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Abstract. We propose Janus — a C++ template library of container
classes and communication primitives for parallel dynamic mesh appli-
cations. The paper focuses on two phase containers that are a central
component of the Janus framework. These containers are quasi-constant,
i.e., they have an extended initialization phase after which they provide
read-only access to their elements. Two phase containers are useful for
the efficient and easy-to-use representation of finite element meshes and
generating sparse matrices. Using such containers makes it easy to encap-
sulate irregular communication patterns that occur when running finite
element programs in parallel.
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1 Introduction

If we think of a finite element program as a collection of related objects on
which operations are performed we recognize that there are basically two types
of application objects. The first type are sets that represent spatial structures and
the second type are numerical functions on these sets. Here are some examples
of spatial structures and functions on them.

— Given the node set N, many physically relevant data are represented by
functions f: N — R.

— The element matrices are a function from the triangulation e : T — RP*P
where p denotes the number of degrees of freedom per element.

— The system matrix m is a function m : N' — R where N is a subset of N x N
that represents the sparsity pattern of the matrix.

The parallelism of finite element methods is mainly data parallelism with
respect to the meshes. Using parallel computers with a distributed memory ar-
chitecture requires therefore a partition of the triangulation 7" and the node set
N. Whatever communication occurs when running a finite element program in
parallel, it is caused by a relation of the meshes. A problem hereby is that due
to their irregularity and size the relations must be partitioned themselves.



The driving motivation behind the design of the Janus framework is to pro-
vide application-oriented, easy-to-use and efficient abstractions for the above
mentioned fundamental components of finite elements methods. Janus offers
building blocks to represent (possibly partitioned) spatial structures and func-
tions on them. Moreover communication must be expressed explicitly based on
the mesh relations.

Janus is implemented as a C++ template library. The library is generic in
respect to the numerical types, the way the user wants to represent mesh points,
and the mapping information that is used for partitioning the meshes.

A fundamental concept in Janus is that of two phase containers which are
used to represent spatial structures with a non-trivial initialization phase. The
lifetime of a two phase container is separated into a gemeration phase and an
access phase. The transition from one to the other phase is marked by a call to
its freeze method. Here are some reasons why such a concept is useful for the
implementation of finite element methods:

1. An adaptive finite element method can be considered as a succession of gen-
eration and computation phases (cf. [6]). The same holds for the underlying
patterns of sparse matrices.

2. The necessary initializations are usually too complex to be performed in one
call of a C++ constructor. Extending the initialization phase helps to make
the change of data structures transparent to the application programmer.

3. Communication that might occur while generating distributed meshes can
be delayed until the call of the freeze method.

Another important concept is that of an associated container that is used for
the representation of numerical functions on (distributed) spatial structures.

An overview of these containers and their usage in a sequential context are
represented in section 2. Aspects of the parallel implementation and optimiza-
tions that are enabled by the use of two-phase containers are discussed in sec-
tion 3. We explain how the use of two phase containers allows one to analyze
irregular communication patterns as they occur in finite element sparse matri-
ces. This is an important optimization for the iterative solution of parallel finite
element problems.

2 Concepts and Classes in Janus

Both from a conceptional and implementation point of view Janus is based on
the containers and algorithms of the Standard C++ Library [1] — also known
under the name Standard Template Library (STL) [2]). The STL is not only
a collection of fundamental data structures, generic classes, and algorithms. It
defines concepts, i.e. generic sets of type requirements and its container classes
are models of these concepts, i.e., they are types that satisfy these requirements.
The idea is that: “Using concepts makes it possible to write programs that
cleanly separate interface from implementation” [2].



2.1 Two Phase Containers

A two phase container is a variable-sized container that supports insertion of
elements. However, all insertions must have been finished before any element of
the container can be accessed. Only non-mutating access is allowed.

The phase in which insert operations are allowed is called the generation
phase or first phase. The phase in which access is allowed is called access phase
or second phase. The transition from the first to the second phase is marked by
a call to the void freeze() method of a two phase container.

Containers that follow these type requirements represent application objects
that have a non-trivial yet clearly distinguishable initialization procedure. Typ-
ical examples are finite element meshes or sparse matrices patterns whose struc-
ture is not known at compile time.

