
University of AlbertaLibrary Release Form
Name of Author: Steven BromlingTitle of Thesis: Meta-programming with Parallel Design PatternsDegree: Master of S
ien
eYear this Degree Granted: 2002
Permission is hereby granted to the University of Alberta Library to reprodu
e single
opies of this thesis and to lend or sell su
h
opies for private, s
holarly or s
ienti�
resear
h purposes only.The author reserves all other publi
ation and other rights in asso
iation with the
opyright in the thesis, and ex
ept as hereinbefore provided, neither the thesis norany substantial portion thereof may be printed or otherwise reprodu
ed in anymaterial form whatever without the author's prior written permission.

.Steven Bromling#1010, 10149 Saskat
hewan DriveEdmonton, ABCanada, T6E 6B6
Date:

University of Alberta
Meta-programming with Parallel Design PatternsbySteven Bromling

A thesis submitted to the Fa
ulty of Graduate Studies and Resear
h in partialful�llment of the requirements for the degree of Master of S
ien
e.
Department of Computing S
ien
e

Edmonton, AlbertaSpring 2002

University of AlbertaFa
ulty of Graduate Studies and Resear
h
The undersigned
ertify that they have read, and re
ommend to the Fa
ulty of Grad-uate Studies and Resear
h for a

eptan
e, a thesis entitled Meta-programmingwith Parallel Design Patterns submitted by Steven Bromling in partial ful�ll-ment of the requirements for the degree of Master of S
ien
e.

.Dr. Jonathan S
hae�er.Dr. Duane Szafron.Dr. Mike Carbonaro.Dr. Paul Lu
Date:

A
knowledgementsFirst, I would like to thank my �an
�ee, Phoebe Jane Elliot, for her love, supportand inspiration during the writing of this dissertation, and the resear
h leading upto it.I would like to extend my gratitude to the CO2P3S resear
h team, for their e�ortsthat made this work possible. Steve Ma
Donald, John Anvik and Kai Tan all provedinstrumental in the
ompletion of this MetaCO2P3S resear
h. Thanks espe
iallyto my supervisors, Jonathan S
hae�er and Duane Szafron, for their guidan
e andpatien
e.I would also like to a
knowledge the e�orts of my thesis
ommittee, for thesuggestions that they provided for the improvement of this dissertation.I would like to thank my family and friends, for their support and understanding,in parti
ular as my attentions were diverted towards this goal.Lastly, am grateful to the Natural S
ien
e and Engineering Resear
h Coun
il ofCanada and the Alberta Informati
s Cir
le of Resear
h Ex
ellen
e for their �nan
ialsupport of this resear
h. In addition, the funding provided by the University ofAlberta through a Walter H. Johns Graduate Fellowship, and the Department ofComputing S
ien
e through a Tea
hing Assistantship was greatly appre
iated.

Abstra
tA
riti
al short
oming of template- or pattern-based systems for parallel program-ming is their la
k of extensibility. Templates are typi
ally limited in number ors
ope, thereby narrowing the appli
ability of a given system. This dissertationdes
ribes my approa
h for addressing the extensibility problem in the CO2P3S par-allel programming system. The tool I developed,
alled MetaCO2P3S, provides theability for pattern designers to design and add new pattern templates to CO2P3S.These pattern templates are equivalent in form and fun
tion to those provided bythe developers of CO2P3S, although stored in a system-independent format. Thismakes them suitable for storing in a repository to be shared throughout the user
ommunity. The validity of MetaCO2P3S is illustrated through the
reation of newpattern templates.

Contents
1 Introdu
tion 11.1 Motivation . 11.2 Contributions . 21.3 Organisation . 22 An Introdu
tion to CO2P3S 42.1 Parallel Design Patterns . 62.1.1 From Design Patterns to Frameworks 72.2 The Original CO2P3S Implementation 82.3 CO2P3S Usage . 142.4 Available Parallel Design Pattern Templates 152.4.1 The Mesh Pattern Template 152.4.2 The Distributor Pattern Template 162.4.3 The Phases Pattern Template 162.5 Case Study: Image Pro
essing . 162.6 Adding Parallel Design Pattern Templates 172.6.1 Motivation . 183 A Meta-programming Tool for CO2P3S 193.1 The Ne
essary Components of a Pattern Template 203.1.1 Pattern Template Identi�
ation and Do
umentation 203.1.2 Class Names . 213.1.3 Parameters . 213.1.4 GUI Con�guration . 223.1.5 User Intera
tion Capabilities 223.1.6 State Maintenan
e . 223.1.7 The Framework Template . 223.2 Modifying CO2P3S to Support Modular Pattern Templates 233.2.1 De
oupling the Framework Template and Pattern Des
riptionComponents . 233.2.2 Supporting the Pattern Des
ription Component in CO2P3S . 23

3.2.3 Supporting the Framework Template Component in CO2P3S 243.3 The Design of MetaCO2P3S . 253.4 The Pattern Template Ar
hite
ture 263.4.1 XML for System-independent Pattern Template Storage . . . 283.4.2 Javado
 for Framework Template Code Generation 293.5 Pattern Template Creation using MetaCO2P3S 303.5.1 Pattern Settings in MetaCO2P3S 313.5.2 Constants in MetaCO2P3S . 323.5.3 Class Names in MetaCO2P3S 323.5.4 Parameters in MetaCO2P3S 363.5.5 GUI Con�guration in MetaCO2P3S 393.6 Framework Template Creation . 393.6.1 Building the Framework Classes 413.6.2 Implementing Extended and List Parameters 473.7 Testing the Pattern Template . 503.8 Importing Pattern Templates into CO2P3S 504 Validating MetaCO2P3S 514.1 Re
reating CO2P3S . 514.2 Case Study: Geneti
 Sequen
e Alignment 514.2.1 Isolating the Wavefront Design Pattern 524.2.2 Creating the Wavefront Pattern Template 524.2.3 Analysis . 574.3 Extending CO2P3S from Shared-memory to Networks of Workstations 585 Pattern Template Repositories 595.1 The Generality of My Meta-programming Approa
h 606 Related Resear
h 616.1 Design Patterns and Frameworks . 626.2 Extensible Pattern-based Programming Tools 626.2.1 Generi
 Programming Environments 626.2.2 Parallel Programming Environments 636.3 Code Generation . 636.4 Pattern Repositories . 636.5 Con
lusions . 647 Summary and Con
lusions 657.1 Contributions of this Resear
h . 657.2 Ongoing Enhan
ements to CO2P3S and MetaCO2P3S 657.3 Dire
tions for Future Work . 66

Bibliography 67A Installing CO2P3S and MetaCO2P3S 70A.1 Downloading the System . 70A.2 Con�guring CO2P3S . 70A.3 Building CO2P3S . 71A.4 Running CO2P3S . 71A.5 Adding Supplied Patterns to CO2P3S 71B Pattern Template File Formats 72B.1 DTD for CO2P3S Pattern Template De�nitions 72B.2 XML Pattern Template Des
ription for Mesh 74

List of Figures2.1 A new CO2P3S appli
ation. 52.2 The user's view into the framework generated by CO2P3S. 52.3 The original CO2P3S GUI. 92.4 A new appli
ation with one pattern template instan
e. 102.5 Parameterisation of the pattern template. 102.6 Setting a framework
lass name. 112.7 Generating the framework
ode. 112.8 Viewing the framework
ode in CO2P3S. 122.9 Editing a framework method. 122.10 Setting the appli
ation options. 132.11 Compiling the parallel appli
ation. 133.1 The pattern template ar
hite
ture. 263.2 Files and intera
tions in CO2P3S and MetaCO2P3S. 273.3 Laun
hing the MetaCO2P3S editor. 303.4 The Mesh Pattern Settings in MetaCO2P3S. 313.5 Constants used in the Mesh pattern. 323.6 The Class Name pattern settings in MetaCO2P3S. 333.7 Editing a user-known
lass in the Mesh pattern template. 333.8 Editing a framework
lass in the Mesh pattern template. 343.9 The Parameter pattern settings in MetaCO2P3S. 343.10 Editing a basi
 parameter in the Mesh pattern template. 353.11 Editing a list parameter in the Phases pattern template. 363.12 The visual GUI elements pattern settings in MetaCO2P3S. 373.13 Editing a visual text element in the Mesh pattern template. 373.14 Editing a visual graphi
al element in the Mesh pattern template. . . 383.15 Adding images to a visual graphi
al element in the Mesh. 383.16 Con�guring the name of a visual graphi
al element in the Mesh. . . 383.17 Mesh template
ode example. 423.18 User parameterisation from CO2P3S. 433.19 Mesh template
ode in framework instan
e after parameterisation. . 44

3.20 Mesh template
ode in CO2P3S Template Viewer after parameterisa-tion. 453.21 Mesh method body framework template example. 463.22 Mesh method body generated after parameterisation. 463.23 Dire
tory layout of pattern templates in CO2P3S. 493.24 Importing a pattern template into CO2P3S. 504.1 Solving the sequen
e alignment problem with a dynami
 program-ming matrix. 524.2 The Wavefront pattern template in MetaCO2P3S. 534.3 The Wavefront pattern template
lass settings. 544.4 The Wavefront pattern template parameter settings. 544.5 The Wavefront pattern template in CO2P3S. 554.6 The Wavefront pattern template GUI settings. 564.7 Speedups using the Wavefront for sequen
e alignment. 58

List of Tables4.1 Exe
ution times using the Wavefront for sequen
e alignment. 57

Chapter 1Introdu
tionComputer programs
an enjoy potential performan
e bene�ts by exploiting para-llelism. However, parallel programming is
hallenging for most developers, due tothe issues raised by
on
urren
y. Unfortunately, even though the �eld of parallelprogramming is not young, the high-level tool support for parallel programming isstill immature. This is partly due to the belief that adding layers of abstra
tion willadversely a�e
t overall performan
e.There are a number of forms that
on
urren
y
an take, depending on the re-quirements of a given algorithm. Finding the appropriate parallel design for a par-ti
ular program
an be a diÆ
ult problem. There is an arguable need for tools toassist developers with this problem, in parti
ular for those who are new to parallelprogramming.The struggle between the requirements for speed and developer assistan
e sug-gests that a
ompromise is ne
essary. One approa
h being taken to meet this
om-promise is the development of parallel programming environments that employ tem-plates to assist with program design and implementation. One su
h system, from ourresear
h group at the University of Alberta, is
alled CO2P3S1 [MSSB00a, MSS97℄.CO2P3S uses design patterns to generate frameworks for parallel programs.1.1 MotivationIn over twelve years of experien
e with template-based parallel programming envi-ronments, our resear
h group has identi�ed a number of problems that are prevent-ing their widespread a

eptan
e [SSS98℄. One of these problems is the rigidity andnarrow s
ope of the environments. Current a
ademi
 tools only support a smallnumber of templates and, with only a few ex
eptions, do not allow the
reationof new templates. The la
k of a ri
h set of templates is one of the major reasonspreventing these tools from moving out of a
ademia and into mainstream use.1Corre
t Obje
t-Oriented Pattern-based Parallel Programming System, pronoun
ed \
ops."1

Finding a solution to this problem is not easy. Building a template-based parallelprogramming system is already a diÆ
ult task. Ensuring that the same environment
an support the addition of new templates adds further
ompli
ations. Our
om-munity needs a meta-programming tool that enables the
reation of new templatesand the modi�
ation of existing ones. The templates must be generi
 enough to beusable in a variety of systems. If the templates are de�ned in a system-independentmanner, they
an be stored in a
entral repository. Submissions
ould be made tothe repository from throughout the parallel programming
ommunity, and it wouldserve to remove a major impediment to the a

eptan
e of template-based systems.1.2 ContributionsThis dissertation des
ribes my approa
h to adding extensibility to template-basedparallel programming environments. This undertaking was rife with
hallenges.First, I needed to determine what information was required to make a
ompletetemplate des
ription, and how that information
ould be stored. Then CO2P3S hadto be abstra
ted so that it
ould integrate with template des
riptions, in
ludingtheir graphi
al representations, in a modular fashion. Finally, I needed to spe
ifyhow parameters
ould be used to spe
ialise templates by generating di�erent
odeinstan
es, and how parameter values
ould be gathered from a user.My tool for
reating new pattern templates is
alled MetaCO2P3S, sin
e it wasbuilt as an extension to our CO2P3S environment. MetaCO2P3S
reates �rst-
lasspattern templates that integrate seamlessly with the CO2P3S environment, sin
ethey are identi
al in form and equivalent in fun
tion to the pattern templates sup-plied with the tool. This dissertation des
ribes the meta-programming approa
htaken in MetaCO2P3S, and extends a
hallenge to the
ommunity to leverage ourte
hnology to
reate a pattern template repository.1.3 OrganisationChapter 2 introdu
es the CO2P3S environment, des
ribing its status prior to theresear
h in this dissertation, and its available palette of pattern templates. Furthermotivation for my meta-programming extension is in
luded.Chapter 3 dis
usses the development of the MetaCO2P3S tool and how I metmy goal of extensibility. This begins with a de�nition of the required
omponentsof a pattern template. It goes on to des
ribe the modi�
ations I made to theCO2P3S environment to support modular pattern templates. Finally, the design ofthe MetaCO2P3S tool and its underlying ar
hite
ture are introdu
ed,
omplete witha des
ription of the pattern
reation pro
ess from the pattern designer's perspe
tive.Chapter 4 shows how I validated the MetaCO2P3S tool. As part of this pro
ess,2

I not only re
reated all of the patterns in the original CO2P3S, but I also addednew patterns. As part of this work, MetaCO2P3S was used to extend CO2P3S fromits target shared-memory parallel platform to distributed memory environments onnetworks of workstations.In Chapter 5, I promote the need for a pattern repository. We also demonstratethe generality of my meta-programming approa
h, showing how generi
 patterns
an be
reated using MetaCO2P3S. This �nding extends the power of CO2P3S andMetaCO2P3S beyond the domain of parallel programming.Chapter 6 des
ribes resear
h related to MetaCO2P3S, and Chapter 7 summarisesthe
ontributions of this dissertation, introdu
ing ongoing enhan
ements to CO2P3Sand des
ribing dire
tions for future work.Appendix A gives instru
tions for the installation of CO2P3S and MetaCO2P3S.Examples of the system-independent �le formats for pattern templates, as intro-du
ed in this resear
h, are given in Appendix B.

3

Chapter 2An Introdu
tion to CO2P3SOur parallel programming system,
alled CO2P3S, uses obje
t-oriented program-ming te
hniques to simplify parallel programming [Ma
01, MSSB00a, MSSB00b℄.This resear
h follows the previous parallel programming system from our group,
alled Enterprise [SSLP93℄, whi
h evolved from an earlier prototype
alled Frame-Works [SSG89℄. Enterprise used a business model as an abstra
tion for the
om-muni
ation patterns in programs for networks of workstations. The environmentin
luded many supporting tools, su
h as detailed debuggers and animated playba
kme
hanisms. The resear
h goal for both Enterprise and CO2P3S was to providea means for software developers to parallelise and speed up their sequential pro-grams with little e�ort, while minimising the possibility of new errors being intro-du
ed. Using CO2P3S, developers
an
reate,
ompile and exe
ute programs for
on
urrent ar
hite
tures. This
hapter des
ribes the state of CO2P3S prior to themeta-programming extension, and motivates the work done in this dissertation.In CO2P3S, developers identify parallel design patterns that des
ribe their ap-pli
ation's basi
 stru
ture, parameterise the patterns to spe
ialise them for theirneeds, and implement appli
ation-spe
i�

ode within the automati
ally generatedframework that hides the entire parallel infrastru
ture. CO2P3S targets program-mers looking for reasonable speedups in their sequential appli
ations in return for amodest programming e�ort.A parallel design pattern template, or pattern template for short,
onsists of twomain
omponents. The �rst is a parallel design pattern, and is des
ribed in Se
tion2.1. The se
ond is a set of framework implementations representing the variousforms that the design pattern
an take. The transition pro
ess from design patternsto frameworks is des
ribed in Se
tion 2.1.1.There is
urrently no support in the CO2P3S environment for the design patternsele
tion pro
ess. The onus is on the developer to dedu
e the appropriate patterntemplates for their appli
ation. It is possible that this pro
ess
an be automated inthe future, based on the results of pattern language resear
h [MMS00℄.4

Figure 2.1: A new CO2P3S appli
ation.

