowledgementsFirst, I would like to thank my �an�ee, Phoebe Jane Elliot, for her love, supportand inspiration during the writing of this dissertation, and the researh leading upto it.I would like to extend my gratitude to the CO2P3S researh team, for their e�ortsthat made this work possible. Steve MaDonald, John Anvik and Kai Tan all provedinstrumental in the ompletion of this MetaCO2P3S researh. Thanks espeiallyto my supervisors, Jonathan Shae�er and Duane Szafron, for their guidane andpatiene.I would also like to aknowledge the e�orts of my thesis ommittee, for thesuggestions that they provided for the improvement of this dissertation.I would like to thank my family and friends, for their support and understanding,in partiular as my attentions were diverted towards this goal.Lastly, am grateful to the Natural Siene and Engineering Researh Counil ofCanada and the Alberta Informatis Cirle of Researh Exellene for their �nanialsupport of this researh. In addition, the funding provided by the University ofAlberta through a Walter H. Johns Graduate Fellowship, and the Department ofComputing Siene through a Teahing Assistantship was greatly appreiated.



AbstratA ritial shortoming of template- or pattern-based systems for parallel program-ming is their lak of extensibility. Templates are typially limited in number orsope, thereby narrowing the appliability of a given system. This dissertationdesribes my approah for addressing the extensibility problem in the CO2P3S par-allel programming system. The tool I developed, alled MetaCO2P3S, provides theability for pattern designers to design and add new pattern templates to CO2P3S.These pattern templates are equivalent in form and funtion to those provided bythe developers of CO2P3S, although stored in a system-independent format. Thismakes them suitable for storing in a repository to be shared throughout the userommunity. The validity of MetaCO2P3S is illustrated through the reation of newpattern templates.



Contents
1 Introdution 11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 An Introdution to CO2P3S 42.1 Parallel Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 62.1.1 From Design Patterns to Frameworks . . . . . . . . . . . . . 72.2 The Original CO2P3S Implementation . . . . . . . . . . . . . . . . . 82.3 CO2P3S Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.4 Available Parallel Design Pattern Templates . . . . . . . . . . . . . . 152.4.1 The Mesh Pattern Template . . . . . . . . . . . . . . . . . . . 152.4.2 The Distributor Pattern Template . . . . . . . . . . . . . . . . 162.4.3 The Phases Pattern Template . . . . . . . . . . . . . . . . . . 162.5 Case Study: Image Proessing . . . . . . . . . . . . . . . . . . . . . . 162.6 Adding Parallel Design Pattern Templates . . . . . . . . . . . . . . . 172.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 A Meta-programming Tool for CO2P3S 193.1 The Neessary Components of a Pattern Template . . . . . . . . . . 203.1.1 Pattern Template Identi�ation and Doumentation . . . . . 203.1.2 Class Names . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.1.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.1.4 GUI Con�guration . . . . . . . . . . . . . . . . . . . . . . . . 223.1.5 User Interation Capabilities . . . . . . . . . . . . . . . . . . 223.1.6 State Maintenane . . . . . . . . . . . . . . . . . . . . . . . . 223.1.7 The Framework Template . . . . . . . . . . . . . . . . . . . . 223.2 Modifying CO2P3S to Support Modular Pattern Templates . . . . . 233.2.1 Deoupling the Framework Template and Pattern DesriptionComponents . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.2 Supporting the Pattern Desription Component in CO2P3S . 23



3.2.3 Supporting the Framework Template Component in CO2P3S 243.3 The Design of MetaCO2P3S . . . . . . . . . . . . . . . . . . . . . . . 253.4 The Pattern Template Arhiteture . . . . . . . . . . . . . . . . . . . 263.4.1 XML for System-independent Pattern Template Storage . . . 283.4.2 Javado for Framework Template Code Generation . . . . . . 293.5 Pattern Template Creation using MetaCO2P3S . . . . . . . . . . . . 303.5.1 Pattern Settings in MetaCO2P3S . . . . . . . . . . . . . . . . 313.5.2 Constants in MetaCO2P3S . . . . . . . . . . . . . . . . . . . . 323.5.3 Class Names in MetaCO2P3S . . . . . . . . . . . . . . . . . . 323.5.4 Parameters in MetaCO2P3S . . . . . . . . . . . . . . . . . . . 363.5.5 GUI Con�guration in MetaCO2P3S . . . . . . . . . . . . . . . 393.6 Framework Template Creation . . . . . . . . . . . . . . . . . . . . . 393.6.1 Building the Framework Classes . . . . . . . . . . . . . . . . 413.6.2 Implementing Extended and List Parameters . . . . . . . . . 473.7 Testing the Pattern Template . . . . . . . . . . . . . . . . . . . . . . 503.8 Importing Pattern Templates into CO2P3S . . . . . . . . . . . . . . 504 Validating MetaCO2P3S 514.1 Rereating CO2P3S . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514.2 Case Study: Geneti Sequene Alignment . . . . . . . . . . . . . . . 514.2.1 Isolating the Wavefront Design Pattern . . . . . . . . . . . . 524.2.2 Creating the Wavefront Pattern Template . . . . . . . . . . . 524.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.3 Extending CO2P3S from Shared-memory to Networks of Workstations 585 Pattern Template Repositories 595.1 The Generality of My Meta-programming Approah . . . . . . . . . 606 Related Researh 616.1 Design Patterns and Frameworks . . . . . . . . . . . . . . . . . . . . 626.2 Extensible Pattern-based Programming Tools . . . . . . . . . . . . . 626.2.1 Generi Programming Environments . . . . . . . . . . . . . . 626.2.2 Parallel Programming Environments . . . . . . . . . . . . . . 636.3 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636.4 Pattern Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . 636.5 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 Summary and Conlusions 657.1 Contributions of this Researh . . . . . . . . . . . . . . . . . . . . . 657.2 Ongoing Enhanements to CO2P3S and MetaCO2P3S . . . . . . . . 657.3 Diretions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 66



Bibliography 67A Installing CO2P3S and MetaCO2P3S 70A.1 Downloading the System . . . . . . . . . . . . . . . . . . . . . . . . . 70A.2 Con�guring CO2P3S . . . . . . . . . . . . . . . . . . . . . . . . . . . 70A.3 Building CO2P3S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71A.4 Running CO2P3S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71A.5 Adding Supplied Patterns to CO2P3S . . . . . . . . . . . . . . . . . 71B Pattern Template File Formats 72B.1 DTD for CO2P3S Pattern Template De�nitions . . . . . . . . . . . . 72B.2 XML Pattern Template Desription for Mesh . . . . . . . . . . . . . 74



List of Figures2.1 A new CO2P3S appliation. . . . . . . . . . . . . . . . . . . . . . . . 52.2 The user's view into the framework generated by CO2P3S. . . . . . . 52.3 The original CO2P3S GUI. . . . . . . . . . . . . . . . . . . . . . . . 92.4 A new appliation with one pattern template instane. . . . . . . . . 102.5 Parameterisation of the pattern template. . . . . . . . . . . . . . . . 102.6 Setting a framework lass name. . . . . . . . . . . . . . . . . . . . . 112.7 Generating the framework ode. . . . . . . . . . . . . . . . . . . . . . 112.8 Viewing the framework ode in CO2P3S. . . . . . . . . . . . . . . . . 122.9 Editing a framework method. . . . . . . . . . . . . . . . . . . . . . . 122.10 Setting the appliation options. . . . . . . . . . . . . . . . . . . . . . 132.11 Compiling the parallel appliation. . . . . . . . . . . . . . . . . . . . 133.1 The pattern template arhiteture. . . . . . . . . . . . . . . . . . . . 263.2 Files and interations in CO2P3S and MetaCO2P3S. . . . . . . . . . 273.3 Launhing the MetaCO2P3S editor. . . . . . . . . . . . . . . . . . . . 303.4 The Mesh Pattern Settings in MetaCO2P3S. . . . . . . . . . . . . . . 313.5 Constants used in the Mesh pattern. . . . . . . . . . . . . . . . . . . 323.6 The Class Name pattern settings in MetaCO2P3S. . . . . . . . . . . . 333.7 Editing a user-known lass in the Mesh pattern template. . . . . . . 333.8 Editing a framework lass in the Mesh pattern template. . . . . . . . 343.9 The Parameter pattern settings in MetaCO2P3S. . . . . . . . . . . . 343.10 Editing a basi parameter in the Mesh pattern template. . . . . . . . 353.11 Editing a list parameter in the Phases pattern template. . . . . . . . 363.12 The visual GUI elements pattern settings in MetaCO2P3S. . . . . . 373.13 Editing a visual text element in the Mesh pattern template. . . . . . 373.14 Editing a visual graphial element in the Mesh pattern template. . . 383.15 Adding images to a visual graphial element in the Mesh. . . . . . . 383.16 Con�guring the name of a visual graphial element in the Mesh. . . 383.17 Mesh template ode example. . . . . . . . . . . . . . . . . . . . . . . 423.18 User parameterisation from CO2P3S. . . . . . . . . . . . . . . . . . . 433.19 Mesh template ode in framework instane after parameterisation. . 44



3.20 Mesh template ode in CO2P3S Template Viewer after parameterisa-tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.21 Mesh method body framework template example. . . . . . . . . . . . 463.22 Mesh method body generated after parameterisation. . . . . . . . . . 463.23 Diretory layout of pattern templates in CO2P3S. . . . . . . . . . . . 493.24 Importing a pattern template into CO2P3S. . . . . . . . . . . . . . . 504.1 Solving the sequene alignment problem with a dynami program-ming matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.2 The Wavefront pattern template in MetaCO2P3S. . . . . . . . . . . . 534.3 The Wavefront pattern template lass settings. . . . . . . . . . . . . 544.4 The Wavefront pattern template parameter settings. . . . . . . . . . 544.5 The Wavefront pattern template in CO2P3S. . . . . . . . . . . . . . . 554.6 The Wavefront pattern template GUI settings. . . . . . . . . . . . . . 564.7 Speedups using the Wavefront for sequene alignment. . . . . . . . . 58



List of Tables4.1 Exeution times using the Wavefront for sequene alignment. . . . . 57



Chapter 1IntrodutionComputer programs an enjoy potential performane bene�ts by exploiting para-llelism. However, parallel programming is hallenging for most developers, due tothe issues raised by onurreny. Unfortunately, even though the �eld of parallelprogramming is not young, the high-level tool support for parallel programming isstill immature. This is partly due to the belief that adding layers of abstration willadversely a�et overall performane.There are a number of forms that onurreny an take, depending on the re-quirements of a given algorithm. Finding the appropriate parallel design for a par-tiular program an be a diÆult problem. There is an arguable need for tools toassist developers with this problem, in partiular for those who are new to parallelprogramming.The struggle between the requirements for speed and developer assistane sug-gests that a ompromise is neessary. One approah being taken to meet this om-promise is the development of parallel programming environments that employ tem-plates to assist with program design and implementation. One suh system, from ourresearh group at the University of Alberta, is alled CO2P3S1 [MSSB00a, MSS97℄.CO2P3S uses design patterns to generate frameworks for parallel programs.1.1 MotivationIn over twelve years of experiene with template-based parallel programming envi-ronments, our researh group has identi�ed a number of problems that are prevent-ing their widespread aeptane [SSS98℄. One of these problems is the rigidity andnarrow sope of the environments. Current aademi tools only support a smallnumber of templates and, with only a few exeptions, do not allow the reationof new templates. The lak of a rih set of templates is one of the major reasonspreventing these tools from moving out of aademia and into mainstream use.1Corret Objet-Oriented Pattern-based Parallel Programming System, pronouned \ops."1



Finding a solution to this problem is not easy. Building a template-based parallelprogramming system is already a diÆult task. Ensuring that the same environmentan support the addition of new templates adds further ompliations. Our om-munity needs a meta-programming tool that enables the reation of new templatesand the modi�ation of existing ones. The templates must be generi enough to beusable in a variety of systems. If the templates are de�ned in a system-independentmanner, they an be stored in a entral repository. Submissions ould be made tothe repository from throughout the parallel programming ommunity, and it wouldserve to remove a major impediment to the aeptane of template-based systems.1.2 ContributionsThis dissertation desribes my approah to adding extensibility to template-basedparallel programming environments. This undertaking was rife with hallenges.First, I needed to determine what information was required to make a ompletetemplate desription, and how that information ould be stored. Then CO2P3S hadto be abstrated so that it ould integrate with template desriptions, inludingtheir graphial representations, in a modular fashion. Finally, I needed to speifyhow parameters ould be used to speialise templates by generating di�erent odeinstanes, and how parameter values ould be gathered from a user.My tool for reating new pattern templates is alled MetaCO2P3S, sine it wasbuilt as an extension to our CO2P3S environment. MetaCO2P3S reates �rst-lasspattern templates that integrate seamlessly with the CO2P3S environment, sinethey are idential in form and equivalent in funtion to the pattern templates sup-plied with the tool. This dissertation desribes the meta-programming approahtaken in MetaCO2P3S, and extends a hallenge to the ommunity to leverage ourtehnology to reate a pattern template repository.1.3 OrganisationChapter 2 introdues the CO2P3S environment, desribing its status prior to theresearh in this dissertation, and its available palette of pattern templates. Furthermotivation for my meta-programming extension is inluded.Chapter 3 disusses the development of the MetaCO2P3S tool and how I metmy goal of extensibility. This begins with a de�nition of the required omponentsof a pattern template. It goes on to desribe the modi�ations I made to theCO2P3S environment to support modular pattern templates. Finally, the design ofthe MetaCO2P3S tool and its underlying arhiteture are introdued, omplete witha desription of the pattern reation proess from the pattern designer's perspetive.Chapter 4 shows how I validated the MetaCO2P3S tool. As part of this proess,2



I not only rereated all of the patterns in the original CO2P3S, but I also addednew patterns. As part of this work, MetaCO2P3S was used to extend CO2P3S fromits target shared-memory parallel platform to distributed memory environments onnetworks of workstations.In Chapter 5, I promote the need for a pattern repository. We also demonstratethe generality of my meta-programming approah, showing how generi patternsan be reated using MetaCO2P3S. This �nding extends the power of CO2P3S andMetaCO2P3S beyond the domain of parallel programming.Chapter 6 desribes researh related to MetaCO2P3S, and Chapter 7 summarisesthe ontributions of this dissertation, introduing ongoing enhanements to CO2P3Sand desribing diretions for future work.Appendix A gives instrutions for the installation of CO2P3S and MetaCO2P3S.Examples of the system-independent �le formats for pattern templates, as intro-dued in this researh, are given in Appendix B.

3



Chapter 2An Introdution to CO2P3SOur parallel programming system, alled CO2P3S, uses objet-oriented program-ming tehniques to simplify parallel programming [Ma01, MSSB00a, MSSB00b℄.This researh follows the previous parallel programming system from our group,alled Enterprise [SSLP93℄, whih evolved from an earlier prototype alled Frame-Works [SSG89℄. Enterprise used a business model as an abstration for the om-muniation patterns in programs for networks of workstations. The environmentinluded many supporting tools, suh as detailed debuggers and animated playbakmehanisms. The researh goal for both Enterprise and CO2P3S was to providea means for software developers to parallelise and speed up their sequential pro-grams with little e�ort, while minimising the possibility of new errors being intro-dued. Using CO2P3S, developers an reate, ompile and exeute programs foronurrent arhitetures. This hapter desribes the state of CO2P3S prior to themeta-programming extension, and motivates the work done in this dissertation.In CO2P3S, developers identify parallel design patterns that desribe their ap-pliation's basi struture, parameterise the patterns to speialise them for theirneeds, and implement appliation-spei� ode within the automatially generatedframework that hides the entire parallel infrastruture. CO2P3S targets program-mers looking for reasonable speedups in their sequential appliations in return for amodest programming e�ort.A parallel design pattern template, or pattern template for short, onsists of twomain omponents. The �rst is a parallel design pattern, and is desribed in Setion2.1. The seond is a set of framework implementations representing the variousforms that the design pattern an take. The transition proess from design patternsto frameworks is desribed in Setion 2.1.1.There is urrently no support in the CO2P3S environment for the design patternseletion proess. The onus is on the developer to dedue the appropriate patterntemplates for their appliation. It is possible that this proess an be automated inthe future, based on the results of pattern language researh [MMS00℄.4



Figure 2.1: A new CO2P3S appliation.