A two phase container can be “frozen” only once and it has no thaw method
that would allow new insertions. This means that a two phase container cannot
be used to implement meshes that are meant to be modified after their initial-
ization. However, this is only an apparent restriction, since from a conceptional
point of view it is often easier to represent mesh modification by creating a new
mesh out of an existing one (cf. [6]).

The FixedSet Container Family provides two template classes that are mod-
els of the two phase container concept, namely the OrderedFixedSet and the
HashedFixedSet templates. For both containers it holds that no two of their
elements may be the same.

The main difference between these two classes is that the OrderedFixedSet
uses the STL set template class to initially store its data, whereas the other one
is be implemented by the STL hash_set container. Both containers provide read-
only random access to their elements. This is very natural since in the second
phase, i.e., when the container is frozen, it is no problem to number its element
from 0 to size(). This property of two phase containers can be exploited for a
very efficient implementation of vector classes for finite element methods which
is explained in section 2.2.

Note that the actual details of the representation of the sets (red-black tree
or hash table) are hidden from the user. It is very easy to switch between both
implementation strategies or even to mix them. This is in contrast to implemen-
tation strategies that expose such low-level details to the application program-
mer [8].

Use of Two Phase Containers. The following code fragment (see figure 1)
shows a typical use of a two phase container. Given the triangles of a finite ele-
ment mesh, its nodes (in this particular case the vertices of the triangles) shall be
generated. We use a six-tuple of integers to denote triangles and their nodes. This
allows us to express the triangle-vertex relation by simple index arithmetic [4,
5]. To get the vertices of a triangle on a certain level of an adaptively refined
mesh the short inline function vertices must be called. This is done for each



triangle and the resulting nodes are inserted in the node set nodes. Even if the
same node is inserted several times the implementation of the container assures
that it occurs only once.

typedef OrderedFixedSet<Index<6>,less<Index<6> > > Triangles;
typedef OrderedFixedSet<Index<6>,less<Index<6> > > Nodes;

Nodes create_nodes(int level, const Triangles& triangles) {

Nodes nodes;

Triangles::const_iterator ij;

for(i = triangles.begin(); i != triangles.end();i++) {
Tuple<Index<6>,3> v = vertices(*i, level);
for(size_t j = 1; j <= 3; j++) nodes.insert(v[j]l);

}

nodes.freeze();

return nodes;

Fig.1. Using a two phase container for the representation of the nodes of a finite
element mesh

After all vertices have been inserted the nodes container is frozen. In case of
an OrderedFixedSet container its elements are copied from a STL-set container
that was used during the initialization phase to a dynamically allocated fixed-size
array represented by the STL-vector container.

The FixedRelation Container Family consists of two phase containers to
represent relations between two sets. Therefore they store pairs of elements of
other sets. Except for some additional methods and type information about
the underlying sets the interface of these classes is the same as for FixedSet
containers.

There is a special member of this family called IndexedFixedRelation.
When calling freeze() the position of the components of its pairs with respect
to the underlying sets are determined. It is shown in section 2.3 how this can be
used for the efficient implementation of sequential finite element methods.

2.2 Associated Containers

Associated containers are primarily used for the efficient representation of nu-
merical functions on sets represented by two-phase containers.

An associated container is by definition a random-access container whose size
is determined by that of a another container that represents the underlying set.
When an associated container is initialized it gets a reference to its underlying set
object which must be a fixed-size container or a frozen two phase container. This



allows for efficient storage of the elements, for example the STL valarray<T>
could be used.

Elements of associated containers can be accessed by random access or by
access through elements of the underlying set (the at method).

The SetArray class template is Janus’ standard model of an associated con-
tainer. It offers no direct support for numerical operations. These services are
provided by the template classes SetVector and SetMatrix which are wrap-
pers around SetArray. The main difference between both containers is that
SetMatrix requires that the underlying set is a member of the FixedRelation
container family.