Figure 2.2: The user's view into the framework generated by CO2P3S.5

One of the key features of CO2P3S is its separation of system-generated paral-lel
ode and user-provided sequential
ode. Parallel
ode se
tions are typi
ally themost
ompli
ated part of an appli
ation. CO2P3S hides them from the user in theframeworks it generates. This separation helps to maintain
orre
tness in appli
a-tions, and it greatly simpli�es users' implementation e�orts. We ensure that theseparation does not limit CO2P3S users by providing a programming model thathas three layers of abstra
tion. The highest layer does not provide any a

ess toparallel
ode. In the intermediate layer, a high-level expli
itly parallel program-ming language enables manipulation of the parallel stru
ture. At the lowest layer,CO2P3S provides native obje
t-oriented
ode for the entire appli
ation.Figure 2.1 shows CO2P3S with a user appli
ation involving two design patterntemplates. The pattern template sele
ted in the middle segment of the user inter-fa
e and displayed in the pattern window on the right represents a two-dimensionalparallel mesh
omputation, whi
h supports iterative
omputations a
ross a surfa
e.Using the pattern window, a CO2P3S user
an
ustomise the pattern template in-stan
e by setting
lass names for the framework and parameterising the patterntemplate so that it mat
hes their appli
ation. One of the parameters available forthe Mesh pattern template is the boundary
ondition that allows the mesh to bea re
tangular surfa
e, a
ylinder or a torus. Another parameter swit
hes the num-ber of neighbours for the nodes in the mesh from four to eight. After
ustomisingthe pattern template, the user requests that the appropriate framework
ode begenerated. The
urrent pattern templates in CO2P3S are
on�gured to generateshared-memory Java
ode. Figure 2.2 illustrates the user's view of the framework,showing a
lass that represents a single node in the mesh stru
ture. Users are notallowed to edit the
lass in this window. This prevents them from modifying methodor
lass signatures. Instead, hyper-links are provided for user-modi�able lo
ationsin the
ode. The inset window is the result of following one su
h hyper-link, andallows the user to enter the sele
ted method's body.2.1 Parallel Design PatternsDesign patterns, as popularised by Gamma, Helm, Johnson and Vlissides [GHJV95℄,
apture and do
ument re
urring problems in obje
t-oriented software design. Ne
-essary
omponents of a design pattern do
ument in
lude both a des
ription of aproblem and its solution. The problem des
ription in
orporates a dis
ussion ofthe pattern's appli
ability. There should be suÆ
ient detail in the solution for adeveloper to fully
omplete the asso
iated aspe
t of their design.As an innovative subset of the more general realm, parallel design patterns dealwith problems related to
on
urrent programming. There are many diÆ
ulties thatmake parallel programming a daunting endeavour for developers, in
luding:6

� the identi�
ation of the parallelism in a given appli
ation, if any.� the
onstru
tion of the parallelism, ensuring that the threads of exe
ution syn-
hronise at key points and transfer data between threads in a timely fashion.� the target ar
hite
ture (whether it be a distributed network of workstationsor a shared memory multi-pro
essor)
an a�e
t the implementation languageand the algorithms used.� errors or omissions
an
ause the program to fun
tion errati
ally and in
or-re
tly, making it diÆ
ult to debug.� various performan
e enhan
ements may be required to attain reasonable pro-gram speedups, in
luding in
reasing task granularity, balan
ing the load be-tween threads of exe
ution and redu
ing
ommuni
ation.� the appli
ation may need to s
ale to ma
hines with di�erent
apabilities, orbe portable a
ross platforms.The
umulative time for all of these a
tivities
an make the
ost of developingparallel programs prohibitive. Traditionally, the onus was almost entirely on thedeveloper to deal with these issues. A design pattern
atalogue
an help by not onlyidentifying the type of parallelism that best
aptures their problem, but also bypres
ribing an appropriate solution. An example parallel design pattern
atalogueis in
luded in [Ma
01℄.2.1.1 From Design Patterns to FrameworksEvery design pattern in
ludes an abstra
t solution to a parti
ular design problem.The solution is general, to avoid dependen
ies on a parti
ular ar
hite
ture or pro-gramming language. If this restri
tion is relaxed, the result is no longer a designpattern, by de�nition. Our alternative is to use design patterns to generate
odeskeletons, whi
h
an serve as the basis for a
olle
tion of di�erent programs.A framework embodies the intent of a parti
ular design pattern. It providesa set of abstra
t
lasses, and is
ustomised for a spe
i�
 domain through the im-plementation of one or more sub
lasses. The appli
ation stru
ture is provided bythe framework, and is not modi�ed by the developer. Be
ause of this, a properly
onstru
ted framework
an guarantee stru
tural
orre
tness. In the domain of par-allel programming this is parti
ularly useful, sin
e a framework
an en
apsulate thesyn
hronisation and
ommuni
ation needed for
on
urren
y, freeing the developerfrom a diÆ
ult part of their appli
ation.A small
ompli
ation arises in the
onversion pro
ess from design patterns toframeworks be
ause of the possibility of design pattern parameters. Often there are7

slight variations in a design pattern that a�e
t its implementation. These varia-tions, or parameters, remove the possibility of a one-to-one mapping between designpatterns and frameworks. Instead, many di�erent frameworks may be required toprovide all possible parameterisations of a given design pattern. A parameter in adesign pattern does not
orrespond to a single argument in a framework method.In fa
t, a parameter
hoi
e at the design pattern level may result in the existen
e orabsen
e of a set of methods or portions of method bodies in the generated frame-work. Equipping developers for this situation requires a system that automati
allygenerates
orre
t frameworks from a sele
ted design pattern with the appropriateparameterisation. This is one of the roles of the CO2P3S system, as dis
ussed in[MSSB00a℄ and [MSS97℄.2.2 The Original CO2P3S ImplementationA system that automati
ally generates framework
ode from design patterns
anbe built on any
ombination of ar
hite
ture and programming language, providedsupport is available for parallelism. Early in the development of CO2P3S, Javawas sele
ted as the programming language, and shared-memory ma
hines as theparallel environment. That de
ision has provided some degree of ar
hite
tural in-dependen
e, allowing CO2P3S to be run on many di�erent
avours of UNIX, fromdual-pro
essor Linux ma
hines to large SGI Origin 2000 super
omputers. Parallel-ism on these shared-memory systems is a
hieved through Java native threads. Theobje
t-oriented
apabilities of Java are needed for the generated frameworks. Itshould be stressed that the design of CO2P3S does not pre
lude the use of otherprogramming languages or ar
hite
tures (e.g. C++ on a distributed network ofworkstations).CO2P3S has been in development for a number of years now. It began witha
ode generator, whi
h given a design pattern and a spe
i�
 parameterisation asinput, automati
ally produ
ed framework
ode. There was no user interfa
e, andtherefore no easy way to view the pattern
atalogue or provide the parameterisationfor a sele
ted pattern.As a summer resear
h assistant, I implemented a graphi
al user interfa
e (GUI)for CO2P3S [MSSB00b℄, also in Java. The main purpose of the GUI is to gather de-sign pattern parameter information, and interfa
e with the
ode generator to
reatethe appropriate framework
ode. Development e�orts attempted to ensure that theGUI representation of pattern templates was modular, and thus both maintainableand extensible. Figure 2.3 shows the three fun
tional areas of the main GUI window.The inner window, entitled Example,
ontains the start of a parallel appli
ation.� On the left, the Palette displays i
oni
 representations of the parallel pattern8

Figure 2.3: The original CO2P3S GUI.templates
urrently in the
atalogue. As the �gure shows, rolling the mouseover one of the i
ons displays the name of the
orresponding pattern. Inaddition, by right-
li
king the mouse on an i
on, one
an
hoose to view theasso
iated design pattern do
ument.� The middle Program panel
ontains the list of pattern templates sele
ted bythe developer for in
lusion in their appli
ation. In this
ase, only the Meshpattern is being used. However, it is possible to
ombine more than one patternwhen building an appli
ation.� The segment on the right is where the developer parameterises a pattern tem-plate, and sets the
lass names to be used in the framework.The original CO2P3S is the result of a large implementation e�ort. The GUI
ode
onsists of 56 Java
lasses with an NCSS1 line
ount of 5,844. Adding theframework
reation
ode and three design patterns totals 89 Java
lasses with anNCSS line
ount of 7,762.Se
tion 2.3 provides further dis
ussion related to the CO2P3S implementation,by des
ribing typi
al system usage. Se
tion 2.4 des
ribes three design patterns thatwere implemented in the original CO2P3S.
9

Figure 2.4: A new appli
ation with one pattern template instan
e.

Figure 2.5: Parameterisation of the pattern template.
10

Figure 2.6: Setting a framework
lass name.

Figure 2.7: Generating the framework
ode.
11

Figure 2.8: Viewing the framework
ode in CO2P3S.

Figure 2.9: Editing a framework method.12

Figure 2.10: Setting the appli
ation options.

Figure 2.11: Compiling the parallel appli
ation.
13

2.3 CO2P3S UsageFigures 2.4 to 2.11 step us through a typi
al usage of the CO2P3S GUI. A moredetailed usage des
ription of CO2P3S, and the Mesh pattern in parti
ular, is in[MSSB00b℄. In Figure 2.4, a single Mesh2 parallel pattern template instan
e hasbeen added to a new appli
ation. Prior to this, the CO2P3S user would have spenttime analysing their appli
ation to identify the pattern template that most aptlydes
ribed their parallel design problem.The parameter a�e
ting the mesh boundary
ondition is being set through agraphi
al dialog in Figure 2.5. The name for one of the framework
lasses is beingset in Figure 2.6. These two examples demonstrate the ease with whi
h a patterntemplate
an be parameterised in the CO2P3S GUI.Figures 2.7 through 2.9 show the pro
ess of
reating and editing the framework
ode. The template viewer only allows the user to edit the
ode of
ertain methods,
alled the framework hook methods, thereby preventing a

idental modi�
ation ofmethod signatures, or other damaging
hanges. The user enters only sequential
odeat these hooks, as the parallelism is hidden by the framework.An appli
ation in whi
h a user has
omposed multiple pattern templates is shownin Figure 2.10. This �gure also shows the
apability for adding external user
lassesto an appli
ation. On
e all of the ne
essary pattern templates for an appli
ation havebeen added, parameterised, and had their framework
ode templates
ompleted, theappli
ation
an be
ompiled and run, as in Figure 2.11. It should be noted that ane�ort was made during the development of ea
h of the CO2P3S pattern templatesto always generate framework
ode that
ompiles without any modi�
ations. Thisallows developers to in
rementally modify and test their pattern instan
es.One of the important features surfa
ing early in the design of CO2P3S was athree layered approa
h to parallel program development. Thus far, this se
tionhas dis
ussed only the highest level of abstra
tion,
alled the Patterns Layer. Thislayer in
ludes the
on
ept of framework
ode, as generated by parameterised par-allel pattern templates. User-supplied hook methods are used to
reate a
ompleteappli
ation. This layer also provides a guarantee of
orre
tness, by ensuring thatusers have no e�e
t on the
onstru
ts of
on
urren
y in their programs.Two further abstra
tion layers were des
ribed in [MSS97℄. They are
alled theIntermediate Code Layer, and the Native Code Layer. Both are meant to in
rease theopenness of CO2P3S appli
ations by allowing developers to gain a

ess to the frame-work
ode, in two di�erent formats, for the purpose of performan
e tuning. Theframework
ode was designed for safety, to prevent the possibility of errors. How-1Non-Commenting Sour
e Statements, approximately equivalent to the number of \;" and \f"
hara
ters in Java sour
e
ode.2The Mesh pattern is des
ribed in Se
tion 2.4.1.14

ever, some appli
ations may not require all the safety features built into a parti
ularframework, and it is important to allow the developer to make modi�
ations. Atthe Intermediate layer, abstra
t
on
urrent
onstru
ts are represented in a high-levelformat. The Native layer removes the parallel abstra
tions, and provides a

ess tothe entire obje
t-oriented
ode-base of the framework.2.4 Available Parallel Design Pattern TemplatesPrior to the start of my resear
h, only three fully implemented pattern templatesexisted in CO2P3S. The implementation e�ort required to add new pattern templateswas too high to justify adding more, as will be dis
ussed in Se
tion 2.6. The threepatterns are brie
y des
ribed below. A more in-depth dis
ussion of these patterns
an be found in [MSS99℄ and [Ma
01℄.2.4.1 The Mesh Pattern TemplateThe Mesh pattern template supports surfa
e mesh
omputations. Generalmesh
omputations are not supported by the pattern, whi
h instead fo
uses onregular meshes
onsisting of n�m points on a two-dimensional surfa
e. In a mesh
omputation, a sequen
e of steps a�e
ts ea
h point on the surfa
e. Ea
h point
hanges state based on its previous state, and that of ea
h of its neighbours. The
omputation typi
ally
on
ludes when all of the mesh points have rea
hed some �nalagreed upon state. The pattern template solution ensures that ea
h iteration, orstep, a�e
ts every point in the mesh before the following iteration begins. This taskis made more diÆ
ult by the fa
t that di�erent points may have been
omputed bydi�erent threads of exe
ution.The pattern template user does not have to worry about the issues of
on
ur-ren
y. Instead, they only provide a termination
ondition, and write
ode thatdes
ribes how a mesh point
omputes its state, based on the provided states of ea
hneighbour.In addition to spe
ifying
lass names for the generated framework
ode, theMeshpattern template user must spe
ify two parameters. The �rst parameter determineswhether the boundaries of the mesh have edges
onne
ting them to neighbours onthe opposite edge. This means that there
an be meshes that are fully toroidal,horizontal-toroidal, verti
al-toroidal or non-toroidal. The se
ond parameter setsthe number of neighbours for ea
h point in the mesh. There
an be either fourneighbours (up, down, left and right), or eight (also in
ludes the diagonals). Thesize of the mesh is not required during the design phase, as it is provided as arun-time parameter to the Mesh framework.15

2.4.2 The Distributor Pattern TemplateThe Distributor pattern template provides a form of data parallelism. It di-vides the exe
ution of methods that
ontain arrays of data in their arguments, anddelegates
omputation for ea
h array segment to a di�erent
hild thread. Meth-ods that have too �ne a granularity to allow eÆ
ient parallelisation
an be runsequentially. The Distributor pattern user must provide a list of methods to be ex-e
uted. For ea
h method that
an be parallelised (i.e. has an argument whi
h is aone-dimensional array of elements), they must spe
ify the distribution amongst the
hildren. The valid distributions are:
Pass-Through the entire array is passed to ea
h
hild.Striped
hild i (of n
hildren) re
eives the array elements at (i; i + n; i+ 2n; :::).Neighbour
hild i re
eives elements i and i+ 1 from the input array.Blo
k n
ontiguous se
tions of the array are distributed amongst the n
hildren.2.4.3 The Phases Pattern TemplateThe Phases pattern template, also referred to as Method Sequen
e, is aspe
ial pattern that provides no
on
urren
y. Instead, the Phases pattern
an a
t asthe glue between other pattern templates in an appli
ation. It takes a list of methodsas its only parameter, and is responsible for the sequentially ordered exe
ution ofthose methods.2.5 Case Study: Image Pro
essingPrior to the
ommen
ement of this dissertation resear
h, I performed a study onthe usability and performan
e of the CO2P3S environment. The study used thefollowing set of simple image pro
essing algorithms:Contrast Stret
hing: Ea
h pixel in an image that falls within a given inputrange is stret
hed to �t a given output range.Sobel Edge Dete
tion: Applies a mask that �lters ea
h pixel in a given im-age,
reating an output image that highlights the \edges," or areas of rapidfrequen
y
hange. 16

Median Noise Redu
tion: Redu
es the number of \noisy" pixels in a given im-age by applying a simple mask to ea
h pixel.Ea
h of the algorithms was implemented three di�erent ways using Java. The �rstimplementation was a simple sequential solution. The se
ond was a hand-
odedparallel implementation. The third implementation used the CO2P3S environment.The only parallel design pattern template that was available in CO2P3S and
ould be applied to the image pro
essing problems was the Mesh. Unfortunately,this sele
tion was not ideal. One reason for this was that although the Mesh patterntemplate was designed to operate on
at n �m surfa
es, it was meant to be usedfor iterative pro
esses that repeat a
omputation at ea
h element over time. This isin
ontrast to the image pro
essing operations, whi
h
omputes only on
e at ea
hpixel, or surfa
e lo
ation.As might be expe
ted, the performan
e numbers a
hieved in this study weredisappointing. However, a positive result surfa
ed from this work. In determiningthat the Mesh pattern template was inappropriate for the sele
ted image pro
essingalgorithms, we
on
luded that a new pattern template would be required in theCO2P3S environment. An implementation for this pattern template
ould emulatemy hand-written parallel solution, whi
h segmented a given image into n equalblo
ks and then ran n parallel threads of exe
ution to pro
ess it. Our need for anew pattern template further motivated and supported my extensibility resear
h.2.6 Adding Parallel Design Pattern TemplatesThe small parallel pattern template
atalogue was a severe limitation for CO2P3S.If a developer's appli
ation required a pattern template that was not provided byCO2P3S, the system was rendered virtually unusable to them. Thus, it was
ru
ialfor CO2P3S to allow new pattern templates to be added easily. The GUI was builtin a modular way to allow for this ne
essity. However, a large implementation e�ortwas still required to add ea
h new pattern template. Ea
h pattern addition
onsistedof two stages.The �rst step was the implementation of a plug-in GUI module. This requiredsub-
lassing an abstra
t module that provided assistive fun
tionality. Next, a visualrepresentation of the pattern had to be developed. This in
luded parameter set-tings and framework
lass names. Certain parameters needed tailored dialogues forretrieving user requirements. A
tion handlers had to be written, and the patternneeded to have a method to
apture a run-time snapshot of itself for permanentstorage.In addition to the GUI module, a framework generator interfa
e was required.This module was responsible for gathering data from the GUI
omponent at the17

appropriate time and pa
kaging it in a format usable by the
ode generator. Tem-plate
ode for ea
h of the framework
lasses had to be provided, with optional
odefor ea
h of the pattern template parameters. The
ode generator needed to beinstru
ted to
reate the framework based upon the provided parameterisation.Finally, after implementing and testing both of these modules, the new patterntemplate
ould be added to the GUI by adding its name to the CO2P3S
on�guration�le.2.6.1 MotivationAs a means for the CO2P3S internal development team to add new pattern tem-plates, the status quo was suÆ
ient, but unpleasant. It stalled the addition of anumber of known pattern templates, and limited the size of the provided
atalogue.Furthermore, it was thought that advan
ed CO2P3S users should be given the abilityto add patterns themselves, sin
e the provided
atalogue would never be
omplete.It be
ame apparent that a simpler pro
edure for adding pattern templates was re-quired to make CO2P3S a viable system for parallel programming.With these thoughts in mind, the aim of my resear
h was to realise the goal ofextensibility in CO2P3S by
reating a meta-programming tool for adding new par-allel pattern templates into the system. To a
hieve this goal, I needed to normalisethe representation of pattern templates, and
reate a simpli�ed high-level abstra
-tion for pattern template
reation. I then needed to design and implement a tool tosupport this abstra
tion.