Figure 2.2: The user's view into the framework generated by CO2P3S.5



One of the key features of CO2P3S is its separation of system-generated paral-lel ode and user-provided sequential ode. Parallel ode setions are typially themost ompliated part of an appliation. CO2P3S hides them from the user in theframeworks it generates. This separation helps to maintain orretness in applia-tions, and it greatly simpli�es users' implementation e�orts. We ensure that theseparation does not limit CO2P3S users by providing a programming model thathas three layers of abstration. The highest layer does not provide any aess toparallel ode. In the intermediate layer, a high-level expliitly parallel program-ming language enables manipulation of the parallel struture. At the lowest layer,CO2P3S provides native objet-oriented ode for the entire appliation.Figure 2.1 shows CO2P3S with a user appliation involving two design patterntemplates. The pattern template seleted in the middle segment of the user inter-fae and displayed in the pattern window on the right represents a two-dimensionalparallel mesh omputation, whih supports iterative omputations aross a surfae.Using the pattern window, a CO2P3S user an ustomise the pattern template in-stane by setting lass names for the framework and parameterising the patterntemplate so that it mathes their appliation. One of the parameters available forthe Mesh pattern template is the boundary ondition that allows the mesh to bea retangular surfae, a ylinder or a torus. Another parameter swithes the num-ber of neighbours for the nodes in the mesh from four to eight. After ustomisingthe pattern template, the user requests that the appropriate framework ode begenerated. The urrent pattern templates in CO2P3S are on�gured to generateshared-memory Java ode. Figure 2.2 illustrates the user's view of the framework,showing a lass that represents a single node in the mesh struture. Users are notallowed to edit the lass in this window. This prevents them from modifying methodor lass signatures. Instead, hyper-links are provided for user-modi�able loationsin the ode. The inset window is the result of following one suh hyper-link, andallows the user to enter the seleted method's body.2.1 Parallel Design PatternsDesign patterns, as popularised by Gamma, Helm, Johnson and Vlissides [GHJV95℄,apture and doument reurring problems in objet-oriented software design. Ne-essary omponents of a design pattern doument inlude both a desription of aproblem and its solution. The problem desription inorporates a disussion ofthe pattern's appliability. There should be suÆient detail in the solution for adeveloper to fully omplete the assoiated aspet of their design.As an innovative subset of the more general realm, parallel design patterns dealwith problems related to onurrent programming. There are many diÆulties thatmake parallel programming a daunting endeavour for developers, inluding:6



� the identi�ation of the parallelism in a given appliation, if any.� the onstrution of the parallelism, ensuring that the threads of exeution syn-hronise at key points and transfer data between threads in a timely fashion.� the target arhiteture (whether it be a distributed network of workstationsor a shared memory multi-proessor) an a�et the implementation languageand the algorithms used.� errors or omissions an ause the program to funtion erratially and inor-retly, making it diÆult to debug.� various performane enhanements may be required to attain reasonable pro-gram speedups, inluding inreasing task granularity, balaning the load be-tween threads of exeution and reduing ommuniation.� the appliation may need to sale to mahines with di�erent apabilities, orbe portable aross platforms.The umulative time for all of these ativities an make the ost of developingparallel programs prohibitive. Traditionally, the onus was almost entirely on thedeveloper to deal with these issues. A design pattern atalogue an help by not onlyidentifying the type of parallelism that best aptures their problem, but also bypresribing an appropriate solution. An example parallel design pattern atalogueis inluded in [Ma01℄.2.1.1 From Design Patterns to FrameworksEvery design pattern inludes an abstrat solution to a partiular design problem.The solution is general, to avoid dependenies on a partiular arhiteture or pro-gramming language. If this restrition is relaxed, the result is no longer a designpattern, by de�nition. Our alternative is to use design patterns to generate odeskeletons, whih an serve as the basis for a olletion of di�erent programs.A framework embodies the intent of a partiular design pattern. It providesa set of abstrat lasses, and is ustomised for a spei� domain through the im-plementation of one or more sublasses. The appliation struture is provided bythe framework, and is not modi�ed by the developer. Beause of this, a properlyonstruted framework an guarantee strutural orretness. In the domain of par-allel programming this is partiularly useful, sine a framework an enapsulate thesynhronisation and ommuniation needed for onurreny, freeing the developerfrom a diÆult part of their appliation.A small ompliation arises in the onversion proess from design patterns toframeworks beause of the possibility of design pattern parameters. Often there are7



slight variations in a design pattern that a�et its implementation. These varia-tions, or parameters, remove the possibility of a one-to-one mapping between designpatterns and frameworks. Instead, many di�erent frameworks may be required toprovide all possible parameterisations of a given design pattern. A parameter in adesign pattern does not orrespond to a single argument in a framework method.In fat, a parameter hoie at the design pattern level may result in the existene orabsene of a set of methods or portions of method bodies in the generated frame-work. Equipping developers for this situation requires a system that automatiallygenerates orret frameworks from a seleted design pattern with the appropriateparameterisation. This is one of the roles of the CO2P3S system, as disussed in[MSSB00a℄ and [MSS97℄.2.2 The Original CO2P3S ImplementationA system that automatially generates framework ode from design patterns anbe built on any ombination of arhiteture and programming language, providedsupport is available for parallelism. Early in the development of CO2P3S, Javawas seleted as the programming language, and shared-memory mahines as theparallel environment. That deision has provided some degree of arhitetural in-dependene, allowing CO2P3S to be run on many di�erent avours of UNIX, fromdual-proessor Linux mahines to large SGI Origin 2000 superomputers. Parallel-ism on these shared-memory systems is ahieved through Java native threads. Theobjet-oriented apabilities of Java are needed for the generated frameworks. Itshould be stressed that the design of CO2P3S does not prelude the use of otherprogramming languages or arhitetures (e.g. C++ on a distributed network ofworkstations).CO2P3S has been in development for a number of years now. It began witha ode generator, whih given a design pattern and a spei� parameterisation asinput, automatially produed framework ode. There was no user interfae, andtherefore no easy way to view the pattern atalogue or provide the parameterisationfor a seleted pattern.As a summer researh assistant, I implemented a graphial user interfae (GUI)for CO2P3S [MSSB00b℄, also in Java. The main purpose of the GUI is to gather de-sign pattern parameter information, and interfae with the ode generator to reatethe appropriate framework ode. Development e�orts attempted to ensure that theGUI representation of pattern templates was modular, and thus both maintainableand extensible. Figure 2.3 shows the three funtional areas of the main GUI window.The inner window, entitled Example, ontains the start of a parallel appliation.� On the left, the Palette displays ioni representations of the parallel pattern8



Figure 2.3: The original CO2P3S GUI.templates urrently in the atalogue. As the �gure shows, rolling the mouseover one of the ions displays the name of the orresponding pattern. Inaddition, by right-liking the mouse on an ion, one an hoose to view theassoiated design pattern doument.� The middle Program panel ontains the list of pattern templates seleted bythe developer for inlusion in their appliation. In this ase, only the Meshpattern is being used. However, it is possible to ombine more than one patternwhen building an appliation.� The segment on the right is where the developer parameterises a pattern tem-plate, and sets the lass names to be used in the framework.The original CO2P3S is the result of a large implementation e�ort. The GUIode onsists of 56 Java lasses with an NCSS1 line ount of 5,844. Adding theframework reation ode and three design patterns totals 89 Java lasses with anNCSS line ount of 7,762.Setion 2.3 provides further disussion related to the CO2P3S implementation,by desribing typial system usage. Setion 2.4 desribes three design patterns thatwere implemented in the original CO2P3S.
9



Figure 2.4: A new appliation with one pattern template instane.

Figure 2.5: Parameterisation of the pattern template.
10



Figure 2.6: Setting a framework lass name.

Figure 2.7: Generating the framework ode.
11



Figure 2.8: Viewing the framework ode in CO2P3S.

Figure 2.9: Editing a framework method.12



Figure 2.10: Setting the appliation options.

Figure 2.11: Compiling the parallel appliation.
13



2.3 CO2P3S UsageFigures 2.4 to 2.11 step us through a typial usage of the CO2P3S GUI. A moredetailed usage desription of CO2P3S, and the Mesh pattern in partiular, is in[MSSB00b℄. In Figure 2.4, a single Mesh2 parallel pattern template instane hasbeen added to a new appliation. Prior to this, the CO2P3S user would have spenttime analysing their appliation to identify the pattern template that most aptlydesribed their parallel design problem.The parameter a�eting the mesh boundary ondition is being set through agraphial dialog in Figure 2.5. The name for one of the framework lasses is beingset in Figure 2.6. These two examples demonstrate the ease with whih a patterntemplate an be parameterised in the CO2P3S GUI.Figures 2.7 through 2.9 show the proess of reating and editing the frameworkode. The template viewer only allows the user to edit the ode of ertain methods,alled the framework hook methods, thereby preventing aidental modi�ation ofmethod signatures, or other damaging hanges. The user enters only sequential odeat these hooks, as the parallelism is hidden by the framework.An appliation in whih a user has omposed multiple pattern templates is shownin Figure 2.10. This �gure also shows the apability for adding external user lassesto an appliation. One all of the neessary pattern templates for an appliation havebeen added, parameterised, and had their framework ode templates ompleted, theappliation an be ompiled and run, as in Figure 2.11. It should be noted that ane�ort was made during the development of eah of the CO2P3S pattern templatesto always generate framework ode that ompiles without any modi�ations. Thisallows developers to inrementally modify and test their pattern instanes.One of the important features surfaing early in the design of CO2P3S was athree layered approah to parallel program development. Thus far, this setionhas disussed only the highest level of abstration, alled the Patterns Layer. Thislayer inludes the onept of framework ode, as generated by parameterised par-allel pattern templates. User-supplied hook methods are used to reate a ompleteappliation. This layer also provides a guarantee of orretness, by ensuring thatusers have no e�et on the onstruts of onurreny in their programs.Two further abstration layers were desribed in [MSS97℄. They are alled theIntermediate Code Layer, and the Native Code Layer. Both are meant to inrease theopenness of CO2P3S appliations by allowing developers to gain aess to the frame-work ode, in two di�erent formats, for the purpose of performane tuning. Theframework ode was designed for safety, to prevent the possibility of errors. How-1Non-Commenting Soure Statements, approximately equivalent to the number of \;" and \f"haraters in Java soure ode.2The Mesh pattern is desribed in Setion 2.4.1.14



ever, some appliations may not require all the safety features built into a partiularframework, and it is important to allow the developer to make modi�ations. Atthe Intermediate layer, abstrat onurrent onstruts are represented in a high-levelformat. The Native layer removes the parallel abstrations, and provides aess tothe entire objet-oriented ode-base of the framework.2.4 Available Parallel Design Pattern TemplatesPrior to the start of my researh, only three fully implemented pattern templatesexisted in CO2P3S. The implementation e�ort required to add new pattern templateswas too high to justify adding more, as will be disussed in Setion 2.6. The threepatterns are briey desribed below. A more in-depth disussion of these patternsan be found in [MSS99℄ and [Ma01℄.2.4.1 The Mesh Pattern TemplateThe Mesh pattern template supports surfae mesh omputations. Generalmesh omputations are not supported by the pattern, whih instead fouses onregular meshes onsisting of n�m points on a two-dimensional surfae. In a meshomputation, a sequene of steps a�ets eah point on the surfae. Eah pointhanges state based on its previous state, and that of eah of its neighbours. Theomputation typially onludes when all of the mesh points have reahed some �nalagreed upon state. The pattern template solution ensures that eah iteration, orstep, a�ets every point in the mesh before the following iteration begins. This taskis made more diÆult by the fat that di�erent points may have been omputed bydi�erent threads of exeution.The pattern template user does not have to worry about the issues of onur-reny. Instead, they only provide a termination ondition, and write ode thatdesribes how a mesh point omputes its state, based on the provided states of eahneighbour.In addition to speifying lass names for the generated framework ode, theMeshpattern template user must speify two parameters. The �rst parameter determineswhether the boundaries of the mesh have edges onneting them to neighbours onthe opposite edge. This means that there an be meshes that are fully toroidal,horizontal-toroidal, vertial-toroidal or non-toroidal. The seond parameter setsthe number of neighbours for eah point in the mesh. There an be either fourneighbours (up, down, left and right), or eight (also inludes the diagonals). Thesize of the mesh is not required during the design phase, as it is provided as arun-time parameter to the Mesh framework.15



2.4.2 The Distributor Pattern TemplateThe Distributor pattern template provides a form of data parallelism. It di-vides the exeution of methods that ontain arrays of data in their arguments, anddelegates omputation for eah array segment to a di�erent hild thread. Meth-ods that have too �ne a granularity to allow eÆient parallelisation an be runsequentially. The Distributor pattern user must provide a list of methods to be ex-euted. For eah method that an be parallelised (i.e. has an argument whih is aone-dimensional array of elements), they must speify the distribution amongst thehildren. The valid distributions are:
Pass-Through the entire array is passed to eah hild.Striped hild i (of n hildren) reeives the array elements at (i; i + n; i+ 2n; :::).Neighbour hild i reeives elements i and i+ 1 from the input array.Blok n ontiguous setions of the array are distributed amongst the n hildren.2.4.3 The Phases Pattern TemplateThe Phases pattern template, also referred to as Method Sequene, is aspeial pattern that provides no onurreny. Instead, the Phases pattern an at asthe glue between other pattern templates in an appliation. It takes a list of methodsas its only parameter, and is responsible for the sequentially ordered exeution ofthose methods.2.5 Case Study: Image ProessingPrior to the ommenement of this dissertation researh, I performed a study onthe usability and performane of the CO2P3S environment. The study used thefollowing set of simple image proessing algorithms:Contrast Strething: Eah pixel in an image that falls within a given inputrange is strethed to �t a given output range.Sobel Edge Detetion: Applies a mask that �lters eah pixel in a given im-age, reating an output image that highlights the \edges," or areas of rapidfrequeny hange. 16



Median Noise Redution: Redues the number of \noisy" pixels in a given im-age by applying a simple mask to eah pixel.Eah of the algorithms was implemented three di�erent ways using Java. The �rstimplementation was a simple sequential solution. The seond was a hand-odedparallel implementation. The third implementation used the CO2P3S environment.The only parallel design pattern template that was available in CO2P3S andould be applied to the image proessing problems was the Mesh. Unfortunately,this seletion was not ideal. One reason for this was that although the Mesh patterntemplate was designed to operate on at n �m surfaes, it was meant to be usedfor iterative proesses that repeat a omputation at eah element over time. This isin ontrast to the image proessing operations, whih omputes only one at eahpixel, or surfae loation.As might be expeted, the performane numbers ahieved in this study weredisappointing. However, a positive result surfaed from this work. In determiningthat the Mesh pattern template was inappropriate for the seleted image proessingalgorithms, we onluded that a new pattern template would be required in theCO2P3S environment. An implementation for this pattern template ould emulatemy hand-written parallel solution, whih segmented a given image into n equalbloks and then ran n parallel threads of exeution to proess it. Our need for anew pattern template further motivated and supported my extensibility researh.2.6 Adding Parallel Design Pattern TemplatesThe small parallel pattern template atalogue was a severe limitation for CO2P3S.If a developer's appliation required a pattern template that was not provided byCO2P3S, the system was rendered virtually unusable to them. Thus, it was ruialfor CO2P3S to allow new pattern templates to be added easily. The GUI was builtin a modular way to allow for this neessity. However, a large implementation e�ortwas still required to add eah new pattern template. Eah pattern addition onsistedof two stages.The �rst step was the implementation of a plug-in GUI module. This requiredsub-lassing an abstrat module that provided assistive funtionality. Next, a visualrepresentation of the pattern had to be developed. This inluded parameter set-tings and framework lass names. Certain parameters needed tailored dialogues forretrieving user requirements. Ation handlers had to be written, and the patternneeded to have a method to apture a run-time snapshot of itself for permanentstorage.In addition to the GUI module, a framework generator interfae was required.This module was responsible for gathering data from the GUI omponent at the17



appropriate time and pakaging it in a format usable by the ode generator. Tem-plate ode for eah of the framework lasses had to be provided, with optional odefor eah of the pattern template parameters. The ode generator needed to beinstruted to reate the framework based upon the provided parameterisation.Finally, after implementing and testing both of these modules, the new patterntemplate ould be added to the GUI by adding its name to the CO2P3S on�guration�le.2.6.1 MotivationAs a means for the CO2P3S internal development team to add new pattern tem-plates, the status quo was suÆient, but unpleasant. It stalled the addition of anumber of known pattern templates, and limited the size of the provided atalogue.Furthermore, it was thought that advaned CO2P3S users should be given the abilityto add patterns themselves, sine the provided atalogue would never be omplete.It beame apparent that a simpler proedure for adding pattern templates was re-quired to make CO2P3S a viable system for parallel programming.With these thoughts in mind, the aim of my researh was to realise the goal ofextensibility in CO2P3S by reating a meta-programming tool for adding new par-allel pattern templates into the system. To ahieve this goal, I needed to normalisethe representation of pattern templates, and reate a simpli�ed high-level abstra-tion for pattern template reation. I then needed to design and implement a tool tosupport this abstration.

