PROMOTER: A High-Level, Object-Parallel

Programming Language

W. K. Giloi,

M. Kessler,

*

A. Schramm

RWCP Massively Parallel Systems GMD Laboratory

Berlin, Germany

w.glloi@computer.org

Abstract

The superior performance and cost-effectiveness of
scalable, distributed memory parallel computers will
only then become generally exploitable if the pro-
gramming difficulties with such machines are over-
come. We see the ultimate solution in high-level pro-
gramming models and appropriate parallelizing com-
pilers that allow the user to formulate a parallel pro-
gram in terms of application-specific concepts, while
low-level issues such as optimal data distribution and
coordination of the parallel threads are handled by
the compiler. High Performance Fortran (HPF) is
a major step in that direction; however, HPF still
lacks in the generality of computing domains needed
to treat other than regular, data-parallel numerical
applications. A more flexible and more abstract pro-
gramming language for regular and irregular object-
parallel applications is PROMOTER. PROMOTER
allows the user to program for an application-oriented
abstract machine rather than for particular architec-
ture. The wide semantic gap between the abstract
machine and the concrete message-passing architec-
ture is closed by the compiler. Hence, the issues of
data distribution, communication, and coordination
(thread scheduling) are hidden from the user. The
paper presents the underlying concepts of PROMOT-
ER and the corresponding language concepts. The
PROMOTER compiler translates the parallel pro-
gram written in terms of distributed types into paral-
lel threads and maps those optimally onto the nodes
of the physical machine. The language constructs and
their use, the tasks of the compiler, and the challenges
encountered in its implementation are discussed.

Keywords: Distributed memory architecture,
high-level programming model, parallelizing compiler,
algebraic domain specification, distributed types, coor-
dination schemes, mapping, aggregation.

*This research is supported by the Real World Computing
Partnership, Japan.

mk,schramm{@first.gmd.de
g

1 Introduction

Distributed memory parallel computers have the
potential of providing any desired performance at
maximum scalability and cost-effectiveness. These
properties will eventually make parallel machines the
standard architecture, but only if we succeed in over-
coming the parallel programming hurdle.

Of the currently existing programming paradigms
for parallel machines, message-passing and shared-
memory, message-passing exhibits the wider gap be-
tween the purely algorithmic view of the application
and the executing machine, burdening the program-
mer with the tasks of data distribution, inter-thread
communication, and coordination of thread execu-
tion. But even in the simpler shared-memory mod-
el, data distribution remains as optimization issue,
and synchronization is still needed to coordinate the
access to shared objects. Moreover, there is a gap be-
tween model and architecture that makes the imple-
mentation of the shared-memory model on a distrib-
uted memory architecture costly, either in terms of
hardware expenses in the case of distributed shared
memory or software overhead in the case of virtual
shared memory.

Therefore, we believe that the ultimate solution
of the parallel programming problem will be higher-
level programming models and appropriate paralleliz-
ing compilers that allows the user to formulate a
parallel program in terms of application-specific con-
cepts, while the low-level mechanization of the tasks
of finding optimal data distributions and coordinat-
ing the parallel threads is handled by the compiler.
A first major step in this direction is High Perfor-
mance Fortran (HPF[1]); however, HPF still lacks the
generality of computing domain definition needed to
treat other than only regular, data-parallel numerical
applications.

A more flexible and more abstract programming
language for regular and irregular object-parallel

applications, PROMOTER, is discussed in the paper.
Object-parallelism is understood as follows: Given ar-
bitrary data structure objects consisting of a poten-
tially large number of data points, then object paral-
lelism is the processing of the data structure objects
such that the transformations of a number of data
points are performed in one step. The data points
of an object and their mutual interdependencies are
structured into problem-specific topologies. Object
parallelism exhibits the following specific characteris-
tics, which can be exploited to facilitate parallel pro-
gramming:

1. In contrast to the common understanding of data
parallelism, the data structures in object paral-
lelism need not be arrays, and there may be a
large number of parallel threads of control. Hav-
ing a multitude of threads, however, does not
necessarily mean their unrestricted asynchronous
execution, as is generally implied by the MIMD
computation model. In PROMOTER, the indi-
vidual scheduling of threads is replaced by a glob-
al, collective coordination; however, in contrast
to the commonly used SPMD computation mod-
el, this is carried out with a high degree of local
autonomy of thread execution.