18

Chapter 3A Meta-programming Tool forCO2P3SThe previous
hapters motivated the need for extending our pattern-based parallelprogramming system by providing the ability to add new templates. They des
ribedthe la
k of extensibility as a major impediment to the a

eptan
e of template-basedparallel programming environments. If an appli
ation
annot be implemented usinga given programming environment, it
alls into question the utility of that tool.Programmers are unlikely to invest e�ort learning an environment that may notmeet their needs in the future.My hypothesis is that not only is there a need for a large number and varietyof pattern templates to
over all parallel programming needs, but also that thereare still undis
overed parallel design patterns. Even if posterity proves me wrong,and demonstrates that only a handful of
omplete pattern templates suÆ
e to
overthe domain of parallel programming, MetaCO2P3S will still be regarded as a usefultool. Pattern templates are seldom
omplete after their �rst design iteration, andMetaCO2P3S makes the task of pattern modi�
ation mu
h simpler.To address the extensibility problem, I have
reated a tool that allows paralleland obje
t-oriented programming experts,
alled pattern designers, to
reate newpattern templates. The new pattern templates are �rst-
lass, meaning they are in-distinguishable in form and equivalent in fun
tion to the pattern templates in
ludedwith CO2P3S. Analogous to the manner in whi
h CO2P3S makes it easier to writeparallel programs using pattern templates, MetaCO2P3S makes it easier to writepattern templates for CO2P3S.This
hapter des
ribes the extensibility resear
h. Se
tion 3.1 enumerates thene
essary
omponents for a parallel design pattern template. Se
tion 3.2 des
ribesthe modi�
ations required in CO2P3S to support modular pattern templates. Se
-tions 3.3 through 3.6 des
ribe the design of MetaCO2P3S, and how it is used to
reate new pattern templates. Finally, Se
tions 3.7 and 3.8 des
ribe the pro
ess oftesting pattern templates and importing them into the CO2P3S environment.19

3.1 The Ne
essary Components of a Pattern TemplateBefore embarking upon the development of the MetaCO2P3S tool, it was impor-tant for us to identify and de�ne the ne
essary
omponents of a pattern template.As part of this investigation, I needed to assess the possible di�eren
es betweenpattern templates to ensure that my de�nition was
omplete. The three parallelpattern templates in the original CO2P3S implementation were my primary sour
eof inspiration for this task.The entire skeleton of a pattern template, as des
ribed below, was de�ned at theoutset of my resear
h. However, a number of the details, parti
ularly to do with theimplementation, were determined later or arose through trial and error.I have left the responsibility of identifying new design patterns to the patterndesigner. This task involves isolating newly-dis
overed re
urring patterns and thevarious forms that they
an take based on pattern parameters, then
reating aframework that hides the parallelism details. Designers should note the aspe
ts oftheir frameworks that are a�e
ted by di�erent parameter settings.Neither CO2P3S nor MetaCO2P3S were built to support design pattern dis
ov-ery, sin
e it is a hard problem that has yet to be solved. One example of resear
hthat relates to the dis
overy problem is the PatternLint tool [SSC96℄, whi
h
he
ks aprogram to ensure that it follows the design pattern
ontra
ts that were spe
i�ed aspart of its design. However, PatternLint does not dis
over known design patterns inan appli
ation. Furthermore, even if PatternLint
ould be extended to dis
over thedesign patterns in a program, it would still be unable to identify unknown designpatterns. This last problem is one of many that would need to be solved beforeautomation of the pattern dis
overy pro
ess
ould be realised.The rest of this se
tion introdu
es the
omponents that I identi�ed as beingne
essary for a pattern template.3.1.1 Pattern Template Identi�
ation and Do
umentationTwo key features of every pattern template are its name and its do
umentation.As with generi
 design patterns, the name gives developers the ability to
onverseabout the given problem and its re
ommended solution. It is important that the
hosen name be memorable, and indi
ative of the pattern's role. This will also helppattern users with the sele
tion pro
ess.I have extended the naming requirement for pattern templates to in
lude ani
oni
 representation. The
hosen i
on will represent the pattern template in agraphi
al user interfa
e. It is important that the i
on is useful to pattern templateusers.The pattern do
umentation is at least as important as the name. Like a designpattern do
ument, it des
ribes the problem being solved and the form that the20

solution takes. Pattern template do
umentation also in
ludes usage information.The do
umentation must suÆ
e to serve as the basis for a developer's sele
tion ofthat pattern for their appli
ation.3.1.2 Class NamesA pattern template must in
lude ea
h of the
lass names that exist in its frameworkinstan
es. The template must use generi
 pla
eholder names for ea
h of the
lasses,whi
h de�ne their fun
tion in the framework, yet
an be repla
ed by user-suppliedvalues in a parti
ular framework instan
e. This
ondition is ne
essary to allowmultiple
opies of the same pattern template to be instantiated in a single program.The pattern user will be required to supply at least one
lass name for ea
h patterntemplate instan
e. The remainder of the pla
eholder
lass names, ne
essary to
omplete the implementation of the design pattern,
an be generated simply byadding suÆxes or pre�xes to the user-supplied
lass name.3.1.3 ParametersThe parameters that a
t on a pattern template allow it to have di�erent behaviours,in order to mat
h a user's requirements. Every possible
ombination of parametersettings
auses a di�erent framework instan
e to be generated. I have
hosen tohave three parameter types, and ea
h is des
ribed below:Basi
 ParametersBasi
 parameters
over most
ommon parameter usage
ases. They are
omprisedof either an arbitrary string value, or an enumerated list of
hoi
es that must be sup-plied by the pattern designer. The set of possible
on�gurations range from booleanswit
hes to more elaborate list
hoi
es. Pattern users are required to sele
t one andonly one value for a given parameter, although a default value
an be supplied bythe pattern designer. In the Mesh pattern template, introdu
ed in Se
tion 2.4.1,only basi
 parameters appear. One example is the number of neighbours parameter,whi
h
an be set to either four or eight.Extended ParametersExtended parameters deal with the relatively un
ommon
ase in whi
h parametervalues are in an arbitrary form. Sin
e extended parameters must deal with
asesthat
annot be
overed by basi
 parameters, extra work is required of the patterndesigner. For ea
h extended parameter, the designer must provide a way for usersto spe
ify the parameter's value, and the manner in whi
h the given value willa�e
t framework
ode generation. The Distributor pattern template, introdu
ed inSe
tion 2.4.2, uses a list parameter (see below)
omposed of extended parameters.21

Ea
h entry in the list is a method signature with additional information that altersthe distribution of methods with array arguments.List ParametersList parameters are a useful subset of extended parameters. They deal with situa-tions in whi
h a pattern template user needs to supply a list of values. The list values
an range in
omplexity from simple strings to
ompli
ated extended parameters.As with extended parameters, the pattern designer is required to spe
ify the man-ner in whi
h a list parameter setting a�e
ts framework
ode generation. However,support is provided for gathering the list values from the pattern template user,and iterating through the list during
ode generation. The Phases pattern template,introdu
ed in Se
tion 2.4.3, uses a list parameter to gather method names from theuser.3.1.4 GUI Con�gurationPattern templates must integrate with programming environments that have graph-i
al user interfa
es, or GUIs. Therefore, it is important that they enable users tovisualise their parameter settings through a graphi
al representation. As an ex-ample, Figure 2.1 depi
ts the Mesh pattern template in the CO2P3S environment.Images and textual data are
ombined to inform the pattern user of the patterntemplate settings.3.1.5 User Intera
tion CapabilitiesSin
e pattern templates are used in GUIs, they must handle user intera
tion. Pat-tern users need to set
lass names and parameter values. They must also be ableto generate a framework instan
e, and populate it with their appli
ation
ode. Allof these operations must be dealt with by the pattern template, for example bypresenting a dialog of
hoi
es to the user.3.1.6 State Maintenan
eThe pattern template must be
apable of maintaining the run-time state of any of itsinstan
es. In addition to the parameter and
lass name settings, the state in
ludesthe programming abstra
tion layer
urrently being a

essed by the pattern user.The state information must be serialisable to a string, so that a user's programmingsession
an be saved to disk or transmitted a
ross a network.3.1.7 The Framework TemplateIn order to generate di�erent framework
ode for ea
h of its possible parameter-isations, a pattern template must in
lude a framework template. A framework22

template
onsists of the set of
lasses that are in ea
h of the framework instan
es.These
lasses
ontain normal Java
ode, and in
lude additional meta-programminginformation that indi
ates the e�e
t of parameters on
ertain se
tions.3.2 Modifying CO2P3S to Support Modular Pattern Tem-platesCO2P3S was originally designed with future extensibility in mind, and our resear
hgroup had the foresight to plan for the
ontinual addition of pattern templates to thesystem. However, little time was spent optimising the modularity of pattern tem-plates or automating the template
reation pro
ess. Therefore, the task of
reatingand adding a pattern template required a signi�
ant amount of time and program-ming e�ort. One of the �rst resear
h tasks, after my identi�
ation of the patterntemplate
omponents, was to modify the CO2P3S environment to support plug-inpattern template modules.3.2.1 De
oupling the Framework Template and Pattern Des
rip-tion ComponentsThe �rst step was to de
ouple the GUI representation and user intera
tion
ompo-nents of pattern templates from the framework
ode generation aspe
ts. We madethis
hoi
e be
ause of the high degree of similarity a
ross pattern des
riptions, andthe independen
e of the framework templates from this similarity. The data
owbetween these two
omponents now
onsists only of textual data representing the
lass name and parameter settings gathered from the pattern user.This de
oupling of the two primary
omponents of pattern templates had anumber of advantages. Foremost among these was the ability it gave for us to
on
entrate on the implementation of ea
h part in isolation. Furthermore, sin
ethe pattern des
riptions were already
losely tied to the CO2P3S environment, andthe framework generation was a separate
omponent, the de
oupling married ni
elywith the realities of the CO2P3S implementation.3.2.2 Supporting the Pattern Des
ription Component in CO2P3SSin
e the CO2P3S GUI was written in Java, the obvious
hoi
e for the implemen-tation language of the pattern des
ription
omponent was also Java. This
hoi
eallowed us to use obje
t-oriented abstra
tions in the design of the plug-in GUImodule. The similarities between
omponents are enfor
ed by making their im-plementations sub
lasses of an abstra
t
lass
alled PatternPane, whi
h is suppliedwith CO2P3S. The abstra
t
lass provides implementations to support ea
h of thefollowing aspe
ts of a pattern template: 23

Identi�
ation: the PatternPane stores the name of the pattern template, and thei
ons that represent it in the CO2P3S environment.Do
umentation: the PatternPane
ontains links to the asso
iated pattern templatedo
umentation.Class Names: with the help of the PatternClass
lass, the PatternPane stores ea
hof the run-time
lass names for a pattern template, and supplies a dialog thatgathers this information from the pattern user. The PatternPane also providesoperations that automati
ally verify the
orre
tness of a given
lass name andprevent name
lashes with other pattern templates in an appli
ation.Parameters: with the help of the PatternParameter
lass, the PatternPane storesthe user-supplied parameterisation of a pattern template. Dialogs are providedto support gathering the values of basi
 parameters and list parameters.Graphi
al Display: the PatternPane has operations that allow for the easy addi-tion of images and text to the CO2P3S GUI display. The layout and displayof these elements is handled by the PatternPane. Also, if any images or textvalues are supposed to dynami
ally
hange to represent the
urrent param-eterisation of a pattern template instan
e, these
hanges are handled by thePatternPane.User Intera
tion: in addition to the dialogs provided for
lass name and parame-ter value input, the PatternPane provides menu options that enable operationssu
h as framework
ode generation. It also provides windows for viewingframework
ode and editing the framework hook methods.State: the PatternPane maintains all of the state information for a pattern templateinstan
e, and provides operations that allow it to be serialised for long-termdisk storage or network transfer.The PatternPane abstra
t
lass was part of the original CO2P3S implementation,but its s
ope was mu
h smaller than that of the
urrent in
arnation. Sub
lasses ofthe new PatternPane
lass are short and simple,
onsisting primarily of initialisation
ode.3.2.3 Supporting the Framework Template Component in CO2P3SDue to its de
oupling from the pattern des
ription, resear
h on framework templateswas able to pro
eed independently. As su
h, it was not until after the updates toCO2P3S and the
reation of MetaCO2P3S that my attention turned to this problem.The ma
ro language that had been used for
ode generation in the original CO2P3S24

environment had been powerful enough to support our needs, but was rather un-wieldy, making framework template
reation and maintenan
e diÆ
ult. In Se
tion3.4, the design and ar
hite
ture of my new framework template is des
ribed. Theonly
hanges to CO2P3S required to support the new format were updates to thePatternPane to allow parameter and
lass name settings to be written to a text �lefor use during
ode generation.3.3 The Design of MetaCO2P3SAt the outset, my resear
h plan was to
reate an integrated meta-programming toolthat would automate as mu
h of the pattern template
reation pro
ess as possible.Unfortunately, it turned out that a
omplete solution was beyond the s
ope of thisdissertation. MetaCO2P3S deals
ompletely with the pattern des
ription portion,but the planned tool support for the framework template
omponent is not
omplete.The MetaCO2P3S tool allows a pattern designer to
reate a new pattern tem-plate or modify an existing one. Sin
e I de�ned a standardised format for patterntemplates, the information required of the pattern designer is well-formed and min-imal. I strove to ensure that pattern designers were not required to supply anythingbeyond GUI
on�guration and the names and types of
lass names and parameters.Another design
hoi
e was to store pattern template information in a system-independent format. Sin
e our CO2P3S environment requires plug-in Java modulesof a parti
ular format, this meant that I needed to
ome up with an intermediatestorage representation. My purpose behind this approa
h was to allow patterntemplates to be shared not only amongst CO2P3S users, but also throughout abroader
ommunity, as more parallel programming environments begin to supportthe format. Chapter 5 dis
usses the usefulness of pattern template sharing. Se
tion3.4 des
ribes the system-independen
e.In my
urrent implementation, pattern designers must write the Java
ode fortheir framework templates,
omplete with the meta-programming information forparameterisation. However, I designed this pro
ess to be done in a tool that auto-mates adding the meta-programming information.Be
ause of my
hoi
e of Java as the framework template language, the patterntemplates generated are
ompletely system-independent. The use of Java re
e
tsonly my design
hoi
e, and is not a ne
essity. The generi
 pattern des
riptions
ould,in fa
t, be used with framework templates in di�erent languages. The unfortunateaspe
t of this approa
h would be that it would separate pattern templates intodi�erent
ategories, based on their implementation languages.
25

MetaCOPS

XML Pattern
Description

Framework Template
(Annotated Source)

COPS

Framework
Instance
(Java)