18



Chapter 3A Meta-programming Tool forCO2P3SThe previous hapters motivated the need for extending our pattern-based parallelprogramming system by providing the ability to add new templates. They desribedthe lak of extensibility as a major impediment to the aeptane of template-basedparallel programming environments. If an appliation annot be implemented usinga given programming environment, it alls into question the utility of that tool.Programmers are unlikely to invest e�ort learning an environment that may notmeet their needs in the future.My hypothesis is that not only is there a need for a large number and varietyof pattern templates to over all parallel programming needs, but also that thereare still undisovered parallel design patterns. Even if posterity proves me wrong,and demonstrates that only a handful of omplete pattern templates suÆe to overthe domain of parallel programming, MetaCO2P3S will still be regarded as a usefultool. Pattern templates are seldom omplete after their �rst design iteration, andMetaCO2P3S makes the task of pattern modi�ation muh simpler.To address the extensibility problem, I have reated a tool that allows paralleland objet-oriented programming experts, alled pattern designers, to reate newpattern templates. The new pattern templates are �rst-lass, meaning they are in-distinguishable in form and equivalent in funtion to the pattern templates inludedwith CO2P3S. Analogous to the manner in whih CO2P3S makes it easier to writeparallel programs using pattern templates, MetaCO2P3S makes it easier to writepattern templates for CO2P3S.This hapter desribes the extensibility researh. Setion 3.1 enumerates theneessary omponents for a parallel design pattern template. Setion 3.2 desribesthe modi�ations required in CO2P3S to support modular pattern templates. Se-tions 3.3 through 3.6 desribe the design of MetaCO2P3S, and how it is used toreate new pattern templates. Finally, Setions 3.7 and 3.8 desribe the proess oftesting pattern templates and importing them into the CO2P3S environment.19



3.1 The Neessary Components of a Pattern TemplateBefore embarking upon the development of the MetaCO2P3S tool, it was impor-tant for us to identify and de�ne the neessary omponents of a pattern template.As part of this investigation, I needed to assess the possible di�erenes betweenpattern templates to ensure that my de�nition was omplete. The three parallelpattern templates in the original CO2P3S implementation were my primary soureof inspiration for this task.The entire skeleton of a pattern template, as desribed below, was de�ned at theoutset of my researh. However, a number of the details, partiularly to do with theimplementation, were determined later or arose through trial and error.I have left the responsibility of identifying new design patterns to the patterndesigner. This task involves isolating newly-disovered reurring patterns and thevarious forms that they an take based on pattern parameters, then reating aframework that hides the parallelism details. Designers should note the aspets oftheir frameworks that are a�eted by di�erent parameter settings.Neither CO2P3S nor MetaCO2P3S were built to support design pattern disov-ery, sine it is a hard problem that has yet to be solved. One example of researhthat relates to the disovery problem is the PatternLint tool [SSC96℄, whih heks aprogram to ensure that it follows the design pattern ontrats that were spei�ed aspart of its design. However, PatternLint does not disover known design patterns inan appliation. Furthermore, even if PatternLint ould be extended to disover thedesign patterns in a program, it would still be unable to identify unknown designpatterns. This last problem is one of many that would need to be solved beforeautomation of the pattern disovery proess ould be realised.The rest of this setion introdues the omponents that I identi�ed as beingneessary for a pattern template.3.1.1 Pattern Template Identi�ation and DoumentationTwo key features of every pattern template are its name and its doumentation.As with generi design patterns, the name gives developers the ability to onverseabout the given problem and its reommended solution. It is important that thehosen name be memorable, and indiative of the pattern's role. This will also helppattern users with the seletion proess.I have extended the naming requirement for pattern templates to inlude anioni representation. The hosen ion will represent the pattern template in agraphial user interfae. It is important that the ion is useful to pattern templateusers.The pattern doumentation is at least as important as the name. Like a designpattern doument, it desribes the problem being solved and the form that the20



solution takes. Pattern template doumentation also inludes usage information.The doumentation must suÆe to serve as the basis for a developer's seletion ofthat pattern for their appliation.3.1.2 Class NamesA pattern template must inlude eah of the lass names that exist in its frameworkinstanes. The template must use generi plaeholder names for eah of the lasses,whih de�ne their funtion in the framework, yet an be replaed by user-suppliedvalues in a partiular framework instane. This ondition is neessary to allowmultiple opies of the same pattern template to be instantiated in a single program.The pattern user will be required to supply at least one lass name for eah patterntemplate instane. The remainder of the plaeholder lass names, neessary toomplete the implementation of the design pattern, an be generated simply byadding suÆxes or pre�xes to the user-supplied lass name.3.1.3 ParametersThe parameters that at on a pattern template allow it to have di�erent behaviours,in order to math a user's requirements. Every possible ombination of parametersettings auses a di�erent framework instane to be generated. I have hosen tohave three parameter types, and eah is desribed below:Basi ParametersBasi parameters over most ommon parameter usage ases. They are omprisedof either an arbitrary string value, or an enumerated list of hoies that must be sup-plied by the pattern designer. The set of possible on�gurations range from booleanswithes to more elaborate list hoies. Pattern users are required to selet one andonly one value for a given parameter, although a default value an be supplied bythe pattern designer. In the Mesh pattern template, introdued in Setion 2.4.1,only basi parameters appear. One example is the number of neighbours parameter,whih an be set to either four or eight.Extended ParametersExtended parameters deal with the relatively unommon ase in whih parametervalues are in an arbitrary form. Sine extended parameters must deal with asesthat annot be overed by basi parameters, extra work is required of the patterndesigner. For eah extended parameter, the designer must provide a way for usersto speify the parameter's value, and the manner in whih the given value willa�et framework ode generation. The Distributor pattern template, introdued inSetion 2.4.2, uses a list parameter (see below) omposed of extended parameters.21



Eah entry in the list is a method signature with additional information that altersthe distribution of methods with array arguments.List ParametersList parameters are a useful subset of extended parameters. They deal with situa-tions in whih a pattern template user needs to supply a list of values. The list valuesan range in omplexity from simple strings to ompliated extended parameters.As with extended parameters, the pattern designer is required to speify the man-ner in whih a list parameter setting a�ets framework ode generation. However,support is provided for gathering the list values from the pattern template user,and iterating through the list during ode generation. The Phases pattern template,introdued in Setion 2.4.3, uses a list parameter to gather method names from theuser.3.1.4 GUI Con�gurationPattern templates must integrate with programming environments that have graph-ial user interfaes, or GUIs. Therefore, it is important that they enable users tovisualise their parameter settings through a graphial representation. As an ex-ample, Figure 2.1 depits the Mesh pattern template in the CO2P3S environment.Images and textual data are ombined to inform the pattern user of the patterntemplate settings.3.1.5 User Interation CapabilitiesSine pattern templates are used in GUIs, they must handle user interation. Pat-tern users need to set lass names and parameter values. They must also be ableto generate a framework instane, and populate it with their appliation ode. Allof these operations must be dealt with by the pattern template, for example bypresenting a dialog of hoies to the user.3.1.6 State MaintenaneThe pattern template must be apable of maintaining the run-time state of any of itsinstanes. In addition to the parameter and lass name settings, the state inludesthe programming abstration layer urrently being aessed by the pattern user.The state information must be serialisable to a string, so that a user's programmingsession an be saved to disk or transmitted aross a network.3.1.7 The Framework TemplateIn order to generate di�erent framework ode for eah of its possible parameter-isations, a pattern template must inlude a framework template. A framework22



template onsists of the set of lasses that are in eah of the framework instanes.These lasses ontain normal Java ode, and inlude additional meta-programminginformation that indiates the e�et of parameters on ertain setions.3.2 Modifying CO2P3S to Support Modular Pattern Tem-platesCO2P3S was originally designed with future extensibility in mind, and our researhgroup had the foresight to plan for the ontinual addition of pattern templates to thesystem. However, little time was spent optimising the modularity of pattern tem-plates or automating the template reation proess. Therefore, the task of reatingand adding a pattern template required a signi�ant amount of time and program-ming e�ort. One of the �rst researh tasks, after my identi�ation of the patterntemplate omponents, was to modify the CO2P3S environment to support plug-inpattern template modules.3.2.1 Deoupling the Framework Template and Pattern Desrip-tion ComponentsThe �rst step was to deouple the GUI representation and user interation ompo-nents of pattern templates from the framework ode generation aspets. We madethis hoie beause of the high degree of similarity aross pattern desriptions, andthe independene of the framework templates from this similarity. The data owbetween these two omponents now onsists only of textual data representing thelass name and parameter settings gathered from the pattern user.This deoupling of the two primary omponents of pattern templates had anumber of advantages. Foremost among these was the ability it gave for us toonentrate on the implementation of eah part in isolation. Furthermore, sinethe pattern desriptions were already losely tied to the CO2P3S environment, andthe framework generation was a separate omponent, the deoupling married nielywith the realities of the CO2P3S implementation.3.2.2 Supporting the Pattern Desription Component in CO2P3SSine the CO2P3S GUI was written in Java, the obvious hoie for the implemen-tation language of the pattern desription omponent was also Java. This hoieallowed us to use objet-oriented abstrations in the design of the plug-in GUImodule. The similarities between omponents are enfored by making their im-plementations sublasses of an abstrat lass alled PatternPane, whih is suppliedwith CO2P3S. The abstrat lass provides implementations to support eah of thefollowing aspets of a pattern template: 23



Identi�ation: the PatternPane stores the name of the pattern template, and theions that represent it in the CO2P3S environment.Doumentation: the PatternPane ontains links to the assoiated pattern templatedoumentation.Class Names: with the help of the PatternClass lass, the PatternPane stores eahof the run-time lass names for a pattern template, and supplies a dialog thatgathers this information from the pattern user. The PatternPane also providesoperations that automatially verify the orretness of a given lass name andprevent name lashes with other pattern templates in an appliation.Parameters: with the help of the PatternParameter lass, the PatternPane storesthe user-supplied parameterisation of a pattern template. Dialogs are providedto support gathering the values of basi parameters and list parameters.Graphial Display: the PatternPane has operations that allow for the easy addi-tion of images and text to the CO2P3S GUI display. The layout and displayof these elements is handled by the PatternPane. Also, if any images or textvalues are supposed to dynamially hange to represent the urrent param-eterisation of a pattern template instane, these hanges are handled by thePatternPane.User Interation: in addition to the dialogs provided for lass name and parame-ter value input, the PatternPane provides menu options that enable operationssuh as framework ode generation. It also provides windows for viewingframework ode and editing the framework hook methods.State: the PatternPane maintains all of the state information for a pattern templateinstane, and provides operations that allow it to be serialised for long-termdisk storage or network transfer.The PatternPane abstrat lass was part of the original CO2P3S implementation,but its sope was muh smaller than that of the urrent inarnation. Sublasses ofthe new PatternPane lass are short and simple, onsisting primarily of initialisationode.3.2.3 Supporting the Framework Template Component in CO2P3SDue to its deoupling from the pattern desription, researh on framework templateswas able to proeed independently. As suh, it was not until after the updates toCO2P3S and the reation of MetaCO2P3S that my attention turned to this problem.The maro language that had been used for ode generation in the original CO2P3S24



environment had been powerful enough to support our needs, but was rather un-wieldy, making framework template reation and maintenane diÆult. In Setion3.4, the design and arhiteture of my new framework template is desribed. Theonly hanges to CO2P3S required to support the new format were updates to thePatternPane to allow parameter and lass name settings to be written to a text �lefor use during ode generation.3.3 The Design of MetaCO2P3SAt the outset, my researh plan was to reate an integrated meta-programming toolthat would automate as muh of the pattern template reation proess as possible.Unfortunately, it turned out that a omplete solution was beyond the sope of thisdissertation. MetaCO2P3S deals ompletely with the pattern desription portion,but the planned tool support for the framework template omponent is not omplete.The MetaCO2P3S tool allows a pattern designer to reate a new pattern tem-plate or modify an existing one. Sine I de�ned a standardised format for patterntemplates, the information required of the pattern designer is well-formed and min-imal. I strove to ensure that pattern designers were not required to supply anythingbeyond GUI on�guration and the names and types of lass names and parameters.Another design hoie was to store pattern template information in a system-independent format. Sine our CO2P3S environment requires plug-in Java modulesof a partiular format, this meant that I needed to ome up with an intermediatestorage representation. My purpose behind this approah was to allow patterntemplates to be shared not only amongst CO2P3S users, but also throughout abroader ommunity, as more parallel programming environments begin to supportthe format. Chapter 5 disusses the usefulness of pattern template sharing. Setion3.4 desribes the system-independene.In my urrent implementation, pattern designers must write the Java ode fortheir framework templates, omplete with the meta-programming information forparameterisation. However, I designed this proess to be done in a tool that auto-mates adding the meta-programming information.Beause of my hoie of Java as the framework template language, the patterntemplates generated are ompletely system-independent. The use of Java reetsonly my design hoie, and is not a neessity. The generi pattern desriptions ould,in fat, be used with framework templates in di�erent languages. The unfortunateaspet of this approah would be that it would separate pattern templates intodi�erent ategories, based on their implementation languages.
25



MetaCOPS

XML Pattern
Description

Framework Template
(Annotated Source)

COPS

Framework
Instance
(Java)