2. At the appropriate level of abstraction the mul-
titude of data points and their parallel process-
ing exhibits spatial homogeneity. This allows for
the introduction of distributed types (objects and
methods).

3. There exists some temporal coordination of the
parallel computation steps. E.g., the data points
may be collectively subjected to the same number
of iterations or, in general, may proceed collec-
tively in simulation time, yet there may as well
be meaningful variations of synchronization re-
quirements such as wave fronts or other synchro-
nization patterns.

Section 2 of the paper elaborates on the basic con-
cepts of PROMOTER, Section 3 deals with the mech-
anisms by which these concepts are implemented, and
Section 4 discusses the task of the automatically par-
allelizing and optimizing PROMOTER compiler, as
well as our approach to implementing the compiler.
The Conclusion considers briefly the relationship to
other developments and the future refinements of the

PROMOTER system.

2 PROMOTER Basic Concepts

2.1 Aims and scope of the PROMOTER
programming model

PROMOTER (programming model to enable real-
world computing) is a programming model and, based
on it, a programming system, PROMOTER, has been
designed

1. to enable its user to program massively parallel
applications at a high level of abstraction

2. for a large variety of applications and solution
algorithms,

3. making the underlying application-specific graph
structures explicit to achieve an optimal locality-
preserving mapping.

To make the system sufficiently general, the classes
of massively parallel applications that can be handled
by PROMOTER are not restricted to regular prob-
lems but encompass also highly irregular and/or dy-
namic structures.

PROMOTER allows for a problem-oriented de-
scription of object-parallel algorithms, which are then
implemented by the compiler on a given distributed-
memory machine. Hence, PROMOTER closes the
semantic gap between message-passing architectures
and parallel applications. PROMOTER aims at be-
ing a high-level programming paradigm that is appli-
cable to the entire spectrum of object-parallel numer-
ical applications. This goes far beyond PDE solvers
or applications of linear algebra, extending its scope
to highly irregular problems, e.g., finite element com-
putation or neural networks.

One key to PROMOTER’s linguistic simplicity lies
in the exploitation of regularity in the applications
wherever possible. To this end, an important notion
of PROMOTER is the dichotomy of static global ho-
mogeneity versus dynamic local autonomy. The pro-
gram text describes the level at which the element
types and the parallel operations look homogeneous,
while local differentiation may evolve at run time.
This balance between two complementary aspects is
expressed by local control flow autonomy and object-
oriented polymorphism.

2.2 Raising the level of abstraction of
message-passing programming

PROMOTER avoids the problems of message-
passing programming by orthogonalizing the steps of

domain specification, communication, and coordina-
tion (synchronization). Thus, programming is simpli-
fied as well as automatic parallelization by the com-
piler. The code to be executed by the parallel threads
reflects only the numerical algorithm and is totally
free of communication constructs.

2.3 Object-parallel execution

In PROMOTER, data are arranged in the form
of problem-specific (virtual) topologies. Object par-
allelism exhibits by nature a certain degree of tem-
poral coordination of the parallel computation steps.
Thus we have a global uniformity “in the large”, from
which deviations may be given on a finer time scale.
While the replicated method is called in all points,
there may be local differentiations at run time in the
method body.

The parallel steps are globally coordinated, i.e.,
they are embedded in a common global control flow in
which they appear as object-parallel statements and
expressions. The common global control flow may
consist of any combination of parallel atomic steps on
distributed variables as defined above such as loops,
operations on non-distributed variables, reduction ex-
pressions, etc. Hence, a coordinated behaviour of all
data points is achieved.

3 PROMOTER Mechanisms and Lan-
guage Components

3.1 Distributed data types

To meet the goals defined above, the constructs
of the PROMOTER programming language must en-
able the user to express spatial regularity and tempo-
ral coordination of the application algorithms. This
is provided by introducing distributed data types and
parallel operations on them. A distributed data type
consists of objects (data structures) of an appropri-
ately defined discrete topology and of methods (func-
tions) with built-in replication semantics. Replication
is automatically performed by the system over the giv-
en topologies. Defining the appropriate topology for
the application becomes the main intellectual effort of
the programmer, while the compiler takes care of the
details of an optimized execution.

Every element of a distributed object resides in a
logical address space of its own; there are no point-
ers between elements of different objects or different
elements of the same objects.