Creates

Transforms into
Pattern Template

Generates

Pattern Designer

COPS User

Interacts with

Utilises
Creates

Javadoc

Figure 3.1: The pattern template ar
hite
ture.3.4 The Pattern Template Ar
hite
tureThis se
tion dis
usses the ar
hite
ture of the pattern template
reation pro
ess. Ides
ribe how my approa
h minimises the amount of user intera
tion required, andshow how my implementation is hidden from the user. Figure 3.1 gives an overviewof the ar
hite
ture. My de
oupling of the pattern des
ription and framework tem-plate
omponents is
learly shown.Figure 3.2 brie
y des
ribes the �les used in the CO2P3S environment, and theintera
tions between them. At the top, the
reation of the pattern template isdepi
ted. The pattern designer uses MetaCO2P3S to generate an XML patterndes
ription, and manually
reates the framework template �les. At the bottom, thetwo roles of the pattern user are shown. The �rst, importing a pattern des
riptioninto CO2P3S, takes an XML �le as input, generates a plug-in Java module, andinserts it into the palette of the CO2P3S GUI. This step only needs to be doneon
e, as the pattern template be
omes part of the user's CO2P3S environment. These
ond role
onsists of a pattern user's instantiation of a pattern template. Afterthe user has sele
ted their desired parameterisation, they
an generate a frameworkinstan
e. This pro
ess takes as input the framework template and a �le
ontainingthe user's parameter settings. The user
an then use the template viewer in theCO2P3S GUI to put their appli
ation-spe
i�

ode into the hook methods of theframework, and generate a �nished appli
ation.
26

Figure 3.2: Files and intera
tions in CO2P3S and MetaCO2P3S.
27

3.4.1 XML for System-independent Pattern Template StorageIn addition to storing the pattern templates in a system-independent format, I
hose to use a textual, human readable format, although this feature was se
ondaryto expressiveness and ma
hine readability. After some resear
h we sele
ted theXML1 format [XML℄. XML has be
ome a well-known standard for data storageand sharing, and is published by the World Wide Web Consortium [W3C℄. XMLdes
ended from SGML, and is similar to the HTML language used in web pages,but mu
h more general. One important advantage of XML is that there a number of
ompanion spe
i�
ations published by the World WideWeb Consortium that greatlyexpand its usefulness. Furthermore, there is a large number of tools, in
ludingparsers, available for every
omputer platform.XML is
ompletely textual, and therefore serialises easily for storage on diskor transfer a
ross a network. DTD2 �les (or the re
ent XML S
hema standard)
an be used to spe
ify the allowable
ontents for a set of XML �les. Sin
e therequirements for pattern templates are stri
t and well-formed, I de
ided to haveCO2P3S use a DTD to verify the format of XML �les before they are importedinto the programming environment. Appendix B des
ribes the XML and DTD �leformats used for MetaCO2P3S, and provides some examples.XML is stored in a stri
t, hierar
hi
al format. This �ts well with the hierar
hy ofdata required to
reate a pattern template. In fa
t, the MetaCO2P3S GUI mirrorsthis format by presenting a tree of
hoi
es to the pattern designer, ea
h bran
h ofwhi
h must be
ompleted.One spe
i�
ation related to XML that was parti
ularly useful for my resear
hwas XSL3 [XSL℄. The intended purpose of XSL is to perform
onversions on XML�les. The do
umented uses of XSL in
luded
onverting XML to HTML, miningthe data to format it for di�erent uses, or
onverting it to a binary format. XSLresembles a simple programming language, as it provides
onditional tests, variablesand operations for looping through lists.I built a
ustom XSL style-sheet that
onverts the pattern template XML do
u-ments into Java sour
e
ode �les that sub
lass the PatternPane abstra
t
lass. Thispro
edure, followed by a sour
e �le
ompilation, is performed automati
ally by theCO2P3S import feature, and requires no user intervention.Sin
e MetaCO2P3S saves the information entered by the pattern designer intoXML transparently, and CO2P3S automati
ally
onverts it into a plug-in moduleusing XSL, neither pattern users nor designers ever need to look at the patterntemplate XML �les. However, this does not detra
t from my de
ision to use ahuman readable format, as it allows for easier pattern template debugging.1Extensible Markup Language2Do
ument Type De�nition3Extensible Stylesheet Language 28

3.4.2 Javado
 for Framework Template Code GenerationJavado
 [Jav℄ is a tool, in
luded with the Java distribution, whose original purposewas to generate HTML API do
umentation for Java libraries. Javado
 runs a mod-i�ed Java
ompiler on Java sour
e
ode �les to parse the de
larations and spe
iallyformatted
omments. Javado

omments have the following format:/*** A
omment des
ribing the following Java
onstru
t.** �sampleTag a tag that is parsed by Javado
*/publi
 void sampleJavaDe
laration()The most important features of Javado

omment formatting are:� the
omment blo
ks must start with \/**".� the
omment blo
ks must end with */".� the Javado
 tag names may either be prede�ned (i.e. the ones used by Javado
to
reate API do
umentation) or user-de�ned.� Javado

omment blo
ks must immediately pre
ede one of the following Java
onstru
ts:{ a
lass de
laration.{ a
onstru
tor de
laration.{ a method de
laration.{ a �eld de
laration.Javado
 was eventually extended to allow pluggable Do
lets. Do
lets are Java pro-grams that satisfy a
ontra
t allowing them to re
eive the parsed data from a Javado
exe
ution. This data in
ludes the de
larations and
omments from ea
h of the parsed
lasses. Method bodies and �eld initialisations are not provided, sin
e they are ig-nored by Javado
. The parsed Javado
 output is provided to the Do
let using theDo
let API [Do
℄, whi
h provides a

ess to the following information for ea
h
lass:� the imported
lasses and pa
kages.� the pa
kage of the
lass.� the
lass de
laration.� the
onstru
tor de
larations.� the method de
larations. 29

Figure 3.3: Laun
hing the MetaCO2P3S editor.� the �eld de
larations.For ea
h of the de
larations, Javado
 provides the text and tags from the asso
iated
omment, if any.When I started to look at the
ode generation problem, and the repla
ementof the ma
ro language used in the original CO2P3S implementation, my resear
heventually un
overed one group's use of Javado
 for
ode generation [Pol00℄. Theirexperien
e only
overed very simple uses, but I felt that it would be an ideal solutionif extended. Javado
 allows us to have framework templates written in normal Java
ode, with the meta-programming hidden entirely in the
omments. This means notonly that my framework templates are mu
h easier to read and edit, but also thatthey
an be su

essfully
ompiled with no prepro
essing, to aid in testing.The new framework
ode generation implementation is a sour
e
ode to sour
e
ode transformation using Javado
. There are two inputs to the pro
ess. One is aset of Java sour
e
ode �les that have been annotated by the pattern designer. Theother is the pattern template parameters sele
ted by a CO2P3S user.The biggest pitfall that I experien
ed during my adoption of Javado
 as a frame-work
ode generator was its inability to provide method bodies through the Do
letAPI. My original intent was to modify the Javado
 parser to �x this drawba
k, butthat proved impossible sin
e the Javado
 parser sour
e
ode was not available. Towork around this short-
oming, I de
ided to store the text for method bodies inseparate �les. The bene�t to this was that a similar approa
h was already neededto provide parameterisation.3.5 Pattern Template Creation using MetaCO2P3SThe MetaCO2P3S tool is laun
hed from the CO2P3S GUI, as shown in Figure3.3. The MetaCO2P3S GUI is pi
tured in Figure 3.4. This se
tion des
ribes theMetaCO2P3S portion of the pattern template
reation pro
ess, using the Mesh as30

Figure 3.4: The Mesh Pattern Settings in MetaCO2P3S.an example. Another example of the steps used in MetaCO2P3S during the patterntemplate
reation pro
ess is given in Chapter 4.In MetaCO2P3S, pattern templates
an be saved to disk at any time, andloaded later for subsequent modi�
ations. Figure 3.4 shows the Pattern Settings,the top level of the pattern template hierar
hy, after the Mesh has been loadedinto MetaCO2P3S. As this and subsequent �gures show, MetaCO2P3S is well do
-umented, informing the pattern designer about ea
h �eld they need to �ll in. Thisinline help serves to expedite the pattern
reation pro
ess.Figure 3.4 shows the two main panes in the MetaCO2P3S window. On the left isan expandable tree that represents the hierar
hy of data in my de�nition of patterntemplates, and also mirrors the layout of my XML �les. Sin
e a pattern template
anhave an arbitrary number of some elements su
h as
lass names and parameters, thepattern designer adds new leaf elements to the
ategory tree using the buttons shownin Figures 3.6, 3.9 and 3.12. In the right pane, the pattern designer is responsiblefor �lling in the ne
essary data �elds, as dire
ted by the inline help.3.5.1 Pattern Settings in MetaCO2P3SThe settings pane for the Pattern Settings
ategory serves to gather the patterntemplate identi�
ation details. It is here where the pattern designer enters thepattern name, and where the path names for extra �les are de�ned. The inline helpdes
ribes how to name the pattern i
ons, and where they should be lo
ated.
31

Figure 3.5: Constants used in the Mesh pattern.3.5.2 Constants in MetaCO2P3SThe only
ategory in the tree that was not mentioned in Se
tion 3.1 is the one namedConstants. Constants are string variables that the pattern designer
an de�ne anduse in other �elds, later in the pattern
reation pro
ess. Figure 3.5 shows onesu
h
onstant in the Mesh pattern template. Although I originally intended forthe MetaCO2P3S GUI to provide
onstants in a sele
table widget in all lo
ationswhere their use is suitable, other implementation
hoi
es made this diÆ
ult, and itis not featured in the
urrent version. Instead, when supplying information for �eldsneeding a string literal, the pattern designer must either type a
onstant name (e.g.CONSTANT NAME) or a string literal in quotation marks (e.g. \theString"). Thisnuan
e is des
ribed in the MetaCO2P3S inline help. The Delete Setting button atthe bottom of the settings pane is a
ommon feature in all leaf nodes, and allowsthe pattern designer to remove a setting that they no longer want.3.5.3 Class Names in MetaCO2P3SThe Class Names
ategory is shown in Figure 3.6. The pattern designer must spe
ifyevery
lass that is to be involved in their framework template. I provide both user-known
lasses, shown in Figure 3.7 and framework
lasses, shown in Figure 3.8.Either type of
lass may be designated a template
lass, whi
h is one that patternusers
an enter appli
ation
ode into using hook methods. A pattern template
an32

Figure 3.6: The Class Name pattern settings in MetaCO2P3S.

Figure 3.7: Editing a user-known
lass in the Mesh pattern template.
33

Figure 3.8: Editing a framework
lass in the Mesh pattern template.

Figure 3.9: The Parameter pattern settings in MetaCO2P3S.
34

Figure 3.10: Editing a basi
 parameter in the Mesh pattern template.

35

Figure 3.11: Editing a list parameter in the Phases pattern template.have more than one template
lass.User-known
lasses are those that are visible to pattern template users. Oneuser-known
lass should be
hosen by the pattern designer to represent the patterninstan
e in the CO2P3S GUI. The user-supplied name for this
lass will be displayedin the CO2P3S program panel. User-known
lasses
an also be used to allow patternusers to integrate external
lasses into the framework, su
h as a super
lass thatprovides appli
ation-spe
i�
 fun
tionality.Framework
lasses are typi
ally not known to the pattern user. To avoid name
lashes, the pattern designer must add pre�xes or suÆxes to one of the user-known
lasses when forming a framework
lass name.3.5.4 Parameters in MetaCO2P3SThe Parameters
ategory is shown in Figure 3.9. The buttons that allow a patterndesigner to add ea
h of the three types of parameters de�ned in Se
tion 3.1.3 areshown. Figures 3.10 and 3.11 show the settings pane for basi
 and list parameters,respe
tively. For ea
h type of parameter, the pattern designer must provide a uniqueidenti�
ation, and a name that will be displayed in the CO2P3S GUI.The basi
 parameter has two additional pie
es of required information. The �rst36

Figure 3.12: The visual GUI elements pattern settings in MetaCO2P3S.

Figure 3.13: Editing a visual text element in the Mesh pattern template.
37

Figure 3.14: Editing a visual graphi
al element in the Mesh pattern template.

Figure 3.15: Adding images to a visual graphi
al element in the Mesh.

Figure 3.16: Con�guring the name of a visual graphi
al element in the Mesh.38

is an optional default parameter value. The se
ond, for basi
 parameters with anenumeration of possible
hoi
es, is the list of valid options that are to be presentedto the pattern user.List parameters also have two additional pie
es of required information. Firstis the parameter
lass, to be written by the pattern designer, that interfa
es withthe
ode generator to supply appropriate
ode to framework instan
es. Se
ond,for list parameters with extended elements, is the parameter
lass for the extendedparameters.3.5.5 GUI Con�guration in MetaCO2P3SThe GUI Con�guration
ategory is shown in Figure 3.12. The pattern designer
anadd both graphi
al and textual elements to the pattern template GUI display. Figure3.13 shows the
on�guration settings for a text element. Figures 3.14 through 3.16show the settings needed for graphi
al elements. Both element types require a nameand a
oordinate lo
ation for the pattern pane.Text elements have a number of other
on�guration options. Two of these,the maximum length and justi�
ation deal only with the aestheti
s of the visualdisplay. Pattern designers must supply the default text string to be displayed. Thetext elements
an also be set to update dynami
ally with the value of a given
lassname or parameter.Graphi
al elements
an also be made to dynami
ally represent the value of basi
parameters. To a
hieve this, the pattern designer must spe
ify one or more imagename parts. Ea
h of the parts
an be a stati
 string, or the value of a basi
 pa-rameter. The
on
atenation of the parts is used to dynami
ally
reate a �lenamethat should be found in the list of images supplied by the pattern designer. Asexempli�ed by the Mesh pattern template, multiple parameter values
an be usedin the dynami
 sele
tion of a single graphi
al element.3.6 Framework Template CreationGiven a pattern template and a spe
i�
 parameterisation, CO2P3S must generate anappropriate obje
t-oriented framework instan
e. The pattern designer must
reatea framework template that
an a

urately perform this task in
onjun
tion with theMetaCO2P3S-generated pattern template des
ription. It is the pattern designer'sresponsibility to ensure that the generated frameworks are error-free, and
orre
tlyimplement the intended parallelism.An annotated sour
e
ode template must be written for ea
h of the
lasses in theframework. It should be noted that I designed the framework template format to beused in a ri
h graphi
al editing environment. Be
ause of this design, the annotations39

dis
ussed in this se
tion
an easily be en
apsulated in a programming environment.The following transformations must be supported by the supplied annotations:� Pla
eholder
lass names in the annotated sour
e �les must be repla
ed withthe unique names that are supplied by the CO2P3S user.� Methods or variables may be sele
tively generated based on the user's basi
parameter settings. The pattern designer must spe
ify the
ombination ofparameter settings that allows a given
onstru
t to be generated.� Portions of method bodies may be sele
tively generated based on the givenbasi
 parameter settings.� New methods or se
tions of method bodies may be generated based on ex-tended or list parameter settings.� In the template
lasses that were spe
i�ed in MetaCO2P3S, sele
ted methodsmust be marked as modi�able by the user. This allows CO2P3S to displayhyper-links in the
ode template viewer.The pattern des
ription �le
reated by MetaCO2P3S is stored within the CO2P3Sinstallation dire
tory as \patterns/[PatternName℄.xml". When the pattern tem-plate is saved, MetaCO2P3S also
reates the framework template dire
tory, at\patterns/[PatternName℄/". The dire
tory layout for patterns is depi
ted at theend of this se
tion, in Figure 3.23. The framework template dire
tory has the fol-lowing
ontents:� Java sour
e �les for ea
h of the
lass names provided in MetaCO2P3S. Thesour
e �les ea
h have the pre�x \FrameworkCLASS_", to
learly di�erentiatethem from
lasses in framework instan
es. MetaCO2P3S automati
ally
reatesthese �les, whi
h must then be edited by the pattern designer as dis
ussed inSe
tion 3.6.1.� a \framework_methods" dire
tory that
ontains subdire
tories for ea
h of the
lasses in the pattern. These subdire
tories are where the pattern designermust put the default method bodies for ea
h of their
lasses. The subdire
to-ries are automati
ally
reated by MetaCO2P3S.� a \framework.prop" Java properties �le that links extended and list param-eters (if any) to the Fa
tory
lass used to
reate them. This �le is
reatedautomati
ally by MetaCO2P3S.
40