2.3 Interaction of Two Phase and Associated Containers

For each triangle the average value of a grid function u on the index set nodes
shall be computed and stored in a grid function x on the index set triangles. To
determine the vertices of a triangle we use the vertices method again. Note that
we iterate over the triangles through random access to x.set () which returns a
reference to triangles.

void average(int level, const SetArray<Nodes,double>& u,
SetArray<Triangles,double>& x) {
for(size_t i = 0; i < x.size(); i++) {
Index<6> triangle = x.set()[i];
Tuple<Index<6>,3> v = vertices(triangle, level);
x[i] = (u.at(v[1]) + u.at(v[2]) + u.at(v[3])) / 3.0;

Fig. 2. Implementation of the function average

The implementation shown in figure 2 looks quite appealing, but there are
two problems with this usage of the at method.

The first problem is that the at method won’t work in the parallel case
because the data that it tries to access may reside in another computational
domain and Janus does not support (for performance reasons) remote accesses
to individual elements. The second problem is the overhead even in the sequential
case since a call of at causes a non-trivial search in the underlying set.

A solution to both problems is to compute in advance the relation be-
tween the triangles and their vertices and to store them in a variable of type
Tuple<Triangles Nodes,3>, i.e., we consider the triangle triangle-vertex rela-
tion as three separate relations.

Note that in the example in figure 3 the template IndexedFixedRelation
(mentioned in section 2.1) is used. The precalculated positions can be accessed
through the methods index1(size_t) and index2(size_t). This means that in
the sequential case the average procedure can be implemented as follows.



typedef IndexedFixedRelation<Triangles,Nodes> Triangles_Nodes;

Tuple<Triangles_Nodes,3>
triangle_vertex(const Triangles& t, const Nodes& n, int level) {
Tuple<Triangles_Nodes,3> result(Triangles_Nodes(t,n));
for(Triangles: :const_iterator i=t.begin(); i!= t.end(); i++) {
Index<6> triangle = *i;
Tuple<Index<6>,3> node = vertices(triangle,level);
for(size_t j = 1; j <= 3; j++)
result[j].insert (make_pair(triangle,node[j]));
}
for(size_t j = 1; j <= 3; j++) result[j].freeze();
return result;

}

Fig. 3. Creation of the triangle vertex relation.

void average(const SetArray<Nodes,double>& u,
const Tuple<Triangles_Nodes,3>%& r, SetArray<Triangles,double>& x) {
for(size_t i = 0; i < x.size(); i++)
x[i] = (ulr[1].index2(i)] + ulr[2].index2(i)] +
ulr[3].index2(i)]) / 3.0;

Fig. 4. Revised sequential implementation of the function average.

Note that this use of the precalculated indices is nothing more than the tradi-
tional “index arrays” that are typically used in Fortran programs. In Janus these
helper objects are set up when the container that holds relation is frozen. This
computation is therefore transparent to the user.

3 Parallel Environment

With respect to a parallel implementation the programmer should have an
SPMD programming model in mind. The library supports expressing data par-
allelism on the level of meshes. This requires first of all that programmers have a
good model to represent mesh nodes and elements. We advocate representations
of meshes by so-called index spaces, i.e. sets of integer tuples [4-6].

The great advantage of our indexing technique is that it provides application-
oriented global names that are independent from implementation details. This
allows to express communication relations independent from the mapping of the
indices onto the underlying hardware architecture. The approach of using integer
tuples to place and retrieve data recalls the concept of tuple spaces in Linda [3].
However, in Janus these integer tuples are stored in two phase containers whose



access semantics are formed after the usage cycle of finite element meshes. This
allows locally fast random access to the data.

3.1 Mapped Containers

In a parallel and distributed environment the finite element meshes have to be
distributed over a group of abstract processes which are called domains in Janus.
As in MPI these processes are denoted by integers [10].

To represent distributed meshes in Janus the programmer uses mapped (two
phase) containers. Mapped containers have an additional template parameter
that serves as a mapping type. As mapping type any class that has a method
domain can be used that assigns an integer to its argument. The mapped con-
tainer uses the mapping type to decide to which domain an object that is inserted
shall be mapped. The idea of using mapping type template parameters has been
taken from the runtime library of the PROMOTER programming model [7,9].
It gives the user greater flexibility in choosing appropriate mapping strategies.