3.2 Communication

Communication is viewed in each domain point as
the observation of the states of some other points. As
a consequence of the notion of distributed state vari-
ables, “observation of state” means a “call by value”
of certain elements of distributed variables. Hence,
the programmer need not invoke any message-passing
constructs explicitly. This approach offers the sim-
plicity of the shared memory model, yet there is a sig-
nificant difference. In the shared memory model data
access is by reference, i.e., through pointers, where-
as in PROMOTER the notion of pointers as vehicle
of inter-node communication does not exist. Instead,
copies or clones, respectively, of non-local data are
obtained by special language constructs that appear
as input operands of data parallel operations. To this
end, the programmer declares a communication to-
pology that determines the copying procedure. There
are no side effects, which makes this approach simpler
and safer than shared variables.

The PROMOTER communication scheme of sim-
ply selecting values of distributed variables without
any need for explicit synchronization reduces commu-
nication to the execution of communication expres-
sions. PROMOTER’s “communication product” is a
generalization of vector-matrix multiplication to arbi-
trary topologies. For example, a vector of values ob-
served from some other points can be obtained by an
extended vector-matrix multiplication where the vec-
tor operand is a distributed variable, the matrix is a
Boolean “connectivity matrix” that selects the values
to be read, and the result is the vector of selected val-
ues. Communications may as well be many-to-one, in
which case the result is obtained by reduction. Arith-
metic communication matrices are permitted to ex-
tend the concept to linear operators. For example, in
the simulation of a neural network the weighted inputs
of a neuron may be obtained by one single communi-
cation product expression.

3.3 Coordination

In contrast to the message-passing model, thread
coordination is separated from communication, car-
ried out simply by specifying a coordination scheme
which is automatically executed by the system. Exist-
ing coordination schemes are: (i) lock-step, (ii) wave
fronts, (iii) asynchronous iteration, and (iv) chaotic
iteration.

Regardless of the coordination scheme(s) employed,
communication is either explicit or non-existent, but

never implicit via dereferencing. Therefore there is no
need of additional global barriers of any kind.

3.4 Main components of the PRO-
MOTER language

It would exceed the scope of this paper to present
a detailed specification of the PROMOTER lan-
guage. We will mention only the salient points of
the language. PROMOTER hides the communica-
tion mechanisms (sends, receives) from the program-
mer. Hence, the program text concerns only compu-
tation. For the mechanization of the concepts out-
lined above, the PROMOTER language provides the
following components for an algorithmic description.

e Domains and their topology. The domains of
computation are discrete point sets with a user-
declared topology. Topologies are subsets of Z™,
with Z being the set of integer numbers; in PRO-
MOTER they are declared in terms of index ex-
pressions. Domains may be regular or irregular,

dense or sparse, static or dynamic.

o Distributed types and variables. Distributed vari-
ables are data structures with a user-declared
topology defining the domain of computation.
Their role is to hold the states of object-parallel
computations. Distributed variables are built of
objects or sub-objects of distributed types. The
elements of a distributed type are accessed by
indexing. At a first glance, this might suggest
that distributed types are nothing but distribut-
ed arrays. However, there are significant differ-
ences given by the following features that make
distributed types significantly more general.

1. Distributed types may have arbitrary and
even dynamic topologies, rather than only
rectangular ones.

2. Distributed types have a built-in replica-
tion semantics. Operations on distributed
objects are intrinsically parallel. There is
no need for any analysis in order to derive
the parallelization. Assignments to distrib-
uted variables have replication semantics as
well; i.e., every element of the target is as-
signed the value of the corresponding source
element, possibly after a conversion of the
source value. The replication space is the
dynamic topology of the left-hand side.

3. Distributed types have point-wise local ad-
dress spaces; there are no pointers between
distinct data points.

(A) Declaration topology My_top: 1:8, 1:8
{$1, $j |: j <= i+1;

}s

(B) Topology e ¢ O O O O O ©°
® ¢ ¢ O O O O ©°
® ¢ ¢ ¢ O O O O
® ¢ ¢ & o O O O
e © o o o o O O
e & o o o o o O
e & o o o o o o
e & & o o o o o

Figure 1: A simple topology declaration with con-
straints and the resulting topology

The PROMOTER language is an extension of the
object-oriented language C++. It provides all the
constructs needed to specify domain and communi-
cation topologies, declare distributed variables and
their types, and select the coordination scheme. The
governing goal of the language design was to make
the formulation of an object-parallel program as easy
and straightforward as possible, eliminating the se-
mantic gap between the procedural patterns of the
applied algorithms and the manner in which the
message-passing architecture works. Specifically, the
language design pursued the goal of providing descrip-
tive means for domain specification that are as general
and flexible as possible, to obtain a programming sys-
tem that caters to the needs of as large a variety of
object-parallel applications as possible.