Creates

Transforms into 
Pattern Template

Generates

Pattern Designer

COPS User

Interacts with

Utilises
Creates

Javadoc

Figure 3.1: The pattern template arhiteture.3.4 The Pattern Template ArhitetureThis setion disusses the arhiteture of the pattern template reation proess. Idesribe how my approah minimises the amount of user interation required, andshow how my implementation is hidden from the user. Figure 3.1 gives an overviewof the arhiteture. My deoupling of the pattern desription and framework tem-plate omponents is learly shown.Figure 3.2 briey desribes the �les used in the CO2P3S environment, and theinterations between them. At the top, the reation of the pattern template isdepited. The pattern designer uses MetaCO2P3S to generate an XML patterndesription, and manually reates the framework template �les. At the bottom, thetwo roles of the pattern user are shown. The �rst, importing a pattern desriptioninto CO2P3S, takes an XML �le as input, generates a plug-in Java module, andinserts it into the palette of the CO2P3S GUI. This step only needs to be doneone, as the pattern template beomes part of the user's CO2P3S environment. Theseond role onsists of a pattern user's instantiation of a pattern template. Afterthe user has seleted their desired parameterisation, they an generate a frameworkinstane. This proess takes as input the framework template and a �le ontainingthe user's parameter settings. The user an then use the template viewer in theCO2P3S GUI to put their appliation-spei� ode into the hook methods of theframework, and generate a �nished appliation.
26



Figure 3.2: Files and interations in CO2P3S and MetaCO2P3S.
27



3.4.1 XML for System-independent Pattern Template StorageIn addition to storing the pattern templates in a system-independent format, Ihose to use a textual, human readable format, although this feature was seondaryto expressiveness and mahine readability. After some researh we seleted theXML1 format [XML℄. XML has beome a well-known standard for data storageand sharing, and is published by the World Wide Web Consortium [W3C℄. XMLdesended from SGML, and is similar to the HTML language used in web pages,but muh more general. One important advantage of XML is that there a number ofompanion spei�ations published by the World WideWeb Consortium that greatlyexpand its usefulness. Furthermore, there is a large number of tools, inludingparsers, available for every omputer platform.XML is ompletely textual, and therefore serialises easily for storage on diskor transfer aross a network. DTD2 �les (or the reent XML Shema standard)an be used to speify the allowable ontents for a set of XML �les. Sine therequirements for pattern templates are strit and well-formed, I deided to haveCO2P3S use a DTD to verify the format of XML �les before they are importedinto the programming environment. Appendix B desribes the XML and DTD �leformats used for MetaCO2P3S, and provides some examples.XML is stored in a strit, hierarhial format. This �ts well with the hierarhy ofdata required to reate a pattern template. In fat, the MetaCO2P3S GUI mirrorsthis format by presenting a tree of hoies to the pattern designer, eah branh ofwhih must be ompleted.One spei�ation related to XML that was partiularly useful for my researhwas XSL3 [XSL℄. The intended purpose of XSL is to perform onversions on XML�les. The doumented uses of XSL inluded onverting XML to HTML, miningthe data to format it for di�erent uses, or onverting it to a binary format. XSLresembles a simple programming language, as it provides onditional tests, variablesand operations for looping through lists.I built a ustom XSL style-sheet that onverts the pattern template XML dou-ments into Java soure ode �les that sublass the PatternPane abstrat lass. Thisproedure, followed by a soure �le ompilation, is performed automatially by theCO2P3S import feature, and requires no user intervention.Sine MetaCO2P3S saves the information entered by the pattern designer intoXML transparently, and CO2P3S automatially onverts it into a plug-in moduleusing XSL, neither pattern users nor designers ever need to look at the patterntemplate XML �les. However, this does not detrat from my deision to use ahuman readable format, as it allows for easier pattern template debugging.1Extensible Markup Language2Doument Type De�nition3Extensible Stylesheet Language 28



3.4.2 Javado for Framework Template Code GenerationJavado [Jav℄ is a tool, inluded with the Java distribution, whose original purposewas to generate HTML API doumentation for Java libraries. Javado runs a mod-i�ed Java ompiler on Java soure ode �les to parse the delarations and speiallyformatted omments. Javado omments have the following format:/*** A omment desribing the following Java onstrut.** �sampleTag a tag that is parsed by Javado*/publi void sampleJavaDelaration()The most important features of Javado omment formatting are:� the omment bloks must start with \/**".� the omment bloks must end with \*/".� the Javado tag names may either be prede�ned (i.e. the ones used by Javadoto reate API doumentation) or user-de�ned.� Javado omment bloks must immediately preede one of the following Javaonstruts:{ a lass delaration.{ a onstrutor delaration.{ a method delaration.{ a �eld delaration.Javado was eventually extended to allow pluggable Dolets. Dolets are Java pro-grams that satisfy a ontrat allowing them to reeive the parsed data from a Javadoexeution. This data inludes the delarations and omments from eah of the parsedlasses. Method bodies and �eld initialisations are not provided, sine they are ig-nored by Javado. The parsed Javado output is provided to the Dolet using theDolet API [Do℄, whih provides aess to the following information for eah lass:� the imported lasses and pakages.� the pakage of the lass.� the lass delaration.� the onstrutor delarations.� the method delarations. 29



Figure 3.3: Launhing the MetaCO2P3S editor.� the �eld delarations.For eah of the delarations, Javado provides the text and tags from the assoiatedomment, if any.When I started to look at the ode generation problem, and the replaementof the maro language used in the original CO2P3S implementation, my researheventually unovered one group's use of Javado for ode generation [Pol00℄. Theirexperiene only overed very simple uses, but I felt that it would be an ideal solutionif extended. Javado allows us to have framework templates written in normal Javaode, with the meta-programming hidden entirely in the omments. This means notonly that my framework templates are muh easier to read and edit, but also thatthey an be suessfully ompiled with no preproessing, to aid in testing.The new framework ode generation implementation is a soure ode to soureode transformation using Javado. There are two inputs to the proess. One is aset of Java soure ode �les that have been annotated by the pattern designer. Theother is the pattern template parameters seleted by a CO2P3S user.The biggest pitfall that I experiened during my adoption of Javado as a frame-work ode generator was its inability to provide method bodies through the DoletAPI. My original intent was to modify the Javado parser to �x this drawbak, butthat proved impossible sine the Javado parser soure ode was not available. Towork around this short-oming, I deided to store the text for method bodies inseparate �les. The bene�t to this was that a similar approah was already neededto provide parameterisation.3.5 Pattern Template Creation using MetaCO2P3SThe MetaCO2P3S tool is launhed from the CO2P3S GUI, as shown in Figure3.3. The MetaCO2P3S GUI is pitured in Figure 3.4. This setion desribes theMetaCO2P3S portion of the pattern template reation proess, using the Mesh as30



Figure 3.4: The Mesh Pattern Settings in MetaCO2P3S.an example. Another example of the steps used in MetaCO2P3S during the patterntemplate reation proess is given in Chapter 4.In MetaCO2P3S, pattern templates an be saved to disk at any time, andloaded later for subsequent modi�ations. Figure 3.4 shows the Pattern Settings,the top level of the pattern template hierarhy, after the Mesh has been loadedinto MetaCO2P3S. As this and subsequent �gures show, MetaCO2P3S is well do-umented, informing the pattern designer about eah �eld they need to �ll in. Thisinline help serves to expedite the pattern reation proess.Figure 3.4 shows the two main panes in the MetaCO2P3S window. On the left isan expandable tree that represents the hierarhy of data in my de�nition of patterntemplates, and also mirrors the layout of my XML �les. Sine a pattern template anhave an arbitrary number of some elements suh as lass names and parameters, thepattern designer adds new leaf elements to the ategory tree using the buttons shownin Figures 3.6, 3.9 and 3.12. In the right pane, the pattern designer is responsiblefor �lling in the neessary data �elds, as direted by the inline help.3.5.1 Pattern Settings in MetaCO2P3SThe settings pane for the Pattern Settings ategory serves to gather the patterntemplate identi�ation details. It is here where the pattern designer enters thepattern name, and where the path names for extra �les are de�ned. The inline helpdesribes how to name the pattern ions, and where they should be loated.
31



Figure 3.5: Constants used in the Mesh pattern.3.5.2 Constants in MetaCO2P3SThe only ategory in the tree that was not mentioned in Setion 3.1 is the one namedConstants. Constants are string variables that the pattern designer an de�ne anduse in other �elds, later in the pattern reation proess. Figure 3.5 shows onesuh onstant in the Mesh pattern template. Although I originally intended forthe MetaCO2P3S GUI to provide onstants in a seletable widget in all loationswhere their use is suitable, other implementation hoies made this diÆult, and itis not featured in the urrent version. Instead, when supplying information for �eldsneeding a string literal, the pattern designer must either type a onstant name (e.g.CONSTANT NAME) or a string literal in quotation marks (e.g. \theString"). Thisnuane is desribed in the MetaCO2P3S inline help. The Delete Setting button atthe bottom of the settings pane is a ommon feature in all leaf nodes, and allowsthe pattern designer to remove a setting that they no longer want.3.5.3 Class Names in MetaCO2P3SThe Class Names ategory is shown in Figure 3.6. The pattern designer must speifyevery lass that is to be involved in their framework template. I provide both user-known lasses, shown in Figure 3.7 and framework lasses, shown in Figure 3.8.Either type of lass may be designated a template lass, whih is one that patternusers an enter appliation ode into using hook methods. A pattern template an32



Figure 3.6: The Class Name pattern settings in MetaCO2P3S.

Figure 3.7: Editing a user-known lass in the Mesh pattern template.
33



Figure 3.8: Editing a framework lass in the Mesh pattern template.

Figure 3.9: The Parameter pattern settings in MetaCO2P3S.
34



Figure 3.10: Editing a basi parameter in the Mesh pattern template.

35



Figure 3.11: Editing a list parameter in the Phases pattern template.have more than one template lass.User-known lasses are those that are visible to pattern template users. Oneuser-known lass should be hosen by the pattern designer to represent the patterninstane in the CO2P3S GUI. The user-supplied name for this lass will be displayedin the CO2P3S program panel. User-known lasses an also be used to allow patternusers to integrate external lasses into the framework, suh as a superlass thatprovides appliation-spei� funtionality.Framework lasses are typially not known to the pattern user. To avoid namelashes, the pattern designer must add pre�xes or suÆxes to one of the user-knownlasses when forming a framework lass name.3.5.4 Parameters in MetaCO2P3SThe Parameters ategory is shown in Figure 3.9. The buttons that allow a patterndesigner to add eah of the three types of parameters de�ned in Setion 3.1.3 areshown. Figures 3.10 and 3.11 show the settings pane for basi and list parameters,respetively. For eah type of parameter, the pattern designer must provide a uniqueidenti�ation, and a name that will be displayed in the CO2P3S GUI.The basi parameter has two additional piees of required information. The �rst36



Figure 3.12: The visual GUI elements pattern settings in MetaCO2P3S.

Figure 3.13: Editing a visual text element in the Mesh pattern template.
37



Figure 3.14: Editing a visual graphial element in the Mesh pattern template.

Figure 3.15: Adding images to a visual graphial element in the Mesh.

Figure 3.16: Con�guring the name of a visual graphial element in the Mesh.38



is an optional default parameter value. The seond, for basi parameters with anenumeration of possible hoies, is the list of valid options that are to be presentedto the pattern user.List parameters also have two additional piees of required information. Firstis the parameter lass, to be written by the pattern designer, that interfaes withthe ode generator to supply appropriate ode to framework instanes. Seond,for list parameters with extended elements, is the parameter lass for the extendedparameters.3.5.5 GUI Con�guration in MetaCO2P3SThe GUI Con�guration ategory is shown in Figure 3.12. The pattern designer anadd both graphial and textual elements to the pattern template GUI display. Figure3.13 shows the on�guration settings for a text element. Figures 3.14 through 3.16show the settings needed for graphial elements. Both element types require a nameand a oordinate loation for the pattern pane.Text elements have a number of other on�guration options. Two of these,the maximum length and justi�ation deal only with the aesthetis of the visualdisplay. Pattern designers must supply the default text string to be displayed. Thetext elements an also be set to update dynamially with the value of a given lassname or parameter.Graphial elements an also be made to dynamially represent the value of basiparameters. To ahieve this, the pattern designer must speify one or more imagename parts. Eah of the parts an be a stati string, or the value of a basi pa-rameter. The onatenation of the parts is used to dynamially reate a �lenamethat should be found in the list of images supplied by the pattern designer. Asexempli�ed by the Mesh pattern template, multiple parameter values an be usedin the dynami seletion of a single graphial element.3.6 Framework Template CreationGiven a pattern template and a spei� parameterisation, CO2P3S must generate anappropriate objet-oriented framework instane. The pattern designer must reatea framework template that an aurately perform this task in onjuntion with theMetaCO2P3S-generated pattern template desription. It is the pattern designer'sresponsibility to ensure that the generated frameworks are error-free, and orretlyimplement the intended parallelism.An annotated soure ode template must be written for eah of the lasses in theframework. It should be noted that I designed the framework template format to beused in a rih graphial editing environment. Beause of this design, the annotations39



disussed in this setion an easily be enapsulated in a programming environment.The following transformations must be supported by the supplied annotations:� Plaeholder lass names in the annotated soure �les must be replaed withthe unique names that are supplied by the CO2P3S user.� Methods or variables may be seletively generated based on the user's basiparameter settings. The pattern designer must speify the ombination ofparameter settings that allows a given onstrut to be generated.� Portions of method bodies may be seletively generated based on the givenbasi parameter settings.� New methods or setions of method bodies may be generated based on ex-tended or list parameter settings.� In the template lasses that were spei�ed in MetaCO2P3S, seleted methodsmust be marked as modi�able by the user. This allows CO2P3S to displayhyper-links in the ode template viewer.The pattern desription �le reated by MetaCO2P3S is stored within the CO2P3Sinstallation diretory as \patterns/[PatternName℄.xml". When the pattern tem-plate is saved, MetaCO2P3S also reates the framework template diretory, at\patterns/[PatternName℄/". The diretory layout for patterns is depited at theend of this setion, in Figure 3.23. The framework template diretory has the fol-lowing ontents:� Java soure �les for eah of the lass names provided in MetaCO2P3S. Thesoure �les eah have the pre�x \FrameworkCLASS_", to learly di�erentiatethem from lasses in framework instanes. MetaCO2P3S automatially reatesthese �les, whih must then be edited by the pattern designer as disussed inSetion 3.6.1.� a \framework_methods" diretory that ontains subdiretories for eah of thelasses in the pattern. These subdiretories are where the pattern designermust put the default method bodies for eah of their lasses. The subdireto-ries are automatially reated by MetaCO2P3S.� a \framework.prop" Java properties �le that links extended and list param-eters (if any) to the Fatory lass used to reate them. This �le is reatedautomatially by MetaCO2P3S.
40