3.6.1 Building the Framework ClassesThe framework
lasses need to be written as
ompilable Java sour
e �les. Sin
e theframework
ode generator uses the Javado
 tool, Javado

omment formatting fea-tures prominently in these
lasses. They are written with all the ne
essary methodde
larations, but no method bodies. Default method bodies are put into separate�les. The
ode generator does not support inner
lasses, although interfa
es andabstra
t
lasses are supported. However, it is re
ommended that pattern design-ers supply dummy method bodies as needed, to ensure that the template
an be
ompiled.The Template ClassesThe template
lasses are those that were sele
ted by the pattern designer to bevisible to the user. In the CO2P3S Template Viewer, the pattern user does not havethe ability to edit method signatures in these
lasses. Instead, they are shown anunmodi�able view of the entire
lass, and allowed to
li
k on hyper-links for thehook methods spe
i�ed by the pattern designer.To make hook methods, the pattern designer needs to put an \�editable" tagin the pre
eding Javado

omment. To allow the user to add their own methodsto the template
lass, the \�userCodeAllowed" tag should be put in the Javado

omment pre
eding the
lass de
laration. If the pattern designer wishes to allow theuser to import additional
lasses or pa
kages to the template
lass, they
an pla
ean \�userImports" tag in the
lass de
laration Javado

omment.Figure 3.17 displays an ex
erpt from theMeshState template
lass from theMesh,in
luding some of the Javado
 tags des
ribed above. Figure 3.18 shows the outputfrom CO2P3S after a pattern user has sele
ted one possible parameterisation of theMesh. Given this parameterisation as input, the
ode generator
reates the Javaframework instan
e
ode shown in Figure 3.19, and provides the CO2P3S GUI withthe template
lass shown in Figure 3.20. The following se
tions provide furtherdes
riptions of the inputs and outputs to the
ode generation example shown inthese �gures.The Conne
tion to MetaCO2P3SThe framework template example in Figure 3.17 ne
essarily has
onne
tions to theinformation given by the pattern designer in MetaCO2P3S. Ea
h of the
lass namesor types that are prepended by \FrameworkCLASS_" are pla
eholder referen
es toframework
lasses, and will be repla
ed with user-supplied names during frameworkinstan
e generation. In addition, ea
h instan
e of the \�parameter" Javado
 tag isdire
tly followed �rst by the name of a parameter, as supplied by the pattern designerin MetaCO2P3S, and se
ond by one of the enumerated values for that parameter.41

/** This
lass represents a single node in a mesh
omputation.** �userImports* �userCodeAllowed* �frameworkSuper
lass FrameworkCLASS MeshStateSuper*/publi

lass FrameworkCLASS MeshStatef /*** �initialValue 50*/publi
 stati
 �nal int MAX COUNT;/*** Constru
tor.** �editable*/publi
 FrameworkCLASS MeshState(int i, int j, int surfa
eWidth,int surfa
eHeight, Obje
t initializer)fg/*** Iteration method for a top right
orner node in an 8 point mesh.** �parameter numNeighbours 8* �parameter boundary Non* �editable*/publi
 void topRightCorner(FrameworkCLASS MeshState south,FrameworkCLASS MeshState southwest, FrameworkCLASS MeshState west)fg/*** Iteration method for a top right
orner node in a 4 point mesh.** �parameter numNeighbours 4* �parameter boundary Non* �editable*/publi
 void topRightCorner(FrameworkCLASS MeshState left,FrameworkCLASS MeshState down)fgg Figure 3.17: Mesh template
ode example.42

#MeshClass User PropertiesPatternName=MeshClassordered =Ordered Computationboundary =NonnumNeighbours =4FrameworkCLASS MeshStateSuper=Obje
tFrameworkCLASS BoundedMeshArray=BoundedMeshNodeArrayFrameworkCLASS MeshState=MeshNodeStateFrameworkCLASS Mesh=MeshNodeFigure 3.18: User parameterisation from CO2P3S.The Java
onstru
t immediately following the Javado

omments
ontaining thesetags are generated only if the pattern user sele
ts the given parameterisation inCO2P3S prior to framework generation.External Class Referen
esThe pattern designer may use the \�frameworkSuper
lass [referen
eClass℄"tag in the Javado

omment dire
tly pre
eding the
lass de
laration if they wishto allow pattern users to supply an external super
lass for one of the framework
lasses. The supplied referen
eClass should be one of the
lass identi�ers suppliedin MetaCO2P3S for whi
h the \Referen
e to external
lass"
he
k box is sele
ted. Fig-ure 3.17 shows an example usage of this Javado
 tag. The generated framework
odeshown in Figure 3.19 does not have a super
lass, sin
e the user-supplied parameteri-sation of Figure 3.18 does not in
lude a setting for the appropriate referen
eClass(although it has the default Java super
lass setting of Obje
t).Initialising Class FieldsIf the pattern designer wants to de
lare
lass-level �elds, su
h as instan
e variablesor
onstants, they
an simply use normal Java syntax. However, if a �eld initial-isation is required, the pattern designer must atta
h a Javado

omment with a\�initialValue [value℄" tag. The initialiser should not in
lude either an \="sign or a \;" terminator. An example initialisation is shown in Figure 3.17, for theMAX COUNT
onstant.Conditional Constru
t Generation Using Basi
 ParametersThe pattern designer
an spe
ify whi
h methods,
onstru
tors and �elds should begenerated by using the \�parameter [paramId℄ [paramValue℄" tag in the pre-
eding Javado

omment. The paramId refers to the parameter identi�
ation fromMetaCO2P3S. The paramValue refers to the user-sele
ted value of the given param-eter. 43

// user imports/** This
lass represents a single node in a mesh
omputation.*/publi

lass MeshNodeStatef /*** Constru
tor.*/publi
 MeshNodeState(int i, int j, int surfa
eWidth, int surfa
eHeight,Obje
t initializer)fg/*** Iteration method for a top right
orner node in a 4 point mesh.*/publi
 void topRightCorner(MeshNodeState left, MeshNodeState down)fg// user
odepubli
 stati
 �nal int MAX COUNT = 50;g Figure 3.19: Mesh template
ode in framework instan
e after parameterisation.If multiple entries are supplied with the same parameter identi�
ation (but di�er-ent values), generation of the asso
iated
onstru
t o

urs if any one of the given set-tings is true. This gives the ability to sele
tively generate
onstru
ts using Boolean\OR" logi
. If multiple entries are listed, ea
h with di�erent parameter identi�
a-tions, the asso
iated Java
onstru
t is generated only if all of the given values aretrue. This Boolean \AND" logi

an be
ombined with the \ORing" of values ona single parameter identi�
ation to
reate expressive and powerful
onditional
odegeneration statements.Figure 3.17 gives an example of
onditional
onstru
t generation using basi
parameters. Sin
e the
onditions in the se
ond iteration method header mat
h theuser-supplied parameterisation shown in Figure 3.18, only the se
ond method getsgenerated to the framework
ode shown in Figure 3.19.
44

Figure 3.20: Mesh template
ode in CO2P3S Template Viewer after parameterisa-tion.
45

// This method body is lo
ated at:// patterns/Mesh/framework methods/FrameworkCLASS Abstra
tMesh/topRightCorner// The following
lass name, en
losed in #
hara
ters, gets repla
ed with// the user
lass name in the pattern template instan
e at framework
ode// generation time#FrameworkCLASS BoundedMeshArray# state = state ;// The following text within the MACRO delimiters is only generated when the// pattern user sets the number of neighbours to eight#FrameworkMACRO#(numNeighbours == 8)<iteration
ode deleted>exe
uteInteriorNodes(state, 0, width � 1, 1, height) ;#FrameworkMACROend##FrameworkMACRO#(numNeighbours == 4)<iteration
ode deleted>exe
uteInteriorNodes(state, 0, width � 1, 1, height) ;#FrameworkMACROend#Figure 3.21: Mesh method body framework template example.BoundedMeshNodeArray state = state ;<iteration
ode deleted>exe
uteInteriorNodes(state, 0, width � 1, 1, height) ;Figure 3.22: Mesh method body generated after parameterisation.Constru
t Generation Using Extended and List ParametersThe pattern designer
an add
ode to a
lass from extended or list parameters byputting the \�extParameter [paramId℄" tag in the Javado

omment pre
edingthe
lass de
laration. Further dis
ussion of extended and list parameter
ode gen-eration is in Se
tion 3.6.2.Supplying Default Method BodiesEa
h default method body needs to be supplied in a separate �le in the subdire
-tory of framework methods mat
hing the
ontaining framework
lass. For methodsmarked �editable, the given default method bodies are used until they are modi�edby the pattern user. The �lenames for default method bodies must be unique withina
lass, so they
onsist of the method or
onstru
tor name followed by the ea
h ofthe parameter types. Ea
h of the name is separated by a \."
hara
ter. For exam-ple, a method with the signature \publi
 void read(Reader r, boolean b);"46

would have its default method body stored in a �le
alled \read.Reader.boolean."Method Body ExpansionMethod bodies may
ontain ma
ros that
ause their
ontents to vary based on agiven parameter value. The framework
ode generator expands these ma
ros usingthe following order of operations:1. se
tions of
ode wrapped by basi
 parameter ma
ros are generated only if thegiven parameter
onditions hold,2.
ode fragments are inserted using extended or list parameter ma
ros, and3. pla
eholder
lass names are repla
ed by user-supplied
lass names.Ma
ros for basi
 parameters must have delimiters at the beginning and end of the
ode fragment that is to be
onditionally generated. The syntax of the opening de-limiter is \#FrameworkMACRO#([paramId℄ [op℄ [value℄)," where paramId refersto the parameter identi�
ation, op
an be either \==" or \!=" to indi
ate the
on-ditional test to be performed, and value is the value to test in the
onditionalstatement. The syntax of the
losing delimiter is simply \#FrameworkMACROend#."The
ode fragment
ontained within the ma
ro delimiters is generated only if thegiven
onditional statement is true. The ma
ros
an be nested, so that
ode frag-ments will be
onditionally generated based on multiple parameter values.The syntax of ma
ros that insert
ode fragments based on extended and listparameter settings is \#FrameworkPARAM_[paramId℄#." The paramId is the appro-priate parameter identi�
ation. The expansion of these ma
ros is dis
ussed furtherin Se
tion 3.6.2.Sin
e pla
eholder
lass names need to be repla
ed by user-supplied
lass namesduring
ode generation, their referen
es in default method bodies must be spe
iallyen
oded. The en
oding takes the form \#FrameworkCLASS_[
lassName℄#," where
lassName refers to the
lass name identi�
ation supplied in MetaCO2P3S.Given the user-supplied parameterisation from Figure 3.18, the default methodbody example in Figure 3.21 generates to the framework
ode in Figure 3.22.3.6.2 Implementing Extended and List ParametersThe Distributor and Phases pattern templates both use list parameters. The im-plementations of these pattern templates serve as an ex
ellent example for patterndesigners that need to use either extended or list parameters. The �rst part of theextended parameter design requires that a parameter
lass provided with CO2P3Sbe sub-
lassed to provide a module that
an be used to obtain and store parametersettings in CO2P3S. Sin
e the
ode generator module runs in a sand box that is47

de
oupled from CO2P3S, the se
ond pie
e of the design is a
lass that
an
reate aninstan
e of the appropriate parameter. This
lass must sub
lass a provided templatethat is designed using the well known Abstra
t Fa
tory design pattern [GHJV95℄.During
ode generation, extended and list parameters
an be used either to add
ode at the
lass level, su
h as methods or �elds, or to add
ode fragments to methodbodies. Both
ases are treated similarly. Sin
e extended parameters
an storeinformation in an arbitrary format, the pattern designer must write
ode to de�newhat gets generated. This
ode must be pla
ed in the pa
kage de�ned in the PatternSettings of MetaCO2P3S, whi
h is typi
ally \
ops.gui.patterns.[patternName℄."The pattern designer must provide a means by whi
h the
ode generator
angain a

ess to an extended parameter. This is done by
reating a sub
lass ofthe \Abstra
tParameterFa
tory"
lass, whi
h is in
luded in the CO2P3S dis-tribution. The name of the fa
tory sub
lass is written by MetaCO2P3S into the\framework.prop" �le. The only requirement of the fa
tory
lass is that it imple-ment a method that
alls the
onstru
tor of the appropriate extended parameter
lass. The lo
ation of ea
h of the �les making up a pattern template is depi
ted inFigure 3.23.The parameter
lass must also be written by the pattern designer. For extendedparameters, the parameter
lass sub
lasses \Abstra
tPatternParameter." For listparameters, it sub
lasses \PatternListParameter." Ea
h of these super-
lasses isprovided with CO2P3S.In Abstra
tPatternParameter sub
lasses, the pattern designer must implementmethods that perform the following fun
tions:� test whether a parameter has been set by the pattern user, and is thereforeready for
ode generation,�
reate a dialog to gather parameter settings from the user,� save the parameter settings to a string,� load the parameter settings from an equivalent string, and� provide
ode to the framework generator for a given
lass.For list parameters, CO2P3S automati
ally handles the �rst four fun
tions.To provide methods and �elds to the
ode generator, the pattern designer mustuse the \CopsMethod," \CopsField" and \CopsArgument" data types supplied withthe CO2P3S distribution. The purpose of these
lasses is to provide
ode fragmentsto the framework generator in a stru
tured and standardised format. Method body
ode fragments are supplied to the
ode generator using simple strings.48

Figure 3.23: Dire
tory layout of pattern templates in CO2P3S.49

Figure 3.24: Importing a pattern template into CO2P3S.3.7 Testing the Pattern TemplateIt is
ru
ial that pattern designers thoroughly test their pattern template
reationsprior to their release. As part of this testing, the pattern templates
an be importedinto the CO2P3S environment, as des
ribed in the following se
tion. If
hanges aremade to the pattern template, the pattern designer
an easily update the patterntemplate in CO2P3S for further testing.3.8 Importing Pattern Templates into CO2P3SI have made it easy to import new parallel design pattern templates into CO2P3S,or to update existing ones. The CO2P3S user simply needs to sele
t the \ImportPattern" menu item from the \Environment" menu as shown in Figure 3.24, thenbrowse to the appropriate dire
tory and sele
t the desired pattern template �le.During the import pro
ess, CO2P3S automati
ally
onverts the sele
ted XML �leinto a plug-in Java module, and adds a button
ontaining the pattern i
on to thepalette.

50

Chapter 4Validating MetaCO2P3SI designed and implemented the CO2P3S meta-programming extension so that itwould allow any design pattern to be transformed into a pattern template. Thisse
tion des
ribes the steps I have taken to validate my approa
h.4.1 Re
reating CO2P3SMy �rst step in testing the
overage and
orre
tness of the MetaCO2P3S toolwas to regenerate ea
h of the pattern templates from the original CO2P3S en-vironment. The Mesh, Distributor and Phases pattern templates have all beensu

essfully regenerated, and the standard CO2P3S distribution now is the onegenerated by MetaCO2P3S. Sin
e these pattern templates formed a basis for theMetaCO2P3S development, their
reation was not
ompletely straightforward. How-ever, as MetaCO2P3S was
ontinuously re�ned to deal with the issues that aroseduring their
reation, I
ould see that my work was greatly simplifying the overallpattern
reation pro
ess. The short pattern template development times requiredfor the work des
ribed in Se
tions 4.2 and 4.3 are eviden
e of my tool's su

ess inattaining the goal of enabling and simplifying pattern
reation.4.2 Case Study: Geneti
 Sequen
e AlignmentA
ommon problem in bioinformati
s lies in �nding an optimum alignment for a pairof DNA or protein sequen
es [CSS00℄. Typi
al algorithms for sequen
e alignment
onstru
t a dynami
 programming matrix with the sequen
es on the top and leftedges. A s
ore is propagated from the top left
orner to the bottom right. The valueof ea
h entry in the matrix depends on three previously
omputed values, above, tothe left, and in the above-left diagonal, as shown in Figure 4.1(a). On
e all of thevalues in the matrix have been
al
ulated, another algorithm
an be used to tra
eba
kwards through the matrix to get the maximal
ost path, or optimum sequen
ealignment. 51

(a) S
ore prop-agation. (b) The wave-front
omputa-tion ordering.Figure 4.1: Solving the sequen
e alignment problem with a dynami
 programmingmatrix.4.2.1 Isolating the Wavefront Design PatternJohn Anvik, one of the graduate students in our resear
h group, was studying thedynami
 programming problem, and attempted to parallelise it using CO2P3S. Heidenti�ed a wavefront parallel design pattern in the dynami
 programming algo-rithm, but noWavefront pattern template was available, preventing further progress.Wavefront design patterns apply to problems where a
omputation needs tosweep breadth-�rst through a tree, with
hild nodes having data dependen
ies ontheir parents. The wavefront des
ribes the edge separating the pro
essed nodesat the top of the tree from the nodes waiting to be pro
essed. The dynami
 pro-gramming problem is easily expressed as a wavefront due to the dependen
y of ea
hmatrix entry on three of its neighbours. Figure 4.1(b) shows how the data dependen-
ies in Figure 4.1(a)
an be transformed to a wavefront
omputation. Blo
ks withthe same number are
omputed
on
urrently after the blo
ks with smaller numbershave been
omputed. The wavefront design pattern
an be implemented using awork queue, where nodes at the edge of the wavefront whose data dependen
ieshave been satis�ed are available to be
omputed. A user's view into a wavefrontframework requires only that they provide the node pro
essing implementation. Asingle parameter a�e
ts the implementation of the wavefront design pattern, deter-mining whether noti�
ations of
omputation
ompletion are pushed to
hild nodes,or pulled from parents.4.2.2 Creating the Wavefront Pattern TemplateThe la
k of a Wavefront pattern template in CO2P3S provided an opportunity touse MetaCO2P3S. John Anvik had not been involved in the MetaCO2P3S resear
h,whi
h also made the exer
ise of adding a pattern template a test-bed for the usabilityof my tool. 52