3.5 Topology declarations

Note that topologies are application-oriented and
abstract, that is, machine independent. Irregular
structures may be generated by adding constraints to
the index expressions or by specifying a new topology
as the union of already existing topologies. Figure 1
shows the flavor of domain declaration by a simple
example of an irregularly structured topology.

A topology declaration may be given in terms of
formal parameters whose values are determined at
run time, thus allowing for the creation of dynamic
topologies. There exist several possibilities to declare
objects with dynamic topologies. These are with in-
creasingly dynamic behavior:

1. Non-parametrized (static) topologies—the index
space of non-parametrized topologies is fully de-
termined at compile time.

2. Parametrized topologies—the index space of pa-
rametrized topologies can be determined at the
time of an object declaration or creation and re-
mains fixed throughout the object’s lifetime.

3. Dynamic unions of parametrized topologies—the
instances of a union topology may vary at the
granularity of the parametrized topologies they
consist of.

4. Pownt-granular dynamic unions—the instances of
a point-granular topology may vary at the gran-
ularity of the single points they consist of.

4 The PROMOTER Compiler
4.1 The role of the compiler

Figure 2 illustrates the PROMOTER approach by
the example of an object-parallel computation in the
lock-step mode of execution. At the program level,
parallel computation consists in a sequence of applica-
tions of replicated operations on distributed variables.
Hence, the program entities are parallel operations on
distributed objects. This language model is converted
by the compiler into the parallel execution of threads,
which thus become the entities of execution.

The resulting large amount of fine-grained threads
are distributed by the compiler over the nodes of the
physical machine such that the overall cost of com-
munication is minimized. Subsequently, as a further
optimization step the threads in each node may be
aggregated into one coarse-grained “operating system
process” which then is ultimately executed.

In the case of dynamic topologies, the compiler will
also have to insert code for dynamic load balancing.
Both, static mapping and dynamic load balancing, are
supported by the visibility of the application graph
structures and possibly their dynamicity. In many ir-
regular and/or dynamic applications, the graph struc-
tures are just subgraphs of a certain (possibly infinite)
static regular supergraph. PROMOTER allows to ex-
press and exploit this fact, e.g., by generating code for
incremental load balancing that is a compile-time gen-
erated partial evaluation of a more general method.

4.2 Mapping

A mapping pass maps the large number of threads
stemming from the PROMOTER model of applying
replicated methods on distributed variables onto the
nodes of the target machine. The aim of the mapping

conceptual parallel execution of replicated
operations on distributed objects (which
represent the points of the given topology) |

o |
o
g | |
o
2]
~ ~
commu- commu-
nication nication
time
compiler converts | to threads
(0]
&
a commu- commu-
nication nication o
C)—2¢
= %)
£57%
C)88 ¢
. = 3 =
: X X 523
g E £
C J)— 88

time

Figure 2: PROMOTER programming in terms of
spatial entities which the compiler transforms into
threads

is an even workload distribution and the minimiza-
tion of the communication overhead. To this end, the
graph representing all threads must be mapped on-
to another graph representing the physical process-
ing nodes. In both graphs the edges are marked
by weights representing the frequency of communi-
cation and latency of the communication channels.
This graph-theoretical problem is NP-hard, thus, it is
solved by appropriate heuristics, e.g., Recursive Spec-
tral Bisection (see for example [5]).

4.3 Cloning

A main feature of the PROMOTER computation
model is the non-existence of global pointers. Conse-
quently, pointers to local objects which naturally are
permitted in the C++ code lose their meaning when
passed to other instances of distributed objects. To
eliminate that problem, PROMOTER incorporates
a facility to generate structural identical objects by
cloning objects that contain pointers (this is the dif-
ference between cloning and copying). Cloning is au-
tomatically inserted by the compiler whenever neces-
sary. However, the user may also explicitly clone an
object by calling the cloning intrinsic.

5 Comparisons and Conclusion

First we compare PROMOTER with a few other
programming models and highlight the differences.