3.6.1 Building the Framework ClassesThe framework lasses need to be written as ompilable Java soure �les. Sine theframework ode generator uses the Javado tool, Javado omment formatting fea-tures prominently in these lasses. They are written with all the neessary methoddelarations, but no method bodies. Default method bodies are put into separate�les. The ode generator does not support inner lasses, although interfaes andabstrat lasses are supported. However, it is reommended that pattern design-ers supply dummy method bodies as needed, to ensure that the template an beompiled.The Template ClassesThe template lasses are those that were seleted by the pattern designer to bevisible to the user. In the CO2P3S Template Viewer, the pattern user does not havethe ability to edit method signatures in these lasses. Instead, they are shown anunmodi�able view of the entire lass, and allowed to lik on hyper-links for thehook methods spei�ed by the pattern designer.To make hook methods, the pattern designer needs to put an \�editable" tagin the preeding Javado omment. To allow the user to add their own methodsto the template lass, the \�userCodeAllowed" tag should be put in the Javadoomment preeding the lass delaration. If the pattern designer wishes to allow theuser to import additional lasses or pakages to the template lass, they an plaean \�userImports" tag in the lass delaration Javado omment.Figure 3.17 displays an exerpt from theMeshState template lass from theMesh,inluding some of the Javado tags desribed above. Figure 3.18 shows the outputfrom CO2P3S after a pattern user has seleted one possible parameterisation of theMesh. Given this parameterisation as input, the ode generator reates the Javaframework instane ode shown in Figure 3.19, and provides the CO2P3S GUI withthe template lass shown in Figure 3.20. The following setions provide furtherdesriptions of the inputs and outputs to the ode generation example shown inthese �gures.The Connetion to MetaCO2P3SThe framework template example in Figure 3.17 neessarily has onnetions to theinformation given by the pattern designer in MetaCO2P3S. Eah of the lass namesor types that are prepended by \FrameworkCLASS_" are plaeholder referenes toframework lasses, and will be replaed with user-supplied names during frameworkinstane generation. In addition, eah instane of the \�parameter" Javado tag isdiretly followed �rst by the name of a parameter, as supplied by the pattern designerin MetaCO2P3S, and seond by one of the enumerated values for that parameter.41



/******************************************************************************** This lass represents a single node in a mesh omputation.** �userImports* �userCodeAllowed* �frameworkSuperlass FrameworkCLASS MeshStateSuper*/publi lass FrameworkCLASS MeshStatef /*** �initialValue 50*/publi stati �nal int MAX COUNT;/*** Construtor.** �editable*/publi FrameworkCLASS MeshState( int i, int j, int surfaeWidth,int surfaeHeight, Objet initializer )fg/*** Iteration method for a top right orner node in an 8 point mesh.** �parameter numNeighbours 8* �parameter boundary Non* �editable*/publi void topRightCorner( FrameworkCLASS MeshState south,FrameworkCLASS MeshState southwest, FrameworkCLASS MeshState west )fg/*** Iteration method for a top right orner node in a 4 point mesh.** �parameter numNeighbours 4* �parameter boundary Non* �editable*/publi void topRightCorner( FrameworkCLASS MeshState left,FrameworkCLASS MeshState down )fgg Figure 3.17: Mesh template ode example.42



#MeshClass User PropertiesPatternName=MeshClassordered =Ordered Computationboundary =NonnumNeighbours =4FrameworkCLASS MeshStateSuper=ObjetFrameworkCLASS BoundedMeshArray=BoundedMeshNodeArrayFrameworkCLASS MeshState=MeshNodeStateFrameworkCLASS Mesh=MeshNodeFigure 3.18: User parameterisation from CO2P3S.The Java onstrut immediately following the Javado omments ontaining thesetags are generated only if the pattern user selets the given parameterisation inCO2P3S prior to framework generation.External Class ReferenesThe pattern designer may use the \�frameworkSuperlass [refereneClass℄"tag in the Javado omment diretly preeding the lass delaration if they wishto allow pattern users to supply an external superlass for one of the frameworklasses. The supplied refereneClass should be one of the lass identi�ers suppliedin MetaCO2P3S for whih the \Referene to external lass" hek box is seleted. Fig-ure 3.17 shows an example usage of this Javado tag. The generated framework odeshown in Figure 3.19 does not have a superlass, sine the user-supplied parameteri-sation of Figure 3.18 does not inlude a setting for the appropriate refereneClass(although it has the default Java superlass setting of Objet).Initialising Class FieldsIf the pattern designer wants to delare lass-level �elds, suh as instane variablesor onstants, they an simply use normal Java syntax. However, if a �eld initial-isation is required, the pattern designer must attah a Javado omment with a\�initialValue [value℄" tag. The initialiser should not inlude either an \="sign or a \;" terminator. An example initialisation is shown in Figure 3.17, for theMAX COUNT onstant.Conditional Construt Generation Using Basi ParametersThe pattern designer an speify whih methods, onstrutors and �elds should begenerated by using the \�parameter [paramId℄ [paramValue℄" tag in the pre-eding Javado omment. The paramId refers to the parameter identi�ation fromMetaCO2P3S. The paramValue refers to the user-seleted value of the given param-eter. 43



// user imports/******************************************************************************** This lass represents a single node in a mesh omputation.*/publi lass MeshNodeStatef /*** Construtor.*/publi MeshNodeState( int i, int j, int surfaeWidth, int surfaeHeight,Objet initializer )fg/*** Iteration method for a top right orner node in a 4 point mesh.*/publi void topRightCorner( MeshNodeState left, MeshNodeState down )fg// user odepubli stati �nal int MAX COUNT = 50;g Figure 3.19: Mesh template ode in framework instane after parameterisation.If multiple entries are supplied with the same parameter identi�ation (but di�er-ent values), generation of the assoiated onstrut ours if any one of the given set-tings is true. This gives the ability to seletively generate onstruts using Boolean\OR" logi. If multiple entries are listed, eah with di�erent parameter identi�a-tions, the assoiated Java onstrut is generated only if all of the given values aretrue. This Boolean \AND" logi an be ombined with the \ORing" of values ona single parameter identi�ation to reate expressive and powerful onditional odegeneration statements.Figure 3.17 gives an example of onditional onstrut generation using basiparameters. Sine the onditions in the seond iteration method header math theuser-supplied parameterisation shown in Figure 3.18, only the seond method getsgenerated to the framework ode shown in Figure 3.19.
44



Figure 3.20: Mesh template ode in CO2P3S Template Viewer after parameterisa-tion.
45



// This method body is loated at:// patterns/Mesh/framework methods/FrameworkCLASS AbstratMesh/topRightCorner// The following lass name, enlosed in # haraters, gets replaed with// the user lass name in the pattern template instane at framework ode// generation time#FrameworkCLASS BoundedMeshArray# state = state ;// The following text within the MACRO delimiters is only generated when the// pattern user sets the number of neighbours to eight#FrameworkMACRO#(numNeighbours == 8)<iteration ode deleted>exeuteInteriorNodes(state, 0, width � 1, 1, height) ;#FrameworkMACROend##FrameworkMACRO#(numNeighbours == 4)<iteration ode deleted>exeuteInteriorNodes(state, 0, width � 1, 1, height) ;#FrameworkMACROend#Figure 3.21: Mesh method body framework template example.BoundedMeshNodeArray state = state ;<iteration ode deleted>exeuteInteriorNodes(state, 0, width � 1, 1, height) ;Figure 3.22: Mesh method body generated after parameterisation.Construt Generation Using Extended and List ParametersThe pattern designer an add ode to a lass from extended or list parameters byputting the \�extParameter [paramId℄" tag in the Javado omment preedingthe lass delaration. Further disussion of extended and list parameter ode gen-eration is in Setion 3.6.2.Supplying Default Method BodiesEah default method body needs to be supplied in a separate �le in the subdire-tory of framework methods mathing the ontaining framework lass. For methodsmarked �editable, the given default method bodies are used until they are modi�edby the pattern user. The �lenames for default method bodies must be unique withina lass, so they onsist of the method or onstrutor name followed by the eah ofthe parameter types. Eah of the name is separated by a \." harater. For exam-ple, a method with the signature \publi void read( Reader r, boolean b );"46



would have its default method body stored in a �le alled \read.Reader.boolean."Method Body ExpansionMethod bodies may ontain maros that ause their ontents to vary based on agiven parameter value. The framework ode generator expands these maros usingthe following order of operations:1. setions of ode wrapped by basi parameter maros are generated only if thegiven parameter onditions hold,2. ode fragments are inserted using extended or list parameter maros, and3. plaeholder lass names are replaed by user-supplied lass names.Maros for basi parameters must have delimiters at the beginning and end of theode fragment that is to be onditionally generated. The syntax of the opening de-limiter is \#FrameworkMACRO#([paramId℄ [op℄ [value℄)," where paramId refersto the parameter identi�ation, op an be either \==" or \!=" to indiate the on-ditional test to be performed, and value is the value to test in the onditionalstatement. The syntax of the losing delimiter is simply \#FrameworkMACROend#."The ode fragment ontained within the maro delimiters is generated only if thegiven onditional statement is true. The maros an be nested, so that ode frag-ments will be onditionally generated based on multiple parameter values.The syntax of maros that insert ode fragments based on extended and listparameter settings is \#FrameworkPARAM_[paramId℄#." The paramId is the appro-priate parameter identi�ation. The expansion of these maros is disussed furtherin Setion 3.6.2.Sine plaeholder lass names need to be replaed by user-supplied lass namesduring ode generation, their referenes in default method bodies must be speiallyenoded. The enoding takes the form \#FrameworkCLASS_[lassName℄#," wherelassName refers to the lass name identi�ation supplied in MetaCO2P3S.Given the user-supplied parameterisation from Figure 3.18, the default methodbody example in Figure 3.21 generates to the framework ode in Figure 3.22.3.6.2 Implementing Extended and List ParametersThe Distributor and Phases pattern templates both use list parameters. The im-plementations of these pattern templates serve as an exellent example for patterndesigners that need to use either extended or list parameters. The �rst part of theextended parameter design requires that a parameter lass provided with CO2P3Sbe sub-lassed to provide a module that an be used to obtain and store parametersettings in CO2P3S. Sine the ode generator module runs in a sand box that is47



deoupled from CO2P3S, the seond piee of the design is a lass that an reate aninstane of the appropriate parameter. This lass must sublass a provided templatethat is designed using the well known Abstrat Fatory design pattern [GHJV95℄.During ode generation, extended and list parameters an be used either to addode at the lass level, suh as methods or �elds, or to add ode fragments to methodbodies. Both ases are treated similarly. Sine extended parameters an storeinformation in an arbitrary format, the pattern designer must write ode to de�newhat gets generated. This ode must be plaed in the pakage de�ned in the PatternSettings of MetaCO2P3S, whih is typially \ops.gui.patterns.[patternName℄."The pattern designer must provide a means by whih the ode generator angain aess to an extended parameter. This is done by reating a sublass ofthe \AbstratParameterFatory" lass, whih is inluded in the CO2P3S dis-tribution. The name of the fatory sublass is written by MetaCO2P3S into the\framework.prop" �le. The only requirement of the fatory lass is that it imple-ment a method that alls the onstrutor of the appropriate extended parameterlass. The loation of eah of the �les making up a pattern template is depited inFigure 3.23.The parameter lass must also be written by the pattern designer. For extendedparameters, the parameter lass sublasses \AbstratPatternParameter." For listparameters, it sublasses \PatternListParameter." Eah of these super-lasses isprovided with CO2P3S.In AbstratPatternParameter sublasses, the pattern designer must implementmethods that perform the following funtions:� test whether a parameter has been set by the pattern user, and is thereforeready for ode generation,� reate a dialog to gather parameter settings from the user,� save the parameter settings to a string,� load the parameter settings from an equivalent string, and� provide ode to the framework generator for a given lass.For list parameters, CO2P3S automatially handles the �rst four funtions.To provide methods and �elds to the ode generator, the pattern designer mustuse the \CopsMethod," \CopsField" and \CopsArgument" data types supplied withthe CO2P3S distribution. The purpose of these lasses is to provide ode fragmentsto the framework generator in a strutured and standardised format. Method bodyode fragments are supplied to the ode generator using simple strings.48



Figure 3.23: Diretory layout of pattern templates in CO2P3S.49



Figure 3.24: Importing a pattern template into CO2P3S.3.7 Testing the Pattern TemplateIt is ruial that pattern designers thoroughly test their pattern template reationsprior to their release. As part of this testing, the pattern templates an be importedinto the CO2P3S environment, as desribed in the following setion. If hanges aremade to the pattern template, the pattern designer an easily update the patterntemplate in CO2P3S for further testing.3.8 Importing Pattern Templates into CO2P3SI have made it easy to import new parallel design pattern templates into CO2P3S,or to update existing ones. The CO2P3S user simply needs to selet the \ImportPattern" menu item from the \Environment" menu as shown in Figure 3.24, thenbrowse to the appropriate diretory and selet the desired pattern template �le.During the import proess, CO2P3S automatially onverts the seleted XML �leinto a plug-in Java module, and adds a button ontaining the pattern ion to thepalette.

50



Chapter 4Validating MetaCO2P3SI designed and implemented the CO2P3S meta-programming extension so that itwould allow any design pattern to be transformed into a pattern template. Thissetion desribes the steps I have taken to validate my approah.4.1 Rereating CO2P3SMy �rst step in testing the overage and orretness of the MetaCO2P3S toolwas to regenerate eah of the pattern templates from the original CO2P3S en-vironment. The Mesh, Distributor and Phases pattern templates have all beensuessfully regenerated, and the standard CO2P3S distribution now is the onegenerated by MetaCO2P3S. Sine these pattern templates formed a basis for theMetaCO2P3S development, their reation was not ompletely straightforward. How-ever, as MetaCO2P3S was ontinuously re�ned to deal with the issues that aroseduring their reation, I ould see that my work was greatly simplifying the overallpattern reation proess. The short pattern template development times requiredfor the work desribed in Setions 4.2 and 4.3 are evidene of my tool's suess inattaining the goal of enabling and simplifying pattern reation.4.2 Case Study: Geneti Sequene AlignmentA ommon problem in bioinformatis lies in �nding an optimum alignment for a pairof DNA or protein sequenes [CSS00℄. Typial algorithms for sequene alignmentonstrut a dynami programming matrix with the sequenes on the top and leftedges. A sore is propagated from the top left orner to the bottom right. The valueof eah entry in the matrix depends on three previously omputed values, above, tothe left, and in the above-left diagonal, as shown in Figure 4.1(a). One all of thevalues in the matrix have been alulated, another algorithm an be used to traebakwards through the matrix to get the maximal ost path, or optimum sequenealignment. 51



(a) Sore prop-agation. (b) The wave-front omputa-tion ordering.Figure 4.1: Solving the sequene alignment problem with a dynami programmingmatrix.4.2.1 Isolating the Wavefront Design PatternJohn Anvik, one of the graduate students in our researh group, was studying thedynami programming problem, and attempted to parallelise it using CO2P3S. Heidenti�ed a wavefront parallel design pattern in the dynami programming algo-rithm, but noWavefront pattern template was available, preventing further progress.Wavefront design patterns apply to problems where a omputation needs tosweep breadth-�rst through a tree, with hild nodes having data dependenies ontheir parents. The wavefront desribes the edge separating the proessed nodesat the top of the tree from the nodes waiting to be proessed. The dynami pro-gramming problem is easily expressed as a wavefront due to the dependeny of eahmatrix entry on three of its neighbours. Figure 4.1(b) shows how the data dependen-ies in Figure 4.1(a) an be transformed to a wavefront omputation. Bloks withthe same number are omputed onurrently after the bloks with smaller numbershave been omputed. The wavefront design pattern an be implemented using awork queue, where nodes at the edge of the wavefront whose data dependenieshave been satis�ed are available to be omputed. A user's view into a wavefrontframework requires only that they provide the node proessing implementation. Asingle parameter a�ets the implementation of the wavefront design pattern, deter-mining whether noti�ations of omputation ompletion are pushed to hild nodes,or pulled from parents.4.2.2 Creating the Wavefront Pattern TemplateThe lak of a Wavefront pattern template in CO2P3S provided an opportunity touse MetaCO2P3S. John Anvik had not been involved in the MetaCO2P3S researh,whih also made the exerise of adding a pattern template a test-bed for the usabilityof my tool. 52



Figure 4.2: The Wavefront pattern template in MetaCO2P3S.The �rst step used to reate the Wavefront pattern template was to speify thepattern desription using MetaCO2P3S. After launhing the tool, John Anvik namedthe new pattern template and supplied an ion to identify the Wavefront in CO2P3S.Figure 4.2 illustrates this proess. Note that the text, \yourPattern", supplied aspart of the default pattern images diretory has been replaed by \wavefront", assuggested by the aompanying inline help.Next, the lass names for the framework template were supplied. One of these,alled Wavefront, was seleted as a user-known lass, and also as a user-modi�ablelass. Six framework lasses were de�ned, the names of whih were made dependenton Wavefront for their uniqueness, with suÆxes added to indiate their role in theframework. The lass settings in MetaCO2P3S are shown in Figure 4.3. Referringbak to Figures 3.6 through 3.8, we see how Delete Setting buttons are at the bottomof every lass (or parameter) setting, and that new lasses (or parameters) arereated using buttons at the bottom of their respetive tree elements. Note thatsine the Default value andMenu text �elds require a Java String literal, the quotationmarks shown are required.The loneWavefront pattern parameter, desribed in Setion 4.2.1, was de�ned asa basi parameter using MetaCO2P3S. The parameter was alled noti�ation, andwas given an enumeration of two possible values: push and pull. Figure 4.4 showsthe noti�ation parameter being de�ned.The last step in the pattern desription proess was providing a GUI on�gura-tion. The result of this on�guration is shown in Figure 4.5. At the top, a textualelement is displayed that automatially updates to display the user-supplied name53



Figure 4.3: The Wavefront pattern template lass settings.