Figure 4.2: The Wavefront pattern template in MetaCO2P3S.The �rst step used to
reate the Wavefront pattern template was to spe
ify thepattern des
ription using MetaCO2P3S. After laun
hing the tool, John Anvik namedthe new pattern template and supplied an i
on to identify the Wavefront in CO2P3S.Figure 4.2 illustrates this pro
ess. Note that the text, \yourPattern", supplied aspart of the default pattern images dire
tory has been repla
ed by \wavefront", assuggested by the a

ompanying inline help.Next, the
lass names for the framework template were supplied. One of these,
alled Wavefront, was sele
ted as a user-known
lass, and also as a user-modi�able
lass. Six framework
lasses were de�ned, the names of whi
h were made dependenton Wavefront for their uniqueness, with suÆxes added to indi
ate their role in theframework. The
lass settings in MetaCO2P3S are shown in Figure 4.3. Referringba
k to Figures 3.6 through 3.8, we see how Delete Setting buttons are at the bottomof every
lass (or parameter) setting, and that new
lasses (or parameters) are
reated using buttons at the bottom of their respe
tive tree elements. Note thatsin
e the Default value andMenu text �elds require a Java String literal, the quotationmarks shown are required.The loneWavefront pattern parameter, des
ribed in Se
tion 4.2.1, was de�ned asa basi
 parameter using MetaCO2P3S. The parameter was
alled noti�
ation, andwas given an enumeration of two possible values: push and pull. Figure 4.4 showsthe noti�
ation parameter being de�ned.The last step in the pattern des
ription pro
ess was providing a GUI
on�gura-tion. The result of this
on�guration is shown in Figure 4.5. At the top, a textualelement is displayed that automati
ally updates to display the user-supplied name53

Figure 4.3: The Wavefront pattern template
lass settings.

Figure 4.4: The Wavefront pattern template parameter settings.54

Figure 4.5: The Wavefront pattern template in CO2P3S.

55

Figure 4.6: The Wavefront pattern template GUI settings.

56

Exe
ution Time (se
onds)Noti�
ation Seq 2P 3P 4PPush 229.0 117.3 83.2 65.4Pull 230.1 118.5 83.5 66.4Table 4.1: Exe
ution times using the Wavefront for sequen
e alignment.for the Wavefront
lass. To do this, the pattern designer provided the text lo
a-tion, and the
lass name to display in MetaCO2P3S. Below the
lass name is animage of a wavefront. The pattern designer provided this image and its lo
ationin the GUI using MetaCO2P3S. At the very bottom of the display, the graphi
al�gure and the text display are both representing the noti�
ation parameter setting.In MetaCO2P3S the pattern designer provided two images, and identi�ed whi
hone should be displayed with both possible parameter value. Figure 4.6 shows thetextual representation of the noti�
ation parameter being de�ned in MetaCO2P3S.After entering the pattern des
ription using MetaCO2P3S, John Anvik neededto provide annotated framework sour
e
ode for ea
h of the de�ned
lasses. This en-tailed writing normal Java sour
e
ode, with the addition of
onditional
ompilationse
tions that depended on the setting of the noti�
ation parameter.At this point, the initial version of the Wavefront pattern template was
om-pletely spe
i�ed. John Anvik imported it into the CO2P3S environment, and testedthe pattern template prior to implementing the sequen
e alignment dynami
 pro-gramming program.4.2.3 AnalysisThe new Wavefront pattern template was used with CO2P3S to implement thedynami
 programming matrix algorithm for geneti
 sequen
e alignment. Two se-quen
es of 10,000 random proteins ea
h were used as test data. The sequential andparallel implementations of the algorithm were run using a Java 1.3 virtual ma
hinewith native threads on a four-pro
essor shared-memory SGI O2. The push andpull noti�
ation parameter settings were both used independently as a performan
e
omparison. Table 4.1 shows the average exe
ution times for 20 runs of ea
h im-plementation. The parallel speedups are
ompared in Figure 4.7. There were nosigni�
ant di�eren
es in the performan
e numbers for the push and pull noti�
ationparameter values. This
ould indi
ate that the parameter is unne
essary. If so,MetaCO2P3S makes it easy to remove the parameter from the pattern template.The Wavefront pattern template des
ribed in this dissertation is still undergoingmodi�
ations. There is work being done in our resear
h group to re�ne the patterntemplate with new parameters, making it more general.57

0

1

2

3

4

0 1 2 3 4

Processors

S
p

ee
d

u
p

Sequential
Push
Pull

Figure 4.7: Speedups using the Wavefront for sequen
e alignment.4.3 Extending CO2P3S from Shared-memory to Net-works of WorkstationsKai Tan, another graduate student in our resear
h group, has a resear
h goal ofextending the CO2P3S programming environment from using shared-memory par-allel
omputers to using distributed networks of workstations. One of the tasks thatthis entails is making modi�ed
opies of the existing CO2P3S pattern templates(
alled DMesh, DDistributor, and DPhases) that will run on networks of workstations.MetaCO2P3S has been instrumental in this task, enabling Kai Tan to perform thebulk of the
onversions with relative ease. This has freed up time for him to
on
en-trate on developing eÆ
ient distributed implementations of the pattern templates,and tools to support their use.

58

Chapter 5Pattern Template RepositoriesThe primary goal of this resear
h was to over
ome a major limiting fa
tor in the a
-
eptan
e of template-based parallel programming environments, by providing a toolfor extensibility. Se
tions 1.1 and 2.6 motivated this goal, des
ribing how CO2P3Sand other template-based parallel programming environments will not be
ome vi-able until their available templates
over a wide variety of parallel problems. Withmy introdu
tion of the MetaCO2P3S tool, the
reation of new pattern templates hasbe
ome mu
h easier, and the
overage of template-based programming environments
an be made arbitrarily wide.Even though new pattern templates
an now be
reated by the parallel program-ming
ommunity, there must also be a way to share them. To fa
ilitate this sharing,I propose that a
entral repository be
reated. Sin
e my pattern templates
onsistonly of XML, Java and image �les, they are system-independent, and
an easily bepa
kaged in a downloadable format for distribution on the Internet.In addition to allowing new pattern templates to be shared, another advantage toa
entral repository is the ability it provides for pattern templates to be re�ned withnew parameters or implementation improvements. TheMesh pattern template wentthrough one su
h iteration after the dis
overy of an appli
ation that required meshnodes having eight neighbours instead of four. Our original pattern template onlysupported mesh nodes with four neighbours. The pattern template was modi�edby adding a new parameter, and spe
ifying the e�e
t that this new parameter hadon the generated framework
ode. The resear
h being done to extend CO2P3S torun on networks of workstations is another example of the usefulness of repositories.Ea
h of the available pattern templates has been
opied and modi�ed to supportdistributed pro
essing.The
reation of a pattern template repository would also extend a
hallenge tothe template-based parallel programming
ommunity. Currently, the resear
h beingdone by di�erent groups on template-based programming environments is almost
ompletely independent. MetaCO2P3S provides the the ability for these e�orts to59

be uni�ed. I would like to see this
hallenge taken up by the
ommunity, eitherthrough the modi�
ation of programming environments to support my pluggablepattern templates, or through the submission of new pattern templates to the sharedrepository that will eventually make our template-based environments usable andpra
ti
al.A number of issues need to be resolved in order to make our vision of a patterntemplate repository possible, in
luding but not limited to:� determining what organisation or individual will be responsible for the main-tenan
e and hosting of the repository.� de
iding whether repository a

ess levels are required (e.g. to provide di�erentlevels of servi
e to pattern users and pattern designers).� de�ning a hierar
hy or
ategorisation for pattern templates.� providing some means (manual or automati
) for pattern template veri�
ation.5.1 The Generality of MyMeta-programming Approa
hAt one point during the development of the MetaCO2P3S tool I made an importantdis
overy about my meta-programming approa
h. Although the CO2P3S environ-ment was built for parallel programming, the generality of the MetaCO2P3S tool
anmake CO2P3S independent of the parallel programming domain. My de�nition of apattern template is widely appli
able, en
ompassing more than just parallel designpatterns. Be
ause of this generality, I surmise that eventually a segmentation of therepository will o

ur, along with a
ategorisation of pattern templates.

60

Chapter 6Related Resear
hThe history of the CO2P3S environment is des
ribed in Chapter 2. Ma
Donald[Ma
01℄ systemati
ally
ompares CO2P3S to a wide variety of parallel program-ming methodologies. This
hapter has a narrower fo
us, relating the CO2P3S meta-programming extension to related resear
h in high-level extensibility te
hniques.The parameterisation of design patterns, and their instantiation into obje
t-orientedframeworks, is at the
ore of CO2P3S. Therefore, this
hapter also brie
y dis
ussesrelated resear
h in design patterns and frameworks, in
luding solutions to the
odegeneration problem.One goal of parallel programming systems is simplifying the parallel developmentpro
ess. Pursuing this goal often ne
essitates
ompromises elsewhere in a system.One
ommon sa
ri�
e is appli
ation performan
e. However, there is mu
h to judge asystem by in addition to its balan
e of speed and simpli
ity. The
ompiled knowledgefrom almost a de
ade of resear
h on the prede
essors to CO2P3S was used to
reatea list of desirable
hara
teristi
s for template-based parallel programming systems,as enumerated by Singh [SSS98℄. These
hara
teristi
s were used by Ma
Donald[Ma
01℄ to evaluate CO2P3S, and found that it had done mu
h to advan
e priorresear
h. One of the major short
omings that the study identi�ed was the la
k ofextensibility in CO2P3S. The aim of this dissertation was to remove that obsta
le,and this
hapter
ompares my approa
h to the way other systems have dealt withthe same problem.Spe
i�
 parallel programming languages and parallel libraries are not dis
ussed,sin
e their development pro
ess di�ers dramati
ally from that of CO2P3S. Languagesare typi
ally quite general, presenting few restri
tions to the programmer. However,they require parallelism to be interwoven with appli
ation
ode, pla
ing the onuson the developer for
orre
t parallelism. Libraries for general parallel
ommuni
a-tion also su�er from this problem. Domain-spe
i�
 libraries may be su

essful athiding parallel
onstru
ts, but they are not appli
able to a wide variety of prob-lems. In
ontrast, template-based systems like CO2P3S, although limited by their61

available templates, are appli
able over many domains. Furthermore, developmentis simpli�ed by separating user appli
ation
ode from parallelism.6.1 Design Patterns and FrameworksDesign patterns have been de�ned in Chapter 2.1. Johnson [Joh97℄ gives a
on
isede�nition of a framework. It identi�es
ode and design patterns as the two basi

onstituents of a framework. In CO2P3S, our pattern template abstra
tion bridgesthe gap between design patterns and frameworks, and is the me
hanism by whi
hwe simplify the programming task for our tool's users.The goals and abstra
tions of
ode skeletons are similar to those of our patterntemplates. A detailed
omparison of the two te
hniques is presented by Danelutto[Dan01℄. However, the tools provided by the skeleton
ommunity take a di�erentapproa
h than CO2P3S. P3L [BDO+95℄ is a parallel programming language basedon skeletons. It provides a set of language
onstru
ts, or skeletons, that
orrespondto di�erent types of parallelism. Appli
ation-spe
i�

ode
an be supplied to theskeletons, and in turn, the skeletons
an be
omposed by
onne
ting their input andoutput data streams. The skeletons provided with P3L are �xed, and
annot beextended.6.2 Extensible Pattern-based Programming Tools6.2.1 Generi
 Programming EnvironmentsA prototype tool for supporting the use of obje
t-oriented patterns is presented byFlorijn [FMvW97℄. It provides three views into a program: the
ode, the design,and the design pattern o

urren
es. After a pattern instan
e has been added to aprogram, the tool
an generate the ne
essary
lasses, but program elements mustthen be bound to parti
ular roles in the pattern. A refa
toring pa
kage is providedthat allows one to either design a new program using design patterns or do
umentthe design patterns in an existing program. The tool does not prevent a user frommodifying the pattern semanti
s in their appli
ation. This approa
h to program-ming with design patterns is in
ontrast to CO2P3S, whi
h guides programmersthrough the entire pro
ess of pattern template use, and prevents them from mod-ifying pattern semanti
s. However, one advantage of the tool presented by Florijn[FMvW97℄ is its tight integration of multiple patterns in a single appli
ation. Inaddition, provisions were made to allow new design patterns to be added to the tool,but the pro
edure is undo
umented.Two
ommer
ial tools that harness design patterns for business appli
ation de-velopment are available. Both provide extensibility by allowing new design patternsto be added, although no tool is provided to aid in this task. In OmniBuilder [Omn℄,62

design patterns represent low-level tasks for user interfa
es in business appli
ations.In ModelMaker [Mod℄, design pattern instan
es a
t as ma
ros that insert
ode intothe
lasses or methods they are told to a
t upon. Unlike CO2P3S, ModelMaker doesnot separate user
ode from design pattern implementations.6.2.2 Parallel Programming EnvironmentsAlthough many resear
h groups study pattern-based parallel programming environ-ments, few address the need for extensibility. Two su
h ex
eptions are DPnDPand Tra
s. DPnDP [Siu96, SSGS96℄ helps to
reate distributed message-passingprograms. Like CO2P3S, design patterns in DPnDP are modular, supporting ex-tensibility. However, DPnDP does not provide a tool like MetaCO2P3S for
reatingnew patterns, but rather spe
i�es a C++ framework under whi
h patterns
an bebuilt. Patterns
reated using this framework have only a stru
tural spe
i�
ation; allbehavioural aspe
ts, su
h as
ommuni
ation and syn
hronisation, must be suppliedby the DPnDP user. The patterns supplied with DPnDP automati
ally implementany pattern-spe
i�
 behaviours. Therefore, new patterns may not have the samelevel of fun
tionality as those provided with the system, unlike the �rst-
lass patterntemplates
reated by MetaCO2P3S.Tra
s [BCDP95℄ allows pattern designers to de�ne ar
hite
tural models for newpatterns using a formal graph to spe
ify task and
ommuni
ation stru
tures. How-ever, the ar
hite
tural models do not in
lude implementations, so the level of fun
-tionality is not
omparable to CO2P3S.6.3 Code GenerationAutomati

ode generation has been studied by many groups with di�erent agen-das. In the original CO2P3S implementation, the framework
ode generation tookits inspiration from the CORRELATE [MJR+98℄ and COGENT [BFVY96℄ ma
rolanguages. COGENT was designed as the
ode generator for a system that au-tomati
ally generated frameworks for ea
h of the \Gang of Four" design patterns[GHJV95℄. Their system did not have any extensibility features.After the introdu
tion of MetaCO2P3S, a more sophisti
ated
ode generationme
hanism was required to simplify the
reation of pattern templates. My idea touse Javado
 for
ode generation
ame from Polla
k [Pol00℄. The
urrent
ode gen-erator in MetaCO2P3S mixes ideas from the CORRELATE approa
h with Javado
.6.4 Pattern RepositoriesPattern repositories are
entral to the a

eptan
e of pattern-based programmingenvironments like CO2P3S. The ACE Catalogue [S
h94℄ is one su
h repository, but63

its patterns
entre around network
ommuni
ation me
hanisms, and are thereforetargeted at an audien
e with lower level requirements than CO2P3S users. The
on
urrent design patterns in Lea's book [Lea99℄ also provide lower level parallel
onstru
ts.The Portland Pattern Repository [Cat℄, although not targeting parallel patterns,has the interesting feature of being built on the WikiWikiWeb system, whi
h allowspattern designers to easily add patterns to the
atalogue. None of these repositoriesstore patterns that have the ability to automati
ally integrate with programmingenvironments, whi
h is one of the key features we are re
ommending.6.5 Con
lusionsResear
h groups and
ommer
ial interests have started to explore building program-ming environments using ideas from the design pattern
ommunity. Of these, onlya handful are targeting the parallel programming
ommunity. A major drawba
kto the majority of these systems is their la
k of extensibility. Template-based pro-gramming environments are limited in appli
ability by their available library oftemplates, unless some provision for extensibility has been made. Only a handfulof groups have identi�ed this problem and attempted to solve it. Foremost amongthese are DPnDP and Tra
s. MetaCO2P3S is an ambitious e�ort that has gonebeyond previous resear
h. It makes CO2P3S the �rst pattern-based parallel pro-gramming system with a tool for extending the environment with new patterns,both indistinguishable in form and equivalent in fun
tionality to the patterns thatare prede�ned.