VSM: Languages featuring a single global address
space make little effort to express spatial structures
(the problem graphs) explicitly. Instead, they natu-
rally lead to techniques like pointers and indirect in-
dexing. With these; a notion of locality evolves only
implicitly and at run time, which impairs the accom-
plishment of a locality-preserving data distribution.
On machines with a physically distributed memory, a
Virtually Shared Memory (VSM) is a way to close the
paradigmatic gap. PROMOTER, on the other hand,
expresses the spatial structures of an application ex-
plicitly and thus allows for a direct generation of a
message-passing translation.

HPF: The conceptual differences between PRO-
MOTER and HPF become evident especially when
it comes to irregular applications, a field which is
admittedly problematic in HPF. HPF provides only
“regular” data structures (i.e., arrays with rectangu-
lar index spaces), whose mapping is controlled by the
user. Communication patterns are dispersed over in-
dex expressions and a few simple array intrinsics. Ir-
regular patterns can be expressed only dynamically
by indirect indexing, exhibiting the same disadvan-
tage as global pointers and virtual shared memory.
PROMOTER, on the other hand, permits the decla-
ration and dynamic manipulation of arbitrary spatial
structures, where communication structures are ex-
pressed as a whole by (possibly sparse) subsets of the
Cartesian product of the respective source and tar-
get index spaces. Entire linear operators can directly
be expressed by this concept. The resulting applica-
tion graph structures thereby expressed provide the
starting point for an automatized locality-preserving
mapping of the problem-specific spatial structures on-
to the physical machine. Finally, PROMOTER has
some concepts that do not exist in HPF, e.g., a vari-
ety of so-called coordination schemes for parallel oper-
ations, and constructs for working with partitionings
and coverings.

Data-parallel models with recursive data types (e.g.,
CDT[6], NESL[2], Powerlist[4]): There is no sharp
conceptual separation between PROMOTER and
programming models with recursive data types; af-
ter all, recursive types are possible in PROMOTER
as well. The actual difference is that the models of
the latter kind aim at deriving their expressive pow-
er from type recursion and regard the leaf types as
“basic”, while PROMOTER puts its expressive pow-
er in its basic type constructor and considers type

recursion to be the exception. This depreciation of
recursive types is a consequence of the requirements
of the envisaged applications: (i) These applications
often need several graph structures (edge sets) on the
same data point sets, and distinct operations may
need different and even incompatible hierarchic node
set decompositions; (ii) the underlying graph struc-
tures are often most conveniently expressed by the
means of index arithmetic. Both aspects conflict with
recursive types. PROMOTER takes care of these as-
pects by the separation of the spatial structures of
operations from the distributed types and by express-
ing spatial structures by index sets that are arbitrary
subsets of Z" of appropriate dimension.

Message-passing models (e.g., MPI, PVM): Mod-
els that feature processes with explicit message pass-
ing are usually considered as low-level and circum-
stantial in the field of parallel programming. PRO-
MOTER abstracts from this level of explicit data par-
titioning and message passing. One of those models
could very well serve as an intermediate or target level
in the translation process, though.

Conclusion: PROMOTER, does indeed make the
spatial (and temporal) structures of parallel applica-
tion explicit at a level that is sufficiently abstract to be
manageable for the user, thus permitting an automa-
tized mapping and a direct generation of a message-
passing translation for distributed-memory platforms.

References

[1] High Performance Fortran Forum. High Performance
Fortran Language Specification. Scientific Program-
ming 2:1-170, 1993.

[2] G. E. Blelloch. NESL: A Nested Data-Parallel
Language. Technical Report CMU-CS-93-129,
Carnegie-Mellon University, Pittsburgh/PA, 1993.

[3] W. K. Giloi and A. Schramm. PROMOTER, an
application-oriented programming model for massive
parallelism. In Proceedings of the Massively Paral-
lel Programming Models Working Conference, pages
198-205. IEEE, 1993.

[4] J. Misra. Powerlist: A Structure for Parallel Recur-
sion. ACM Transactions on Programming Languages
and Systems 16(6):1737-1767, Nov. 1994.

[5] H. D. Simon. Partitioning of unstructured problems
for parallel processing. Computing Systems in Engi-
neering 2(2/3):135-148, 1991.

[6] D. B. Skillicorn. Practical Parallel Computation, II.
Categorical Data Types. External technical report,
Queen’s University, Kingston, Ontario, 1991.