If an object is inserted into a mapped container then the mapping type is
taken to check to which domain the object belongs. If the domain is the same as
the one of the mapped container then it is inserted locally. Otherwise, it is put in
a temporary buffer. When calling the freeze methods of the mapped container,
the temporary buffers are sent to the appropriate domains where the objects
are inserted. Delaying the communication is possible since elements are accessed
only after the freeze method has been called.

3.2 Communication in Janus

To express communication in Janus it is required that the user explicitly de-
scribes which points belong to the underlying mesh relation. Figure 3 showed
the example of creating the triangle vertex relation.

Note that in Janus the user describes the relation on the level of mesh points,
i.e., in an application-oriented way. When creating a relation the user does not
need to specify where the mesh points he refers to are actually stored. This
necessary information is obtained by the library from the mapping objects of
the mapped two phase containers.

Since the relation itself is stored in a two-phase container it is known that
it won’t change during its usage. Thus it can be examined before its first use.
Analyzing the sparsity patterns allows that message buffers of the right size can
be created in advance thus reducing the communication overhead. This is a very
important optimization for parallel sparse matrix multiplication which is a key
component of iterative methods. They are the preferred method for the solution
of large scale finite element problems.

4 Concluding Remarks

We have presented the major concepts of a template library for data paral-
lel adaptive mesh applications. The concept of a two phase container provides



simple, yet sufficient and efficient support for irregular structures such as finite
element meshes and sparse matrix patterns. Two phase containers are beneficial
in a sequential and parallel context and serve as a useful base for other concepts
such as associated containers.

Using two phase containers for the description of mesh relations allows that
irregular communication patterns can be analyzed right when they are created.

Currently we use a prototype of Janus for the parallel finite element anal-
ysis on two-dimensional meshes. For the solution of the linear systems we use
the conjugate gradient method with a simple diagonal preconditioner. In future
we will incorporate multilevel preconditioners and adaptive refinement into the
solver. The necessary abstractions are already contained in Janus.

References

1. Bjarne Stroustrup: The C++ Programming Language, Third Edition, Addison-
Wesley, 1997

2. Standard Template Library Programmer’s Guide, http://wuw.sgi.com/
Technology/STL/

3. David Gelernter: Generative communication in Linda, ACM Transactions on Pro-
gramming Languages and Systems, 2(1):80-112, January 1985.

4. J. Gerlach, M. Sato, Y. Ishikawa: A Framework for Parallel Adaptive Finite Ele-
ment Methods and its Template Based Implementation in C++, Proceedings of the
1st International Conference on Scientific Computing in Object-Oriented Parallel
Environments, Marina del Rey, CA (1997), Lecture Notes in Computer Science,
LNCS 1343, Springer Verlag, 1997.

5. J. Gerlach, G. Heber: Fundamentals of Natural Indexing for Simplex Finite Ele-
ments in Two and Three Dimensions, TR 97-008, Technical Report of the Real
World Computing Partnership, Japan http://wuw.rwcp.or. jp/people/jens/
publications/TR-97-008

6. J. Gerlach: Application of Natural Indexing to Adaptive Multilevel Methods for Lin-
ear Triangular Elements, TR 97-010, Technical Report of the Real World Com-
puting Partnership, Japan http://www.rwcp.or. jp/people/jens/
publications/TR-97-010

7. Giloi W.K., Kessler M., Schramm, A.: PROMOTER: A High Level, Object-Parallel
Programming Language Proceedings of the International Conference on High Per-
formance Computing, New Dehli, India, December 1995

8. M. Griebel, G. Zumbusch: Hash-Storage Techniques for Adaptive Multilevel Solvers
and Their Domain Decomposition Parallelization, Contemporary Mathematics,
Vol. 218, pp. 279-286

9. Bi Hua: Object-oriented Data Parallel Programming in C++ Proc. International
Conference on Parallel and Distributed Processing techniques and Applications
PDPTA‘97, Las Vegas, U.S.A., June 30. — July 3., CSREA 1997, RWC-D-97-015

10. W. Gropp, E. Lusk, A. Skjellum: Using MPI, The MIT Press, 1994