64

Chapter 7Summary and Con
lusionsThis dissertation has des
ribed a resear
h proje
t that enables the
reation of paralleldesign pattern templates. This resear
h stemmed from the need for extensibility inCO2P3S. My tool,
alled MetaCO2P3S, allows a pattern designer to
reate a patterndes
ription and annotated framework template in a standard format that
an beimported into CO2P3S, or any other
ompatible parallel programming system.7.1 Contributions of this Resear
hThere are a number of
ontributions from this resear
h. Foremost among theseis the solution provided by MetaCO2P3S to a
riti
al problem in template-basedprogramming systems, namely their la
k of available templates. I have de�ned asystem-independent pattern template, in
luding a parameterisable framework tem-plate format. My tool
reates �rst-
lass pattern templates that easily plug in asmodules to the CO2P3S environment.Through this extensibility resear
h, I have enabled the
reation of a patterntemplate repository. This extends a
hallenge to the template-based programmingenvironment
ommunity to submit new or improved pattern templates that
ouldbe shared with others.7.2 Ongoing Enhan
ements to CO2P3S andMetaCO2P3SThere are a three avenues of new work on the CO2P3S environment
urrently un-derway in our resear
h group. As introdu
ed in Chapter 4, this work in
ludes anenhan
ement that will generate frameworks for distributed networks of worksta-tions, in addition to our
urrent shared-memory implementation. We are also usingMetaCO2P3S to generate new pattern templates for CO2P3S. The other body ofwork that is
urrently being ta
kled is the do
umentation of pattern templates.This enhan
ement in
ludes the de�nition of a standard format for do
umentation,65

and the integration of the do
umentation into the CO2P3S environment. The do
-umentation will target both CO2P3S pattern users, and pattern designers.7.3 Dire
tions for Future WorkI have identi�ed a number of future enhan
ements for the MetaCO2P3S tool. Oneis the
ompletion of the user interfa
e to in
lude a wizard that guides pattern de-signers through the framework template
reation pro
ess. To tailor a version ofMetaCO2P3S for parallel pattern template
reation, it would also be good to pro-vide a language of parallel primitives that
ould be used during framework template
reation.Our resear
h group has dis
ussed the implementation of analyti
al approa
hes forthe parameterisation of framework templates. These
ould help provide
orre
tnessby ensuring that the e�e
ts of ea
h possible parameter value are handled
orre
tly.As introdu
ed in Chapter 5, I propose that a pattern template repository be setup to provide a mu
h-needed resour
e for the template-based programming
om-munity. However, the large number of pattern templates in a
entral repositoryintrodu
e another area for future work. Sin
e the status quo requires developersto
hoose pattern templates for their appli
ation with no guidan
e beyond a de-sign pattern do
ument, a better pattern sele
tion me
hanism is needed. Patternlanguages [MMS00℄ may eventually provide a solution to this problem. However,a good short-term �x for the pattern sele
tion problem may lie in segmenting therepository into well-de�ned
ategories.Finally, it would be helpful to gather usability data for the MetaCO2P3S tool,to empiri
ally measure the ease with whi
h pattern designers
an leverage the toolfor their purposes.

66

Bibliography[BCDP95℄ A. Bartoli, P. Corsini, G. Dini, and C. Prete. Graphi
al Design of Dis-tributed Appli
ations Through Reusable Components. IEEE Parallel& Distributed Te
hnology, 3(1):37{51, 1995.[BDO+95℄ B. Ba

i, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vannes
hi.P 3L: a Stru
tured High{level Parallel Language, and its Stru
turedSupport. Con
urren
y: Pra
ti
e and Experien
e, 7(3):225{255, 1995.[BFVY96℄ F. Budinsky, M. Finnie, J. Vlissides, and P. Yu. Automati
 Code Gen-eration from Design Patterns. IBM Systems Journal, 35(2):151{171,1996.[Cat℄ CategoryPattern, Portland Pattern Repository. http://
2.
om/ppr/.[CSS00℄ K. Charter, J. S
hae�er, and D. Szafron. Sequen
e Alignment usingFastLSA. In Pro
. of the 2000 International Conferen
e on Mathemat-i
s and Engineering Te
hniques in Medi
ine and Biologi
al S
ien
es(METMBS'2000), pages 239{245, 2000.[Dan01℄ M. Danelutto. On Skeletons and Design Patterns. In Pro
eedings ofPARCO'01 (to appear), 2001.[Do
℄ Javado
 Do
let API. http://java.sun.
om/j2se/1.3/do
s/tooldo
s/javado
/do
let/.[FMvW97℄ G. Florijn, M. Meijers, and P. van Winsen. Tool Support forObe
t-Oriented Patterns. In Obje
t{Oriented Programming 11th Euro-pean Conferen
e (ECOOP'97), volume 1241, pages 472{495. Springer{Verlag, 1997.[GHJV95℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:Elements of Reusable Obje
t-Oriented Software. Addison-Wesley, 1995.[Jav℄ Javado
 Tool Home Page. http://java.sun.
om/j2se/javado
/.[Joh97℄ R. Johnson. Frameworks = (Components + Patterns). Communi
ationsof the ACM, 40(10):39{42, O
tober 1997.[Lea99℄ D. Lea. Con
urrent Programming in Java: Design Prin
iples and Pat-terns. Addison{Wesley, 2nd edition, 1999.[Ma
01℄ S. Ma
Donald. From Patterns to Frameworks to Parallel Programs.PhD thesis, Department of Computing S
ien
e, University of Alberta,November 2001. Available at www.
s.ualberta.
a/�systems.[MJR+98℄ F. Matthijs, W. Joosen, B. Robben, B. Vanhaute, and P. Verbaeten.Multi{level Patterns. In Obje
t{Oriented Te
hnology (ECOOP'97Workshop Reader), volume 1357 of Le
ture Notes in Computer S
ien
e,pages 112{115. Springer{Verlag, 1998.67

[MMS00℄ B. Massingill, T. Mattson, and B. Sanders. A Pattern Language forParallel Appli
ation Programs. In European Conferen
e on ParallelPro
essing, pages 678{681, 2000.[Mod℄ ModelMaker CASE Tool. http://www.modelmaker.demon.nl/mm.htm.[MSS97℄ S. Ma
Donald, J. S
hae�er, and D. Szafron. Pattern-based Obje
t-Oriented Parallel Programming. In Le
ture Notes in Computer S
ien
e1343: 1st International S
ienti�
 Computing in Obje
t-Oriented Paral-lel Environments Conferen
e (ISCOPE '97), pages 267{274. Springer-Verlag, De
ember 1997.[MSS99℄ S. Ma
Donald, D. Szafron, and J. S
hae�er. Obje
t-Oriented Pattern-Based Parallel Programming with Automati
ally Generated Frame-works. In 5th USENIX Conferen
e on Obje
t-Oriented Tools and Sys-tems (COOTS '99), pages 29{43, May 1999.[MSSB00a℄ S. Ma
Donald, D. Szafron, J. S
hae�er, and S. Bromling. FromPatterns to Frameworks to Parallel Programs. Submitted toJournal of Parallel and Distributed Computing. Available atwww.
s.ualberta.
a/�systems, De
ember 2000.[MSSB00b℄ S. Ma
Donald, D. Szafron, J. S
hae�er, and S. Bromling. Generat-ing Parallel Program Frameworks from Parallel Design Patterns. InEuro-Par 2000, Parallel Pro
essing, volume 1900 of Le
ture Notes inComputer S
ien
e, pages 95{104. Springer-Verlag, August 2000.[Omn℄ OmniBuilder Design Patterns. http://www.omnibuilder.
om/overview/design.htm.[Pol00℄ M. Polla
k. Code Generation using Javado
. http://www.javaworld.
om/javaworld/jw-08-2000/jw-0818-javado
 p.html, August 2000.[S
h94℄ D. S
hmidt. The ADAPTIVE Communi
ation Environment:Obje
t-Oriented Network Programming Components for DevelopingClient/Server Appli
ations. In Pro
eedings of the 12th Sun Users GroupConferen
e, 1994.[Siu96℄ S. Siu. Openness and Extensibility in Design{Pattern{Based Program-ming Systems. Master's thesis, Department of Ele
tri
al and ComputerEngineering, University of Waterloo, August 1996.[SSC96℄ M. Se�ka, A. Sane, and R. Campbell. Monitoring Complian
e of aSoftware System with its High{Level Design Models. In Pro
eedingsof the 18th International Conferen
e on Software Engineering, pages387{396. IEEE Computer So
iety Press, 1996.[SSG89℄ A. Singh, J. S
hae�er, and M. Green. Stru
turing Distributed Algo-rithms in a Workstation Environment. In Pro
eedings of the Interna-tional Conferen
e on Parallel Pro
essing, pages 89{97, 1989.[SSGS96℄ S. Siu, M. De Simone, D. Goswami, and A. Singh. Design Patternsfor Parallel Programming. In Pro
eedings of the 1996 InternationalConferen
e on Parallel and Distributed Pro
essing Te
hniques and Ap-pli
ations (PDPTA'96), pages 230{240, 1996.[SSLP93℄ J. S
hae�er, D. Szafron, G. Lobe, and I. Parsons. The Enterprise Modelfor Developing Distributed Appli
ations. IEEE Parallel & DistributedTe
hnology, 1(3):85{96, 1993.[SSS98℄ A. Singh, J. S
hae�er, and D. Szafron. Experien
e with Parallel Pro-gramming Using Code Templates. Con
urren
y: Pra
ti
e & Experien
e,10(2):91{120, 1998. 68

[W3C℄ World Wide Web Consortium. http://www.w3.org/.[XML℄ XML Home Page. http://www.w3.org/XML/.[XSL℄ XSL Home Page. http://www.w3.org/Style/XSL/.

69

Appendix AInstalling CO2P3S andMetaCO2P3SA.1 Downloading the SystemThe CO2P3S environment is available for download at:� http://www.
s.ualberta.
a/�systems/After downloading and unpa
king the pa
kage, the root of the CO2P3S installationwill be at \[InstallationDir℄/
opsProj/".A.2 Con�guring CO2P3SCopy the \
opsProj/
opsr
.xml" �le to your home dire
tory, and rename it to:\.
opsr
.xml". Edit this �le, and set up the following options:
opsInstallationDire
tory This should be set to the the dire
tory in whi
h CO2P3Sis installed. You
an use a pathname relative to your home dire
tory. If youinstalled CO2P3S dire
tly in your home a

ount, set this to: \
opsProj".userProgramDire
tory Set this to the dire
tory in whi
h you want your userprograms stored by default. This value
an also be set in the preferen
esdialog of the CO2P3S GUI.defaultEditor Set this to the binary of the editor you wish to use within theCO2P3S environment. For instan
e, \gvim" or \ema
s". This
an also be setin the preferen
es dialog of the CO2P3S GUI.patterns You
an leave this setting blank, as it will be modi�ed automati
allywhen new patterns are added.
70

Java version 1.3 or greater needs to be installed on your system. You need to setup your CLASSPATH environment variable to work with CO2P3S. Use the follow-ing setting, modifying values that refer to your installation dire
tory and the Javainstallation dire
tory as ne
essary:� CLASSPATH=[instDir℄:.:[instDir℄/libs/jdom.jar:[instDir℄/libs/xer
es.jar:[instDir℄/libs/xalan.jar:[javaInstDir℄/lib/tools.jar:[javaInstDir℄/lib/jini-
ore.jar:[javaInstDir℄/lib/jini-ext.jar:$CLASSPATHA.3 Building CO2P3STo build CO2P3S,
hange into the \
opsProj/" installation dire
tory, and exe
utethe \make"
ommand.A.4 Running CO2P3STo run CO2P3S,
hange into the \
opsProj/" installation dire
tory, and exe
utethe
ommand: \./runCops". If any problems o

ur during the initialisation orexe
ution of the CO2P3S environment, inspe
t the \
opsProj/
ops.log" �le. Thesystem log
an also be viewed within the CO2P3S environment. While runningCO2P3S, it is advised that the keyboard's NumLo
k key be turned o�, as otherwiseit will
on
i
t with
ertain aspe
ts of GUI operation.A.5 Adding Supplied Patterns to CO2P3SWhile running CO2P3S patterns
an be added to the environment by sele
ting themenu item: \Environment { Add/Update Pattern". This brings up a �le
hooser inthe \
opsProj/patterns" dire
tory, allowing the user to import a pattern �le, su
has \Mesh.xml". On
e added, patterns will remain in the CO2P3S system a
rossexe
utions. Patterns
an be removed from the system using the \Environment {Remove Pattern" menu item.

71

Appendix BPattern Template File FormatsB.1 DTD for CO2P3S Pattern Template De�nitions<!ELEMENT CopsPattern:patternInfo (CopsPattern:patternName,CopsPattern:imagesDir,CopsPattern:patternPa
kage,CopsPattern:
onstants,CopsPattern:
lassNames,CopsPattern:parameters,CopsPattern:guiInfo)><!ATTLIST CopsPattern:patternInfoxmlns:CopsPattern CDATA #REQUIRED><!ELEMENT CopsPattern:patternName (#PCDATA)><!ELEMENT CopsPattern:imagesDir (#PCDATA)><!ELEMENT CopsPattern:patternPa
kage (#PCDATA)><!ELEMENT CopsPattern:
onstants (CopsPattern:
onstant)*><!ELEMENT CopsPattern:
onstant (CopsPattern:
onstantID,CopsPattern:
onstantValue)><!ATTLIST CopsPattern:
onstant type CDATA "noLongerUsed"><!ELEMENT CopsPattern:
onstantID (#PCDATA)><!ELEMENT CopsPattern:
onstantValue (#PCDATA)><!ELEMENT CopsPattern:parameters (CopsPattern:parameter*,CopsPattern:listParameter*, CopsPattern:extParameter*)><!ELEMENT CopsPattern:parameter (CopsPattern:parameterName,CopsPattern:parameterMenuText,CopsPattern:parameterDefault?,CopsPattern:parameterValidates?,CopsPattern:parameterValues?)><!ATTLIST CopsPattern:parameter id CDATA #REQUIRED><!ELEMENT CopsPattern:parameterName (#PCDATA)><!ELEMENT CopsPattern:parameterMenuText (#PCDATA)><!ELEMENT CopsPattern:parameterDefault (#PCDATA)><!ELEMENT CopsPattern:parameterValidates EMPTY><!ELEMENT CopsPattern:parameterValues (CopsPattern:parameterValue)*><!ELEMENT CopsPattern:parameterValue (#PCDATA)><!ELEMENT CopsPattern:listParameter (CopsPattern:listParameterName,CopsPattern:listParameterMenuText,CopsPattern:listParameterClass,CopsPattern:listParameterStrings?,CopsPattern:listParameterEntryClass?)><!ATTLIST CopsPattern:listParameter id CDATA #REQUIRED><!ELEMENT CopsPattern:listParameterName (#PCDATA)><!ELEMENT CopsPattern:listParameterMenuText (#PCDATA)><!ELEMENT CopsPattern:listParameterClass (#PCDATA)><!ELEMENT CopsPattern:listParameterStrings EMPTY><!ELEMENT CopsPattern:listParameterEntryClass (#PCDATA)><!ELEMENT CopsPattern:extParameter (CopsPattern:extParameterName,CopsPattern:extParameterMenuText,CopsPattern:extParameterClass)>72