Figure 4.4: The Wavefront pattern template parameter settings.54



Figure 4.5: The Wavefront pattern template in CO2P3S.

55



Figure 4.6: The Wavefront pattern template GUI settings.

56



Exeution Time (seonds)Noti�ation Seq 2P 3P 4PPush 229.0 117.3 83.2 65.4Pull 230.1 118.5 83.5 66.4Table 4.1: Exeution times using the Wavefront for sequene alignment.for the Wavefront lass. To do this, the pattern designer provided the text loa-tion, and the lass name to display in MetaCO2P3S. Below the lass name is animage of a wavefront. The pattern designer provided this image and its loationin the GUI using MetaCO2P3S. At the very bottom of the display, the graphial�gure and the text display are both representing the noti�ation parameter setting.In MetaCO2P3S the pattern designer provided two images, and identi�ed whihone should be displayed with both possible parameter value. Figure 4.6 shows thetextual representation of the noti�ation parameter being de�ned in MetaCO2P3S.After entering the pattern desription using MetaCO2P3S, John Anvik neededto provide annotated framework soure ode for eah of the de�ned lasses. This en-tailed writing normal Java soure ode, with the addition of onditional ompilationsetions that depended on the setting of the noti�ation parameter.At this point, the initial version of the Wavefront pattern template was om-pletely spei�ed. John Anvik imported it into the CO2P3S environment, and testedthe pattern template prior to implementing the sequene alignment dynami pro-gramming program.4.2.3 AnalysisThe new Wavefront pattern template was used with CO2P3S to implement thedynami programming matrix algorithm for geneti sequene alignment. Two se-quenes of 10,000 random proteins eah were used as test data. The sequential andparallel implementations of the algorithm were run using a Java 1.3 virtual mahinewith native threads on a four-proessor shared-memory SGI O2. The push andpull noti�ation parameter settings were both used independently as a performaneomparison. Table 4.1 shows the average exeution times for 20 runs of eah im-plementation. The parallel speedups are ompared in Figure 4.7. There were nosigni�ant di�erenes in the performane numbers for the push and pull noti�ationparameter values. This ould indiate that the parameter is unneessary. If so,MetaCO2P3S makes it easy to remove the parameter from the pattern template.The Wavefront pattern template desribed in this dissertation is still undergoingmodi�ations. There is work being done in our researh group to re�ne the patterntemplate with new parameters, making it more general.57



0

1

2

3

4

0 1 2 3 4

Processors

S
p

ee
d

u
p

Sequential
Push
Pull

Figure 4.7: Speedups using the Wavefront for sequene alignment.4.3 Extending CO2P3S from Shared-memory to Net-works of WorkstationsKai Tan, another graduate student in our researh group, has a researh goal ofextending the CO2P3S programming environment from using shared-memory par-allel omputers to using distributed networks of workstations. One of the tasks thatthis entails is making modi�ed opies of the existing CO2P3S pattern templates(alled DMesh, DDistributor, and DPhases) that will run on networks of workstations.MetaCO2P3S has been instrumental in this task, enabling Kai Tan to perform thebulk of the onversions with relative ease. This has freed up time for him to onen-trate on developing eÆient distributed implementations of the pattern templates,and tools to support their use.

58



Chapter 5Pattern Template RepositoriesThe primary goal of this researh was to overome a major limiting fator in the a-eptane of template-based parallel programming environments, by providing a toolfor extensibility. Setions 1.1 and 2.6 motivated this goal, desribing how CO2P3Sand other template-based parallel programming environments will not beome vi-able until their available templates over a wide variety of parallel problems. Withmy introdution of the MetaCO2P3S tool, the reation of new pattern templates hasbeome muh easier, and the overage of template-based programming environmentsan be made arbitrarily wide.Even though new pattern templates an now be reated by the parallel program-ming ommunity, there must also be a way to share them. To failitate this sharing,I propose that a entral repository be reated. Sine my pattern templates onsistonly of XML, Java and image �les, they are system-independent, and an easily bepakaged in a downloadable format for distribution on the Internet.In addition to allowing new pattern templates to be shared, another advantage toa entral repository is the ability it provides for pattern templates to be re�ned withnew parameters or implementation improvements. TheMesh pattern template wentthrough one suh iteration after the disovery of an appliation that required meshnodes having eight neighbours instead of four. Our original pattern template onlysupported mesh nodes with four neighbours. The pattern template was modi�edby adding a new parameter, and speifying the e�et that this new parameter hadon the generated framework ode. The researh being done to extend CO2P3S torun on networks of workstations is another example of the usefulness of repositories.Eah of the available pattern templates has been opied and modi�ed to supportdistributed proessing.The reation of a pattern template repository would also extend a hallenge tothe template-based parallel programming ommunity. Currently, the researh beingdone by di�erent groups on template-based programming environments is almostompletely independent. MetaCO2P3S provides the the ability for these e�orts to59



be uni�ed. I would like to see this hallenge taken up by the ommunity, eitherthrough the modi�ation of programming environments to support my pluggablepattern templates, or through the submission of new pattern templates to the sharedrepository that will eventually make our template-based environments usable andpratial.A number of issues need to be resolved in order to make our vision of a patterntemplate repository possible, inluding but not limited to:� determining what organisation or individual will be responsible for the main-tenane and hosting of the repository.� deiding whether repository aess levels are required (e.g. to provide di�erentlevels of servie to pattern users and pattern designers).� de�ning a hierarhy or ategorisation for pattern templates.� providing some means (manual or automati) for pattern template veri�ation.5.1 The Generality of MyMeta-programming ApproahAt one point during the development of the MetaCO2P3S tool I made an importantdisovery about my meta-programming approah. Although the CO2P3S environ-ment was built for parallel programming, the generality of the MetaCO2P3S tool anmake CO2P3S independent of the parallel programming domain. My de�nition of apattern template is widely appliable, enompassing more than just parallel designpatterns. Beause of this generality, I surmise that eventually a segmentation of therepository will our, along with a ategorisation of pattern templates.

60



Chapter 6Related ResearhThe history of the CO2P3S environment is desribed in Chapter 2. MaDonald[Ma01℄ systematially ompares CO2P3S to a wide variety of parallel program-ming methodologies. This hapter has a narrower fous, relating the CO2P3S meta-programming extension to related researh in high-level extensibility tehniques.The parameterisation of design patterns, and their instantiation into objet-orientedframeworks, is at the ore of CO2P3S. Therefore, this hapter also briey disussesrelated researh in design patterns and frameworks, inluding solutions to the odegeneration problem.One goal of parallel programming systems is simplifying the parallel developmentproess. Pursuing this goal often neessitates ompromises elsewhere in a system.One ommon sari�e is appliation performane. However, there is muh to judge asystem by in addition to its balane of speed and simpliity. The ompiled knowledgefrom almost a deade of researh on the predeessors to CO2P3S was used to reatea list of desirable harateristis for template-based parallel programming systems,as enumerated by Singh [SSS98℄. These harateristis were used by MaDonald[Ma01℄ to evaluate CO2P3S, and found that it had done muh to advane priorresearh. One of the major shortomings that the study identi�ed was the lak ofextensibility in CO2P3S. The aim of this dissertation was to remove that obstale,and this hapter ompares my approah to the way other systems have dealt withthe same problem.Spei� parallel programming languages and parallel libraries are not disussed,sine their development proess di�ers dramatially from that of CO2P3S. Languagesare typially quite general, presenting few restritions to the programmer. However,they require parallelism to be interwoven with appliation ode, plaing the onuson the developer for orret parallelism. Libraries for general parallel ommunia-tion also su�er from this problem. Domain-spei� libraries may be suessful athiding parallel onstruts, but they are not appliable to a wide variety of prob-lems. In ontrast, template-based systems like CO2P3S, although limited by their61



available templates, are appliable over many domains. Furthermore, developmentis simpli�ed by separating user appliation ode from parallelism.6.1 Design Patterns and FrameworksDesign patterns have been de�ned in Chapter 2.1. Johnson [Joh97℄ gives a onisede�nition of a framework. It identi�es ode and design patterns as the two basionstituents of a framework. In CO2P3S, our pattern template abstration bridgesthe gap between design patterns and frameworks, and is the mehanism by whihwe simplify the programming task for our tool's users.The goals and abstrations of ode skeletons are similar to those of our patterntemplates. A detailed omparison of the two tehniques is presented by Danelutto[Dan01℄. However, the tools provided by the skeleton ommunity take a di�erentapproah than CO2P3S. P3L [BDO+95℄ is a parallel programming language basedon skeletons. It provides a set of language onstruts, or skeletons, that orrespondto di�erent types of parallelism. Appliation-spei� ode an be supplied to theskeletons, and in turn, the skeletons an be omposed by onneting their input andoutput data streams. The skeletons provided with P3L are �xed, and annot beextended.6.2 Extensible Pattern-based Programming Tools6.2.1 Generi Programming EnvironmentsA prototype tool for supporting the use of objet-oriented patterns is presented byFlorijn [FMvW97℄. It provides three views into a program: the ode, the design,and the design pattern ourrenes. After a pattern instane has been added to aprogram, the tool an generate the neessary lasses, but program elements mustthen be bound to partiular roles in the pattern. A refatoring pakage is providedthat allows one to either design a new program using design patterns or doumentthe design patterns in an existing program. The tool does not prevent a user frommodifying the pattern semantis in their appliation. This approah to program-ming with design patterns is in ontrast to CO2P3S, whih guides programmersthrough the entire proess of pattern template use, and prevents them from mod-ifying pattern semantis. However, one advantage of the tool presented by Florijn[FMvW97℄ is its tight integration of multiple patterns in a single appliation. Inaddition, provisions were made to allow new design patterns to be added to the tool,but the proedure is undoumented.Two ommerial tools that harness design patterns for business appliation de-velopment are available. Both provide extensibility by allowing new design patternsto be added, although no tool is provided to aid in this task. In OmniBuilder [Omn℄,62



design patterns represent low-level tasks for user interfaes in business appliations.In ModelMaker [Mod℄, design pattern instanes at as maros that insert ode intothe lasses or methods they are told to at upon. Unlike CO2P3S, ModelMaker doesnot separate user ode from design pattern implementations.6.2.2 Parallel Programming EnvironmentsAlthough many researh groups study pattern-based parallel programming environ-ments, few address the need for extensibility. Two suh exeptions are DPnDPand Tras. DPnDP [Siu96, SSGS96℄ helps to reate distributed message-passingprograms. Like CO2P3S, design patterns in DPnDP are modular, supporting ex-tensibility. However, DPnDP does not provide a tool like MetaCO2P3S for reatingnew patterns, but rather spei�es a C++ framework under whih patterns an bebuilt. Patterns reated using this framework have only a strutural spei�ation; allbehavioural aspets, suh as ommuniation and synhronisation, must be suppliedby the DPnDP user. The patterns supplied with DPnDP automatially implementany pattern-spei� behaviours. Therefore, new patterns may not have the samelevel of funtionality as those provided with the system, unlike the �rst-lass patterntemplates reated by MetaCO2P3S.Tras [BCDP95℄ allows pattern designers to de�ne arhitetural models for newpatterns using a formal graph to speify task and ommuniation strutures. How-ever, the arhitetural models do not inlude implementations, so the level of fun-tionality is not omparable to CO2P3S.6.3 Code GenerationAutomati ode generation has been studied by many groups with di�erent agen-das. In the original CO2P3S implementation, the framework ode generation tookits inspiration from the CORRELATE [MJR+98℄ and COGENT [BFVY96℄ marolanguages. COGENT was designed as the ode generator for a system that au-tomatially generated frameworks for eah of the \Gang of Four" design patterns[GHJV95℄. Their system did not have any extensibility features.After the introdution of MetaCO2P3S, a more sophistiated ode generationmehanism was required to simplify the reation of pattern templates. My idea touse Javado for ode generation ame from Pollak [Pol00℄. The urrent ode gen-erator in MetaCO2P3S mixes ideas from the CORRELATE approah with Javado.6.4 Pattern RepositoriesPattern repositories are entral to the aeptane of pattern-based programmingenvironments like CO2P3S. The ACE Catalogue [Sh94℄ is one suh repository, but63



its patterns entre around network ommuniation mehanisms, and are thereforetargeted at an audiene with lower level requirements than CO2P3S users. Theonurrent design patterns in Lea's book [Lea99℄ also provide lower level parallelonstruts.The Portland Pattern Repository [Cat℄, although not targeting parallel patterns,has the interesting feature of being built on the WikiWikiWeb system, whih allowspattern designers to easily add patterns to the atalogue. None of these repositoriesstore patterns that have the ability to automatially integrate with programmingenvironments, whih is one of the key features we are reommending.6.5 ConlusionsResearh groups and ommerial interests have started to explore building program-ming environments using ideas from the design pattern ommunity. Of these, onlya handful are targeting the parallel programming ommunity. A major drawbakto the majority of these systems is their lak of extensibility. Template-based pro-gramming environments are limited in appliability by their available library oftemplates, unless some provision for extensibility has been made. Only a handfulof groups have identi�ed this problem and attempted to solve it. Foremost amongthese are DPnDP and Tras. MetaCO2P3S is an ambitious e�ort that has gonebeyond previous researh. It makes CO2P3S the �rst pattern-based parallel pro-gramming system with a tool for extending the environment with new patterns,both indistinguishable in form and equivalent in funtionality to the patterns thatare prede�ned.