<!ATTLIST CopsPattern:extParameter id CDATA #REQUIRED><!ELEMENT CopsPattern:extParameterName (#PCDATA)><!ELEMENT CopsPattern:extParameterMenuText (#PCDATA)><!ELEMENT CopsPattern:extParameterClass (#PCDATA)><!ELEMENT CopsPattern:
lassNames (CopsPattern:userClassName*,CopsPattern:frameworkClassName*)><!ELEMENT CopsPattern:userClassName (CopsPattern:userClassNameID,CopsPattern:userClassNameDefValue?,CopsPattern:userClassNameMenuText,CopsPattern:userClassNameDefInsuÆ
ient?,CopsPattern:userClassNameIsPatternName?,CopsPattern:userClassNameIsTemplate?,CopsPattern:userClassNameExternalRef?)+><!ELEMENT CopsPattern:userClassNameID (#PCDATA)><!ELEMENT CopsPattern:userClassNameDefValue (#PCDATA)><!ELEMENT CopsPattern:userClassNameMenuText (#PCDATA)><!ELEMENT CopsPattern:userClassNameDefInsuÆ
ient EMPTY><!ELEMENT CopsPattern:userClassNameIsPatternName EMPTY><!ELEMENT CopsPattern:userClassNameIsTemplate EMPTY><!ELEMENT CopsPattern:userClassNameExternalRef EMPTY><!ELEMENT CopsPattern:frameworkClassName (CopsPattern:frameworkClassNameID,CopsPattern:frameworkClassNameRef,CopsPattern:frameworkClassNameIsTemplate?)+><!ELEMENT CopsPattern:frameworkClassNameID (#PCDATA)><!ELEMENT CopsPattern:frameworkClassNameRef (#PCDATA)><!ELEMENT CopsPattern:frameworkClassNameIsTemplate EMPTY><!ELEMENT CopsPattern:guiInfo (CopsPattern:visualElements)><!ELEMENT CopsPattern:visualElements (CopsPattern:gElement*, CopsPattern:tElement*)><!ELEMENT CopsPattern:gElement (CopsPattern:gElementID,CopsPattern:gElementLo
ationX,CopsPattern:gElementLo
ationY,CopsPattern:gElementImages?,CopsPattern:gElementCurImageParts?)><!ELEMENT CopsPattern:tElement (CopsPattern:tElementID,CopsPattern:tElementLo
ationX,CopsPattern:tElementLo
ationY,CopsPattern:tElementMaxLength,CopsPattern:tElementJusti�
ation,CopsPattern:tElementText,CopsPattern:tElementUpdateType?,CopsPattern:tElementUpdateVal?)><!ELEMENT CopsPattern:gElementID (#PCDATA)><!ELEMENT CopsPattern:gElementLo
ationX (#PCDATA)><!ELEMENT CopsPattern:gElementLo
ationY (#PCDATA)><!ELEMENT CopsPattern:gElementImages (CopsPattern:gElementImage)*><!ELEMENT CopsPattern:gElementImage (CopsPattern:gElementImageName,CopsPattern:gElementImageLo
)><!ELEMENT CopsPattern:gElementImageName (#PCDATA)><!ELEMENT CopsPattern:gElementImageLo
 (#PCDATA)><!ELEMENT CopsPattern:gElementCurImageParts (CopsPattern:gElementCurImagePart*)><!ELEMENT CopsPattern:gElementCurImagePart (CopsPattern:gElementCurImagePartVal,CopsPattern:gElementCurImagePartType)><!ELEMENT CopsPattern:gElementCurImagePartVal (#PCDATA)><!ELEMENT CopsPattern:gElementCurImagePartType (#PCDATA)><!ELEMENT CopsPattern:tElementID (#PCDATA)><!ELEMENT CopsPattern:tElementLo
ationX (#PCDATA)><!ELEMENT CopsPattern:tElementLo
ationY (#PCDATA)><!ELEMENT CopsPattern:tElementMaxLength (#PCDATA)><!ELEMENT CopsPattern:tElementText (#PCDATA)><!ELEMENT CopsPattern:tElementJusti�
ation (#PCDATA)><!ELEMENT CopsPattern:tElementUpdateType (#PCDATA)><!ELEMENT CopsPattern:tElementUpdateVal (#PCDATA)>
73

B.2 XML Pattern Template Des
ription for Mesh<?xml version="1.0" en
oding="UTF-8"?><!DOCTYPE CopsPattern:patternInfo SYSTEM ". ./DTD/CopsPattern.dtd"><CopsPattern:patternInfo xmlns:CopsPattern="http://www.
s.ualberta.
a/~systems/
ops.html"><CopsPattern:patternName>Mesh</CopsPattern:patternName><CopsPattern:imagesDir>IMAGES DIR + "mesh" + File.separator</CopsPattern:imagesDir><CopsPattern:patternPa
kage>
ops.gui.patterns.mesh</CopsPattern:patternPa
kage><CopsPattern:
onstants><CopsPattern:
onstant><CopsPattern:
onstantID>MESH NUM NEIGHBOURS LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Set Number of Neighbours"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>MESH BOUNDARY CONDS LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Set Mesh Boundary Conditions"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>MESH STATE CLASS LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Set Mesh State Class"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>MESH CLASS NAME LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Set Mesh Class Name"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>MESH STATE SUPER CLASS LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Set Mesh State Super
lass"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>MESH ORDERING LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Set Mesh Ordering"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>MESH LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Mesh"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>MESH STATE LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Mesh State Class"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>MESH STATE SUPER LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Mesh State Super
lass"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>OBJECT CLASS</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Obje
t"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>BOUNDARY LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Boundary Topology"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>NON T BOUNDARY</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Non"</CopsPattern:
onstantValue>74

</CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>FULLY T BOUNDARY</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Fully"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>HORIZ T BOUNDARY</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Horizontal"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>VERT T BOUNDARY</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Verti
al"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>ORDERING LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Computation Order"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>ORDERED</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Ordered Computation"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>CHAOTIC</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Chaoti
 Computation"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>NEIGHBOURS LBL</CopsPattern:
onstantID><CopsPattern:
onstantValue>"Number of Neighbours"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>FOUR POINT</CopsPattern:
onstantID><CopsPattern:
onstantValue>"4"</CopsPattern:
onstantValue></CopsPattern:
onstant><CopsPattern:
onstant><CopsPattern:
onstantID>EIGHT POINT</CopsPattern:
onstantID><CopsPattern:
onstantValue>"8"</CopsPattern:
onstantValue></CopsPattern:
onstant></CopsPattern:
onstants><CopsPattern:
lassNames><CopsPattern:userClassName><CopsPattern:userClassNameID>Colle
tor</CopsPattern:userClassNameID><CopsPattern:userClassNameDefValue>MESH LBL</CopsPattern:userClassNameDefValue><CopsPattern:userClassNameMenuText>MESH CLASS NAME LBL</CopsPattern:userClassNameMenuText><CopsPattern:userClassNameDefInsuÆ
ient></CopsPattern:userClassNameDefInsuÆ
ient><CopsPattern:userClassNameIsPatternName></CopsPattern:userClassNameIsPatternName></CopsPattern:userClassName><CopsPattern:userClassName><CopsPattern:userClassNameID>Mesh</CopsPattern:userClassNameID><CopsPattern:userClassNameDefValue>MESH STATE LBL</CopsPattern:userClassNameDefValue><CopsPattern:userClassNameMenuText>MESH STATE CLASS LBL</CopsPattern:userClassNameMenuText><CopsPattern:userClassNameDefInsuÆ
ient></CopsPattern:userClassNameDefInsuÆ
ient></CopsPattern:userClassName><CopsPattern:userClassName><CopsPattern:userClassNameID>MeshStateSuper</CopsPattern:userClassNameID>75

<CopsPattern:userClassNameDefValue>OBJECT CLASS</CopsPattern:userClassNameDefValue><CopsPattern:userClassNameMenuText>MESH STATE SUPER CLASS LBL</CopsPattern:userClassNameMenuText><CopsPattern:userClassNameExternalRef></CopsPattern:userClassNameExternalRef></CopsPattern:userClassName><CopsPattern:frameworkClassName><CopsPattern:frameworkClassNameID>Abstra
t#</CopsPattern:frameworkClassNameID><CopsPattern:frameworkClassNameRef>Colle
tor</CopsPattern:frameworkClassNameRef></CopsPattern:frameworkClassName><CopsPattern:frameworkClassName><CopsPattern:frameworkClassNameID>Abstra
t#</CopsPattern:frameworkClassNameID><CopsPattern:frameworkClassNameRef>Mesh</CopsPattern:frameworkClassNameRef></CopsPattern:frameworkClassName><CopsPattern:frameworkClassName><CopsPattern:frameworkClassNameID>Bounded#Array</CopsPattern:frameworkClassNameID><CopsPattern:frameworkClassNameRef>Mesh</CopsPattern:frameworkClassNameRef></CopsPattern:frameworkClassName><CopsPattern:frameworkClassName><CopsPattern:frameworkClassNameID>#State</CopsPattern:frameworkClassNameID><CopsPattern:frameworkClassNameRef>Mesh</CopsPattern:frameworkClassNameRef><CopsPattern:frameworkClassNameIsTemplate></CopsPattern:frameworkClassNameIsTemplate></CopsPattern:frameworkClassName><CopsPattern:frameworkClassName><CopsPattern:frameworkClassNameID>#Strategy</CopsPattern:frameworkClassNameID><CopsPattern:frameworkClassNameRef>Mesh</CopsPattern:frameworkClassNameRef></CopsPattern:frameworkClassName></CopsPattern:
lassNames><CopsPattern:parameters><CopsPattern:parameter id="ordered_"><CopsPattern:parameterName>ORDERING LBL</CopsPattern:parameterName><CopsPattern:parameterMenuText>MESH ORDERING LBL</CopsPattern:parameterMenuText><CopsPattern:parameterDefault>ORDERED</CopsPattern:parameterDefault><CopsPattern:parameterValidates></CopsPattern:parameterValidates><CopsPattern:parameterValues><CopsPattern:parameterValue>ORDERED</CopsPattern:parameterValue><CopsPattern:parameterValue>CHAOTIC</CopsPattern:parameterValue></CopsPattern:parameterValues></CopsPattern:parameter><CopsPattern:parameter id="boundary_"><CopsPattern:parameterName>BOUNDARY LBL</CopsPattern:parameterName><CopsPattern:parameterMenuText>MESH BOUNDARY CONDS LBL</CopsPattern:parameterMenuText><CopsPattern:parameterDefault>NON T BOUNDARY</CopsPattern:parameterDefault><CopsPattern:parameterValidates></CopsPattern:parameterValidates><CopsPattern:parameterValues><CopsPattern:parameterValue>NON T BOUNDARY</CopsPattern:parameterValue><CopsPattern:parameterValue>FULLY T BOUNDARY</CopsPattern:parameterValue><CopsPattern:parameterValue>HORIZ T BOUNDARY</CopsPattern:parameterValue><CopsPattern:parameterValue>VERT T BOUNDARY</CopsPattern:parameterValue></CopsPattern:parameterValues></CopsPattern:parameter><CopsPattern:parameter id="numNeighbours_"><CopsPattern:parameterName>NEIGHBOURS LBL</CopsPattern:parameterName><CopsPattern:parameterMenuText>MESH NUM NEIGHBOURS LBL</CopsPattern:parameterMenuText> 76

<CopsPattern:parameterDefault>FOUR POINT</CopsPattern:parameterDefault><CopsPattern:parameterValidates></CopsPattern:parameterValidates><CopsPattern:parameterValues><CopsPattern:parameterValue>FOUR POINT</CopsPattern:parameterValue><CopsPattern:parameterValue>EIGHT POINT</CopsPattern:parameterValue></CopsPattern:parameterValues></CopsPattern:parameter></CopsPattern:parameters><CopsPattern:guiInfo><CopsPattern:visualElements><CopsPattern:gElement><CopsPattern:gElementID>meshG</CopsPattern:gElementID><CopsPattern:gElementLo
ationX>10</CopsPattern:gElementLo
ationX><CopsPattern:gElementLo
ationY>45</CopsPattern:gElementLo
ationY><CopsPattern:gElementImages><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGFully4</CopsPattern:gElementImageName><CopsPattern:gElementImageLo
>meshGFully4.gif</CopsPattern:gElementImageLo
></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGFully8</CopsPattern:gElementImageName><CopsPattern:gElementImageLo
>meshGFully8.gif</CopsPattern:gElementImageLo
></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGHorizontal4</CopsPattern:gElementImageName><CopsPattern:gElementImageLo
>meshGHorizontal4.gif</CopsPattern:gElementImageLo
></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGHorizontal8</CopsPattern:gElementImageName><CopsPattern:gElementImageLo
>meshGHorizontal8.gif</CopsPattern:gElementImageLo
></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGVerti
al4</CopsPattern:gElementImageName><CopsPattern:gElementImageLo
>meshGVerti
al4.gif</CopsPattern:gElementImageLo
></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGVerti
al8</CopsPattern:gElementImageName><CopsPattern:gElementImageLo
>meshGVerti
al8.gif</CopsPattern:gElementImageLo
></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGNon4</CopsPattern:gElementImageName><CopsPattern:gElementImageLo
>meshGNon4.gif</CopsPattern:gElementImageLo
></CopsPattern:gElementImage><CopsPattern:gElementImage><CopsPattern:gElementImageName>meshGNon8</CopsPattern:gElementImageName><CopsPattern:gElementImageLo
>meshGNon8.gif</CopsPattern:gElementImageLo
></CopsPattern:gElementImage></CopsPattern:gElementImages><CopsPattern:gElementCurImageParts><CopsPattern:gElementCurImagePart><CopsPattern:gElementCurImagePartVal>"meshG"</CopsPattern:gElementCurImagePartVal><CopsPattern:gElementCurImagePartType>String</CopsPattern:gElementCurImagePartType></CopsPattern:gElementCurImagePart><CopsPattern:gElementCurImagePart><CopsPattern:gElementCurImagePartVal>boundary</CopsPattern:gElementCurImagePartVal><CopsPattern:gElementCurImagePartType>Parameter</CopsPattern:gElementCurImagePartType>77

</CopsPattern:gElementCurImagePart><CopsPattern:gElementCurImagePart><CopsPattern:gElementCurImagePartVal>numNeighbours</CopsPattern:gElementCurImagePartVal><CopsPattern:gElementCurImagePartType>Parameter</CopsPattern:gElementCurImagePartType></CopsPattern:gElementCurImagePart></CopsPattern:gElementCurImageParts></CopsPattern:gElement><CopsPattern:tElement><CopsPattern:tElementID>meshNameT</CopsPattern:tElementID><CopsPattern:tElementLo
ationX>90</CopsPattern:tElementLo
ationX><CopsPattern:tElementLo
ationY>40</CopsPattern:tElementLo
ationY><CopsPattern:tElementMaxLength>28</CopsPattern:tElementMaxLength><CopsPattern:tElementJusti�
ation>CENTER</CopsPattern:tElementJusti�
ation><CopsPattern:tElementText>MESH LBL</CopsPattern:tElementText><CopsPattern:tElementUpdateType>Class</CopsPattern:tElementUpdateType><CopsPattern:tElementUpdateVal>Colle
tor</CopsPattern:tElementUpdateVal></CopsPattern:tElement><CopsPattern:tElement><CopsPattern:tElementID>orderingT</CopsPattern:tElementID><CopsPattern:tElementLo
ationX>90</CopsPattern:tElementLo
ationX><CopsPattern:tElementLo
ationY>240</CopsPattern:tElementLo
ationY><CopsPattern:tElementMaxLength>28</CopsPattern:tElementMaxLength><CopsPattern:tElementJusti�
ation>CENTER</CopsPattern:tElementJusti�
ation><CopsPattern:tElementText>ORDERED</CopsPattern:tElementText><CopsPattern:tElementUpdateType>Parameter</CopsPattern:tElementUpdateType><CopsPattern:tElementUpdateVal>ordered </CopsPattern:tElementUpdateVal></CopsPattern:tElement><CopsPattern:tElement><CopsPattern:tElementID>meshStSuperT</CopsPattern:tElementID><CopsPattern:tElementLo
ationX>260</CopsPattern:tElementLo
ationX><CopsPattern:tElementLo
ationY>140</CopsPattern:tElementLo
ationY><CopsPattern:tElementMaxLength>28</CopsPattern:tElementMaxLength><CopsPattern:tElementJusti�
ation>CENTER</CopsPattern:tElementJusti�
ation><CopsPattern:tElementText>MESH STATE SUPER LBL</CopsPattern:tElementText><CopsPattern:tElementUpdateType>Class</CopsPattern:tElementUpdateType><CopsPattern:tElementUpdateVal>MeshStateSuper</CopsPattern:tElementUpdateVal></CopsPattern:tElement><CopsPattern:tElement><CopsPattern:tElementID>meshStateT</CopsPattern:tElementID><CopsPattern:tElementLo
ationX>260</CopsPattern:tElementLo
ationX><CopsPattern:tElementLo
ationY>200</CopsPattern:tElementLo
ationY><CopsPattern:tElementMaxLength>28</CopsPattern:tElementMaxLength><CopsPattern:tElementJusti�
ation>CENTER</CopsPattern:tElementJusti�
ation><CopsPattern:tElementText>MESH STATE LBL</CopsPattern:tElementText><CopsPattern:tElementUpdateType>Class</CopsPattern:tElementUpdateType><CopsPattern:tElementUpdateVal>Mesh</CopsPattern:tElementUpdateVal></CopsPattern:tElement></CopsPattern:visualElements></CopsPattern:guiInfo></CopsPattern:patternInfo>
78