64



Chapter 7Summary and ConlusionsThis dissertation has desribed a researh projet that enables the reation of paralleldesign pattern templates. This researh stemmed from the need for extensibility inCO2P3S. My tool, alled MetaCO2P3S, allows a pattern designer to reate a patterndesription and annotated framework template in a standard format that an beimported into CO2P3S, or any other ompatible parallel programming system.7.1 Contributions of this ResearhThere are a number of ontributions from this researh. Foremost among theseis the solution provided by MetaCO2P3S to a ritial problem in template-basedprogramming systems, namely their lak of available templates. I have de�ned asystem-independent pattern template, inluding a parameterisable framework tem-plate format. My tool reates �rst-lass pattern templates that easily plug in asmodules to the CO2P3S environment.Through this extensibility researh, I have enabled the reation of a patterntemplate repository. This extends a hallenge to the template-based programmingenvironment ommunity to submit new or improved pattern templates that ouldbe shared with others.7.2 Ongoing Enhanements to CO2P3S andMetaCO2P3SThere are a three avenues of new work on the CO2P3S environment urrently un-derway in our researh group. As introdued in Chapter 4, this work inludes anenhanement that will generate frameworks for distributed networks of worksta-tions, in addition to our urrent shared-memory implementation. We are also usingMetaCO2P3S to generate new pattern templates for CO2P3S. The other body ofwork that is urrently being takled is the doumentation of pattern templates.This enhanement inludes the de�nition of a standard format for doumentation,65



and the integration of the doumentation into the CO2P3S environment. The do-umentation will target both CO2P3S pattern users, and pattern designers.7.3 Diretions for Future WorkI have identi�ed a number of future enhanements for the MetaCO2P3S tool. Oneis the ompletion of the user interfae to inlude a wizard that guides pattern de-signers through the framework template reation proess. To tailor a version ofMetaCO2P3S for parallel pattern template reation, it would also be good to pro-vide a language of parallel primitives that ould be used during framework templatereation.Our researh group has disussed the implementation of analytial approahes forthe parameterisation of framework templates. These ould help provide orretnessby ensuring that the e�ets of eah possible parameter value are handled orretly.As introdued in Chapter 5, I propose that a pattern template repository be setup to provide a muh-needed resoure for the template-based programming om-munity. However, the large number of pattern templates in a entral repositoryintrodue another area for future work. Sine the status quo requires developersto hoose pattern templates for their appliation with no guidane beyond a de-sign pattern doument, a better pattern seletion mehanism is needed. Patternlanguages [MMS00℄ may eventually provide a solution to this problem. However,a good short-term �x for the pattern seletion problem may lie in segmenting therepository into well-de�ned ategories.Finally, it would be helpful to gather usability data for the MetaCO2P3S tool,to empirially measure the ease with whih pattern designers an leverage the toolfor their purposes.

66



Bibliography[BCDP95℄ A. Bartoli, P. Corsini, G. Dini, and C. Prete. Graphial Design of Dis-tributed Appliations Through Reusable Components. IEEE Parallel& Distributed Tehnology, 3(1):37{51, 1995.[BDO+95℄ B. Bai, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneshi.P 3L: a Strutured High{level Parallel Language, and its StruturedSupport. Conurreny: Pratie and Experiene, 7(3):225{255, 1995.[BFVY96℄ F. Budinsky, M. Finnie, J. Vlissides, and P. Yu. Automati Code Gen-eration from Design Patterns. IBM Systems Journal, 35(2):151{171,1996.[Cat℄ CategoryPattern, Portland Pattern Repository. http://2.om/ppr/.[CSS00℄ K. Charter, J. Shae�er, and D. Szafron. Sequene Alignment usingFastLSA. In Pro. of the 2000 International Conferene on Mathemat-is and Engineering Tehniques in Mediine and Biologial Sienes(METMBS'2000), pages 239{245, 2000.[Dan01℄ M. Danelutto. On Skeletons and Design Patterns. In Proeedings ofPARCO'01 (to appear), 2001.[Do℄ Javado Dolet API. http://java.sun.om/j2se/1.3/dos/tooldos/javado/dolet/.[FMvW97℄ G. Florijn, M. Meijers, and P. van Winsen. Tool Support forObet-Oriented Patterns. In Objet{Oriented Programming 11th Euro-pean Conferene (ECOOP'97), volume 1241, pages 472{495. Springer{Verlag, 1997.[GHJV95℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:Elements of Reusable Objet-Oriented Software. Addison-Wesley, 1995.[Jav℄ Javado Tool Home Page. http://java.sun.om/j2se/javado/.[Joh97℄ R. Johnson. Frameworks = (Components + Patterns). Communiationsof the ACM, 40(10):39{42, Otober 1997.[Lea99℄ D. Lea. Conurrent Programming in Java: Design Priniples and Pat-terns. Addison{Wesley, 2nd edition, 1999.[Ma01℄ S. MaDonald. From Patterns to Frameworks to Parallel Programs.PhD thesis, Department of Computing Siene, University of Alberta,November 2001. Available at www.s.ualberta.a/�systems.[MJR+98℄ F. Matthijs, W. Joosen, B. Robben, B. Vanhaute, and P. Verbaeten.Multi{level Patterns. In Objet{Oriented Tehnology (ECOOP'97Workshop Reader), volume 1357 of Leture Notes in Computer Siene,pages 112{115. Springer{Verlag, 1998.67



[MMS00℄ B. Massingill, T. Mattson, and B. Sanders. A Pattern Language forParallel Appliation Programs. In European Conferene on ParallelProessing, pages 678{681, 2000.[Mod℄ ModelMaker CASE Tool. http://www.modelmaker.demon.nl/mm.htm.[MSS97℄ S. MaDonald, J. Shae�er, and D. Szafron. Pattern-based Objet-Oriented Parallel Programming. In Leture Notes in Computer Siene1343: 1st International Sienti� Computing in Objet-Oriented Paral-lel Environments Conferene (ISCOPE '97), pages 267{274. Springer-Verlag, Deember 1997.[MSS99℄ S. MaDonald, D. Szafron, and J. Shae�er. Objet-Oriented Pattern-Based Parallel Programming with Automatially Generated Frame-works. In 5th USENIX Conferene on Objet-Oriented Tools and Sys-tems (COOTS '99), pages 29{43, May 1999.[MSSB00a℄ S. MaDonald, D. Szafron, J. Shae�er, and S. Bromling. FromPatterns to Frameworks to Parallel Programs. Submitted toJournal of Parallel and Distributed Computing. Available atwww.s.ualberta.a/�systems, Deember 2000.[MSSB00b℄ S. MaDonald, D. Szafron, J. Shae�er, and S. Bromling. Generat-ing Parallel Program Frameworks from Parallel Design Patterns. InEuro-Par 2000, Parallel Proessing, volume 1900 of Leture Notes inComputer Siene, pages 95{104. Springer-Verlag, August 2000.[Omn℄ OmniBuilder Design Patterns. http://www.omnibuilder.om/overview/design.htm.[Pol00℄ M. Pollak. Code Generation using Javado. http://www.javaworld.om/javaworld/jw-08-2000/jw-0818-javado p.html, August 2000.[Sh94℄ D. Shmidt. The ADAPTIVE Communiation Environment:Objet-Oriented Network Programming Components for DevelopingClient/Server Appliations. In Proeedings of the 12th Sun Users GroupConferene, 1994.[Siu96℄ S. Siu. Openness and Extensibility in Design{Pattern{Based Program-ming Systems. Master's thesis, Department of Eletrial and ComputerEngineering, University of Waterloo, August 1996.[SSC96℄ M. Se�ka, A. Sane, and R. Campbell. Monitoring Compliane of aSoftware System with its High{Level Design Models. In Proeedingsof the 18th International Conferene on Software Engineering, pages387{396. IEEE Computer Soiety Press, 1996.[SSG89℄ A. Singh, J. Shae�er, and M. Green. Struturing Distributed Algo-rithms in a Workstation Environment. In Proeedings of the Interna-tional Conferene on Parallel Proessing, pages 89{97, 1989.[SSGS96℄ S. Siu, M. De Simone, D. Goswami, and A. Singh. Design Patternsfor Parallel Programming. In Proeedings of the 1996 InternationalConferene on Parallel and Distributed Proessing Tehniques and Ap-pliations (PDPTA'96), pages 230{240, 1996.[SSLP93℄ J. Shae�er, D. Szafron, G. Lobe, and I. Parsons. The Enterprise Modelfor Developing Distributed Appliations. IEEE Parallel & DistributedTehnology, 1(3):85{96, 1993.[SSS98℄ A. Singh, J. Shae�er, and D. Szafron. Experiene with Parallel Pro-gramming Using Code Templates. Conurreny: Pratie & Experiene,10(2):91{120, 1998. 68



[W3C℄ World Wide Web Consortium. http://www.w3.org/.[XML℄ XML Home Page. http://www.w3.org/XML/.[XSL℄ XSL Home Page. http://www.w3.org/Style/XSL/.

69



Appendix AInstalling CO2P3S andMetaCO2P3SA.1 Downloading the SystemThe CO2P3S environment is available for download at:� http://www.s.ualberta.a/�systems/After downloading and unpaking the pakage, the root of the CO2P3S installationwill be at \[InstallationDir℄/opsProj/".A.2 Con�guring CO2P3SCopy the \opsProj/opsr.xml" �le to your home diretory, and rename it to:\.opsr.xml". Edit this �le, and set up the following options:opsInstallationDiretory This should be set to the the diretory in whih CO2P3Sis installed. You an use a pathname relative to your home diretory. If youinstalled CO2P3S diretly in your home aount, set this to: \opsProj".userProgramDiretory Set this to the diretory in whih you want your userprograms stored by default. This value an also be set in the preferenesdialog of the CO2P3S GUI.defaultEditor Set this to the binary of the editor you wish to use within theCO2P3S environment. For instane, \gvim" or \emas". This an also be setin the preferenes dialog of the CO2P3S GUI.patterns You an leave this setting blank, as it will be modi�ed automatiallywhen new patterns are added.
70



Java version 1.3 or greater needs to be installed on your system. You need to setup your CLASSPATH environment variable to work with CO2P3S. Use the follow-ing setting, modifying values that refer to your installation diretory and the Javainstallation diretory as neessary:� CLASSPATH=[instDir℄:.:[instDir℄/libs/jdom.jar:[instDir℄/libs/xeres.jar:[instDir℄/libs/xalan.jar:[javaInstDir℄/lib/tools.jar:[javaInstDir℄/lib/jini-ore.jar:[javaInstDir℄/lib/jini-ext.jar:$CLASSPATHA.3 Building CO2P3STo build CO2P3S, hange into the \opsProj/" installation diretory, and exeutethe \make" ommand.A.4 Running CO2P3STo run CO2P3S, hange into the \opsProj/" installation diretory, and exeutethe ommand: \./runCops". If any problems our during the initialisation orexeution of the CO2P3S environment, inspet the \opsProj/ops.log" �le. Thesystem log an also be viewed within the CO2P3S environment. While runningCO2P3S, it is advised that the keyboard's NumLok key be turned o�, as otherwiseit will onit with ertain aspets of GUI operation.A.5 Adding Supplied Patterns to CO2P3SWhile running CO2P3S patterns an be added to the environment by seleting themenu item: \Environment { Add/Update Pattern". This brings up a �le hooser inthe \opsProj/patterns" diretory, allowing the user to import a pattern �le, suhas \Mesh.xml". One added, patterns will remain in the CO2P3S system arossexeutions. Patterns an be removed from the system using the \Environment {Remove Pattern" menu item.

71



Appendix BPattern Template File FormatsB.1 DTD for CO2P3S Pattern Template De�nitions<!ELEMENT CopsPattern:patternInfo (CopsPattern:patternName,CopsPattern:imagesDir,CopsPattern:patternPakage,CopsPattern:onstants,CopsPattern:lassNames,CopsPattern:parameters,CopsPattern:guiInfo)><!ATTLIST CopsPattern:patternInfoxmlns:CopsPattern CDATA #REQUIRED><!ELEMENT CopsPattern:patternName (#PCDATA)><!ELEMENT CopsPattern:imagesDir (#PCDATA)><!ELEMENT CopsPattern:patternPakage (#PCDATA)><!ELEMENT CopsPattern:onstants (CopsPattern:onstant)*><!ELEMENT CopsPattern:onstant (CopsPattern:onstantID,CopsPattern:onstantValue)><!ATTLIST CopsPattern:onstant type CDATA "noLongerUsed"><!ELEMENT CopsPattern:onstantID (#PCDATA)><!ELEMENT CopsPattern:onstantValue (#PCDATA)><!ELEMENT CopsPattern:parameters (CopsPattern:parameter*,CopsPattern:listParameter*, CopsPattern:extParameter*)><!ELEMENT CopsPattern:parameter (CopsPattern:parameterName,CopsPattern:parameterMenuText,CopsPattern:parameterDefault?,CopsPattern:parameterValidates?,CopsPattern:parameterValues?)><!ATTLIST CopsPattern:parameter id CDATA #REQUIRED><!ELEMENT CopsPattern:parameterName (#PCDATA)><!ELEMENT CopsPattern:parameterMenuText (#PCDATA)><!ELEMENT CopsPattern:parameterDefault (#PCDATA)><!ELEMENT CopsPattern:parameterValidates EMPTY><!ELEMENT CopsPattern:parameterValues (CopsPattern:parameterValue)*><!ELEMENT CopsPattern:parameterValue (#PCDATA)><!ELEMENT CopsPattern:listParameter (CopsPattern:listParameterName,CopsPattern:listParameterMenuText,CopsPattern:listParameterClass,CopsPattern:listParameterStrings?,CopsPattern:listParameterEntryClass?)><!ATTLIST CopsPattern:listParameter id CDATA #REQUIRED><!ELEMENT CopsPattern:listParameterName (#PCDATA)><!ELEMENT CopsPattern:listParameterMenuText (#PCDATA)><!ELEMENT CopsPattern:listParameterClass (#PCDATA)><!ELEMENT CopsPattern:listParameterStrings EMPTY><!ELEMENT CopsPattern:listParameterEntryClass (#PCDATA)><!ELEMENT CopsPattern:extParameter (CopsPattern:extParameterName,CopsPattern:extParameterMenuText,CopsPattern:extParameterClass)>72



<!ATTLIST CopsPattern:extParameter id CDATA #REQUIRED><!ELEMENT CopsPattern:extParameterName (#PCDATA)><!ELEMENT CopsPattern:extParameterMenuText (#PCDATA)><!ELEMENT CopsPattern:extParameterClass (#PCDATA)><!ELEMENT CopsPattern:lassNames (CopsPattern:userClassName*,CopsPattern:frameworkClassName*)><!ELEMENT CopsPattern:userClassName (CopsPattern:userClassNameID,CopsPattern:userClassNameDefValue?,CopsPattern:userClassNameMenuText,CopsPattern:userClassNameDefInsuÆient?,CopsPattern:userClassNameIsPatternName?,CopsPattern:userClassNameIsTemplate?,CopsPattern:userClassNameExternalRef?)+><!ELEMENT CopsPattern:userClassNameID (#PCDATA)><!ELEMENT CopsPattern:userClassNameDefValue (#PCDATA)><!ELEMENT CopsPattern:userClassNameMenuText (#PCDATA)><!ELEMENT CopsPattern:userClassNameDefInsuÆient EMPTY><!ELEMENT CopsPattern:userClassNameIsPatternName EMPTY><!ELEMENT CopsPattern:userClassNameIsTemplate EMPTY><!ELEMENT CopsPattern:userClassNameExternalRef EMPTY><!ELEMENT CopsPattern:frameworkClassName (CopsPattern:frameworkClassNameID,CopsPattern:frameworkClassNameRef,CopsPattern:frameworkClassNameIsTemplate?)+><!ELEMENT CopsPattern:frameworkClassNameID (#PCDATA)><!ELEMENT CopsPattern:frameworkClassNameRef (#PCDATA)><!ELEMENT CopsPattern:frameworkClassNameIsTemplate EMPTY><!ELEMENT CopsPattern:guiInfo (CopsPattern:visualElements)><!ELEMENT CopsPattern:visualElements (CopsPattern:gElement*, CopsPattern:tElement*)><!ELEMENT CopsPattern:gElement (CopsPattern:gElementID,CopsPattern:gElementLoationX,CopsPattern:gElementLoationY,CopsPattern:gElementImages?,CopsPattern:gElementCurImageParts?)><!ELEMENT CopsPattern:tElement (CopsPattern:tElementID,CopsPattern:tElementLoationX,CopsPattern:tElementLoationY,CopsPattern:tElementMaxLength,CopsPattern:tElementJusti�ation,CopsPattern:tElementText,CopsPattern:tElementUpdateType?,CopsPattern:tElementUpdateVal?)><!ELEMENT CopsPattern:gElementID (#PCDATA)><!ELEMENT CopsPattern:gElementLoationX (#PCDATA)><!ELEMENT CopsPattern:gElementLoationY (#PCDATA)><!ELEMENT CopsPattern:gElementImages (CopsPattern:gElementImage)*><!ELEMENT CopsPattern:gElementImage (CopsPattern:gElementImageName,CopsPattern:gElementImageLo)><!ELEMENT CopsPattern:gElementImageName (#PCDATA)><!ELEMENT CopsPattern:gElementImageLo (#PCDATA)><!ELEMENT CopsPattern:gElementCurImageParts (CopsPattern:gElementCurImagePart*)><!ELEMENT CopsPattern:gElementCurImagePart (CopsPattern:gElementCurImagePartVal,CopsPattern:gElementCurImagePartType)><!ELEMENT CopsPattern:gElementCurImagePartVal (#PCDATA)><!ELEMENT CopsPattern:gElementCurImagePartType (#PCDATA)><!ELEMENT CopsPattern:tElementID (#PCDATA)><!ELEMENT CopsPattern:tElementLoationX (#PCDATA)><!ELEMENT CopsPattern:tElementLoationY (#PCDATA)><!ELEMENT CopsPattern:tElementMaxLength (#PCDATA)><!ELEMENT CopsPattern:tElementText (#PCDATA)><!ELEMENT CopsPattern:tElementJusti�ation (#PCDATA)><!ELEMENT CopsPattern:tElementUpdateType (#PCDATA)><!ELEMENT CopsPattern:tElementUpdateVal (#PCDATA)>
73



B.2 XML Pattern Template Desription for Mesh<?xml version="1.0" enoding="UTF-8"?><!DOCTYPE CopsPattern:patternInfo SYSTEM ". ./DTD/CopsPattern.dtd"><CopsPattern:patternInfo xmlns:CopsPattern="http://www.s.ualberta.a/~systems/ops.html"><CopsPattern:patternName>Mesh</CopsPattern:patternName><CopsPattern:imagesDir>IMAGES DIR + "mesh" + File.separator</CopsPattern:imagesDir><CopsPattern:patternPakage>ops.gui.patterns.mesh</CopsPattern:patternPakage><CopsPattern:onstants><CopsPattern:onstant><CopsPattern:onstantID>MESH NUM NEIGHBOURS LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Set Number of Neighbours"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>MESH BOUNDARY CONDS LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Set Mesh Boundary Conditions"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>MESH STATE CLASS LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Set Mesh State Class"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>MESH CLASS NAME LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Set Mesh Class Name"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>MESH STATE SUPER CLASS LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Set Mesh State Superlass"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>MESH ORDERING LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Set Mesh Ordering"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>MESH LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Mesh"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>MESH STATE LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Mesh State Class"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>MESH STATE SUPER LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Mesh State Superlass"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>OBJECT CLASS</CopsPattern:onstantID><CopsPattern:onstantValue>"Objet"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>BOUNDARY LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Boundary Topology"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>NON T BOUNDARY</CopsPattern:onstantID><CopsPattern:onstantValue>"Non"</CopsPattern:onstantValue>74



</CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>FULLY T BOUNDARY</CopsPattern:onstantID><CopsPattern:onstantValue>"Fully"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>HORIZ T BOUNDARY</CopsPattern:onstantID><CopsPattern:onstantValue>"Horizontal"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>VERT T BOUNDARY</CopsPattern:onstantID><CopsPattern:onstantValue>"Vertial"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>ORDERING LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Computation Order"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>ORDERED</CopsPattern:onstantID><CopsPattern:onstantValue>"Ordered Computation"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>CHAOTIC</CopsPattern:onstantID><CopsPattern:onstantValue>"Chaoti Computation"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>NEIGHBOURS LBL</CopsPattern:onstantID><CopsPattern:onstantValue>"Number of Neighbours"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>FOUR POINT</CopsPattern:onstantID><CopsPattern:onstantValue>"4"</CopsPattern:onstantValue></CopsPattern:onstant><CopsPattern:onstant><CopsPattern:onstantID>EIGHT POINT</CopsPattern:onstantID><CopsPattern:onstantValue>"8"</CopsPattern:onstantValue></CopsPattern:onstant></CopsPattern:onstants><CopsPattern:lassNames><CopsPattern:userClassName><CopsPattern:userClassNameID>Colletor</CopsPattern:userClassNameID><CopsPattern:userClassNameDefValue>MESH LBL</CopsPattern:userClassNameDefValue><CopsPattern:userClassNameMenuText>MESH CLASS NAME LBL</CopsPattern:userClassNameMenuText><CopsPattern:userClassNameDefInsuÆient></CopsPattern:userClassNameDefInsuÆient><CopsPattern:userClassNameIsPatternName></CopsPattern:userClassNameIsPatternName></CopsPattern:userClassName><CopsPattern:userClassName><CopsPattern:userClassNameID>Mesh</CopsPattern:userClassNameID><CopsPattern:userClassNameDefValue>MESH STATE LBL</CopsPattern:userClassNameDefValue><CopsPattern:userClassNameMenuText>MESH STATE CLASS LBL</CopsPattern:userClassNameMenuText><CopsPattern:userClassNameDefInsuÆient></CopsPattern:userClassNameDefInsuÆient></CopsPattern:userClassName><CopsPattern:userClassName><CopsPattern:userClassNameID>MeshStateSuper</CopsPattern:userClassNameID>75



<CopsPattern:userClassNameDefValue>OBJECT CLASS</CopsPattern:userClassNameDefValue><CopsPattern:userClassNameMenuText>MESH STATE SUPER CLASS LBL</CopsPattern:userClassNameMenuText><CopsPattern:userClassNameExternalRef></CopsPattern:userClassNameExternalRef></CopsPattern:userClassName><CopsPattern:frameworkClassName><CopsPattern:frameworkClassNameID>Abstrat#</CopsPattern:frameworkClassNameID><CopsPattern:frameworkClassNameRef>Colletor</CopsPattern:frameworkClassNameRef></CopsPattern:frameworkClassName><CopsPattern:frameworkClassName><CopsPattern:frameworkClassNameID>Abstrat#</CopsPattern:frameworkClassNameID><CopsPattern:frameworkClassNameRef>Mesh</CopsPattern:frameworkClassNameRef></CopsPattern:frameworkClassName><CopsPattern:frameworkClassName><CopsPattern:frameworkClassNameID>Bounded#Array</CopsPattern:frameworkClassNameID><CopsPattern:frameworkClassNameRef>Mesh</CopsPattern:frameworkClassNameRef></CopsPattern:frameworkClassName><CopsPattern:frameworkClassName><CopsPattern:frameworkClassNameID>#State</CopsPattern:frameworkClassNameID><CopsPattern:frameworkClassNameRef>Mesh</CopsPattern:frameworkClassNameRef><CopsPattern:frameworkClassNameIsTemplate></CopsPattern:frameworkClassNameIsTemplate></CopsPattern:frameworkClassName><CopsPattern:frameworkClassName><CopsPattern:frameworkClassNameID>#Strategy</CopsPattern:frameworkClassNameID><CopsPattern:frameworkClassNameRef>Mesh</CopsPattern:frameworkClassNameRef></CopsPattern:frameworkClassName></CopsPattern:lassNames><CopsPattern:parameters><CopsPattern:parameter id="ordered_"><CopsPattern:parameterName>ORDERING LBL</CopsPattern:parameterName><CopsPattern:parameterMenuText>MESH ORDERING LBL</CopsPattern:parameterMenuText><CopsPattern:parameterDefault>ORDERED</CopsPattern:parameterDefault><CopsPattern:parameterValidates></CopsPattern:parameterValidates><CopsPattern:parameterValues><CopsPattern:parameterValue>ORDERED</CopsPattern:parameterValue><CopsPattern:parameterValue>CHAOTIC</CopsPattern:parameterValue></CopsPattern:parameterValues></CopsPattern:parameter><CopsPattern:parameter id="boundary_"><CopsPattern:parameterName>BOUNDARY LBL</CopsPattern:parameterName><CopsPattern:parameterMenuText>MESH BOUNDARY CONDS LBL</CopsPattern:parameterMenuText><CopsPattern:parameterDefault>NON T BOUNDARY</CopsPattern:parameterDefault><CopsPattern:parameterValidates></CopsPattern:parameterValidates><CopsPattern:parameterValues><CopsPattern:parameterValue>NON T BOUNDARY</CopsPattern:parameterValue><CopsPattern:parameterValue>FULLY T BOUNDARY</CopsPattern:parameterValue><CopsPattern:parameterValue>HORIZ T BOUNDARY</CopsPattern:parameterValue><CopsPattern:parameterValue>VERT T BOUNDARY</CopsPattern:parameterValue></CopsPattern:parameterValues></CopsPattern:parameter><CopsPattern:parameter id="numNeighbours_"><CopsPattern:parameterName>NEIGHBOURS LBL</CopsPattern:parameterName><CopsPattern:parameterMenuText>MESH NUM NEIGHBOURS LBL</CopsPattern:parameterMenuText> 76



<CopsPattern:parameterDefault>FOUR POINT</CopsPattern:parameterDefault><CopsPattern:parameterValidates></CopsPattern:parameterValidates><CopsPattern:parameterValues><CopsPattern:parameterValue>FOUR POINT</CopsPattern:parameterValue><CopsPattern:parameterValue>EIGHT POINT</CopsPattern:parameterValue></CopsPattern:parameterValues></CopsPattern:parameter></CopsPattern:parameters><CopsPattern:guiInfo><CopsPattern:visualElements><CopsPattern:gElement><CopsPattern:gElementID>meshG</CopsPattern:gElementID><CopsPattern:gElementLoationX>10</CopsPattern:gElementLoationX><CopsPattern:gElementLoationY>45</CopsPattern:gElementLoationY><CopsPattern:gElementImages><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGFully4</CopsPattern:gElementImageName><CopsPattern:gElementImageLo>meshGFully4.gif</CopsPattern:gElementImageLo></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGFully8</CopsPattern:gElementImageName><CopsPattern:gElementImageLo>meshGFully8.gif</CopsPattern:gElementImageLo></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGHorizontal4</CopsPattern:gElementImageName><CopsPattern:gElementImageLo>meshGHorizontal4.gif</CopsPattern:gElementImageLo></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGHorizontal8</CopsPattern:gElementImageName><CopsPattern:gElementImageLo>meshGHorizontal8.gif</CopsPattern:gElementImageLo></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGVertial4</CopsPattern:gElementImageName><CopsPattern:gElementImageLo>meshGVertial4.gif</CopsPattern:gElementImageLo></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGVertial8</CopsPattern:gElementImageName><CopsPattern:gElementImageLo>meshGVertial8.gif</CopsPattern:gElementImageLo></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGNon4</CopsPattern:gElementImageName><CopsPattern:gElementImageLo>meshGNon4.gif</CopsPattern:gElementImageLo></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGNon8</CopsPattern:gElementImageName><CopsPattern:gElementImageLo>meshGNon8.gif</CopsPattern:gElementImageLo></CopsPattern:gElementImage></CopsPattern:gElementImages><CopsPattern:gElementCurImageParts><CopsPattern:gElementCurImagePart><CopsPattern:gElementCurImagePartVal>"meshG"</CopsPattern:gElementCurImagePartVal><CopsPattern:gElementCurImagePartType>String</CopsPattern:gElementCurImagePartType></CopsPattern:gElementCurImagePart><CopsPattern:gElementCurImagePart><CopsPattern:gElementCurImagePartVal>boundary</CopsPattern:gElementCurImagePartVal><CopsPattern:gElementCurImagePartType>Parameter</CopsPattern:gElementCurImagePartType>77



</CopsPattern:gElementCurImagePart><CopsPattern:gElementCurImagePart><CopsPattern:gElementCurImagePartVal>numNeighbours</CopsPattern:gElementCurImagePartVal><CopsPattern:gElementCurImagePartType>Parameter</CopsPattern:gElementCurImagePartType></CopsPattern:gElementCurImagePart></CopsPattern:gElementCurImageParts></CopsPattern:gElement><CopsPattern:tElement><CopsPattern:tElementID>meshNameT</CopsPattern:tElementID><CopsPattern:tElementLoationX>90</CopsPattern:tElementLoationX><CopsPattern:tElementLoationY>40</CopsPattern:tElementLoationY><CopsPattern:tElementMaxLength>28</CopsPattern:tElementMaxLength><CopsPattern:tElementJusti�ation>CENTER</CopsPattern:tElementJusti�ation><CopsPattern:tElementText>MESH LBL</CopsPattern:tElementText><CopsPattern:tElementUpdateType>Class</CopsPattern:tElementUpdateType><CopsPattern:tElementUpdateVal>Colletor</CopsPattern:tElementUpdateVal></CopsPattern:tElement><CopsPattern:tElement><CopsPattern:tElementID>orderingT</CopsPattern:tElementID><CopsPattern:tElementLoationX>90</CopsPattern:tElementLoationX><CopsPattern:tElementLoationY>240</CopsPattern:tElementLoationY><CopsPattern:tElementMaxLength>28</CopsPattern:tElementMaxLength><CopsPattern:tElementJusti�ation>CENTER</CopsPattern:tElementJusti�ation><CopsPattern:tElementText>ORDERED</CopsPattern:tElementText><CopsPattern:tElementUpdateType>Parameter</CopsPattern:tElementUpdateType><CopsPattern:tElementUpdateVal>ordered </CopsPattern:tElementUpdateVal></CopsPattern:tElement><CopsPattern:tElement><CopsPattern:tElementID>meshStSuperT</CopsPattern:tElementID><CopsPattern:tElementLoationX>260</CopsPattern:tElementLoationX><CopsPattern:tElementLoationY>140</CopsPattern:tElementLoationY><CopsPattern:tElementMaxLength>28</CopsPattern:tElementMaxLength><CopsPattern:tElementJusti�ation>CENTER</CopsPattern:tElementJusti�ation><CopsPattern:tElementText>MESH STATE SUPER LBL</CopsPattern:tElementText><CopsPattern:tElementUpdateType>Class</CopsPattern:tElementUpdateType><CopsPattern:tElementUpdateVal>MeshStateSuper</CopsPattern:tElementUpdateVal></CopsPattern:tElement><CopsPattern:tElement><CopsPattern:tElementID>meshStateT</CopsPattern:tElementID><CopsPattern:tElementLoationX>260</CopsPattern:tElementLoationX><CopsPattern:tElementLoationY>200</CopsPattern:tElementLoationY><CopsPattern:tElementMaxLength>28</CopsPattern:tElementMaxLength><CopsPattern:tElementJusti�ation>CENTER</CopsPattern:tElementJusti�ation><CopsPattern:tElementText>MESH STATE LBL</CopsPattern:tElementText><CopsPattern:tElementUpdateType>Class</CopsPattern:tElementUpdateType><CopsPattern:tElementUpdateVal>Mesh</CopsPattern:tElementUpdateVal></CopsPattern:tElement></CopsPattern:visualElements></CopsPattern:guiInfo></CopsPattern:patternInfo>
78


