
End-User Tools for Grid Computing
Francisco Hernández Purushotham Bangalore Kevin Reilly

Department of Computer and Information Sciences

University of Alabama at Birmingham

1300 University Boulevard, Birmingham, AL, USA

{hernandf, puri, reilly} @cis.uab.edu

ABSTRACT
The present work describes an approach to simplifying the
development and deployment of applications for the Grid. Our
approach aims at hiding accidental complexities (e.g., low-level
Grid technologies) met when developing these kinds of
applications. To realize this goal, the work focuses on the
development of end-user tools using concepts of domain
engineering and domain-specific modeling which are modern
software engineering methods for automating the development of
software. This work is an attempt to contribute to the long term
research goal of empowering users to create complex
applications for the Grid without depending on the expertise of
support teams or on hand-crafted solutions.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Programming Environments –
graphical environments, integrated environments, programmer
workbench.

General Terms
Design, Human Factors, Languages.

Keywords
Grid Computing, End-user Tools, Software Engineering, Domain
Engineering, Domain-Specific Modeling, Visual Authoring
Tools, and Automatic Programming.

1. INTRODUCTION
A recent issue of Communications of the ACM [2] included
several articles about End-user development which addressed
“Tools that empower users to create their own software
solutions.” Sutcliffe and Mehandjiev, in this same issue, indicate
that by 2005 a small fraction of developers in the U.S.
(approximate 2.75 million out of an estimated 57.75 million) will
be professional developers, the huge majority (then) being end-
user developers using tools such as spreadsheets, query systems,
or scripting interactive websites [25]. However, these benefits

have not reached the area of scientific computing and Grid
computing in particular. Developing applications for the Grid
remains difficult for many users.

Grid computing is a distributed computing approach that permits
the aggregation of resources belonging to different administrative
domains. This aggregation offers extensive processing
capabilities but at the same time it increases the complexity
required to develop such applications. This is due in part to the
complexity of the distributed resources, where even potentially
inexperienced users are exposed to all the details of the
underlying Grid technologies [15]. Another reason is that current
software engineering practices (e.g., reusability, modeling and
rapid prototyping) have not been fully explored for the Grid
model.

Traditionally, modern software engineering practices have
experienced slow adoption in the area of scientific computing.
This is due to the importance of efficiency that scientific
computing requires [11]. Nevertheless, there are a few examples
in which methodologies such as generic programming [21],
domain engineering [12], and component-oriented programming
[4] had been successfully applied in scientific arenas. We may
expect more successes insofar as advancing hardware progress
can stimulate software approaches which today may appear less
than fully efficient.

This paper presents an approach for constructing end-user’s tools
that automate the development of applications for the Grid. Our
focus is to enable inexperienced users take full advantage of the
Grid infrastructure. The approach presented in this paper
provides a high-level abstract layer for the construction of Grid
applications. This layer is composed of visual models of specific
application domains and it is constructed using concepts of
domain-specific modeling. Programs that manage the application
execution are generated from the corresponding visual models.
Thus, users need not learn how to use the specific Grid
technologies in order to develop Grid-enabled applications.

The remainder of this paper is organized as follows. Section 2
provides an introduction to Grid computing and the problems
faced when developing Grid applications. Section 3 enumerates
current approaches aimed at facilitating the development of these
applications. The proposed methodology for creating Grid end-
user tools is introduced in Section 4. Section 5 presents an
example of an initial tool developed for facilitating the creation
of Grid applications. Finally, Section 6 gives conclusions of our
work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
First Workshop on End-User Software Engineering (WEUSE I).May 21
2005, Saint Louis, Missouri, USA.
Copyright ACM 1-59593-131-7/05/0005$5.00.

1

2. GRID COMPUTING
Grid computing is a distributed computing approach which offers
computing specialists and other scientists a valuable resource to
access extensive processing capabilities. The distinctive feature
of this approach resides in creation of virtual organizations that
permit seamless aggregation of heterogeneous resources (e.g.,
processing units, data storage, and devices) that can belong to
different administrative domains.

Middleware has traditionally been used to provide virtualization
of resources. The Globus Toolkit [10] is the de facto standard.
However, with the recent advent of Web services, Grid
middleware has evolved and converged (with Web services) into
what is now called Grid services. Grid services are Web services
at the base providing interoperability, heterogeneity, and
platform independence, but Grid services have added
functionality that enables them to work in a Grid environment
such as support for life cycle management, and notifications [22].

Despite expanded availability of capabilities provided by Grid
services, they are mostly being taken advantage of by academic
and industrial centers. This is because developing Grid services
is a complex process as can be seen from the steps required to
develop a single service:

1. Implement the functionality of the service which might
require the use of scientific libraries and constraints on
efficiency expected for the service. Services can be as
coarse as a complete simulation or as fine as a
multiplication of two matrices.

2. Write a functional interface for the service so that
clients know how to invoke it.

3. Define the deployment parameters to indicate the
specifics of the service.

4. Deploy the service to a Grid service container and
register it so that it can be found by other services.

Considering that most of the previous tasks are performed
manually, the result is that few applications exist that can readily
exploit the full Grid potential, and most of them have been
written by Grid specialists instead of scientists or engineers [6].
In our view, this problem is but one of the factors impeding the
increase of Grid users. The other major factor is the large
number of existent non-Grid applications (a.k.a. legacy
applications) originally designed for executing on dedicated
supercomputers or parallel computers with no attention to
distributed computing and yet need to be moved to a Grid
environment [18].

Insofar as the process of developing services is complex, the
process is aggravated when we consider that complex
applications typically consist of more than one service. Then,
special effort has to be employed to compose and orchestrate
services (composing refers to adding the functionalities of
relatively simpler services to produce a complex application
while orchestrating refers to the correct sequencing of services
and their outputs required to produce the desired result) which,
to an extent, requires specific knowledge on Grid technologies.

To exemplify how arduous is the process of composing services,
we enumerate the steps required to perform this composition:

1. Discover the service from a registry which in response
indicates the location of the service.

2. Obtain the service description which indicates how to
use the service.

3. Generate code needed to invoke the service according
to its description.

4. Use the code generated in the previous step to connect
the service to the application or service being
implemented.

Since these steps have to be repeatedly performed for each
composition of services, there seems to be a consensus that this
process needs to be facilitated. In the following section we
briefly review some prominent current directions at this
facilitation.

3. CURRENT DIRECTIONS
3.1 Problem Solving Environments (Portals)
The first direction attempts to simplify use of the Grid by
creating Problem Solving Environments (PSE) or portals [1].
These tools simplify the use of the Grid by supplying a repository
of ready-to-use applications that were previously created and can
be reused utilizing different inputs.

In order to hide the complexities of the Grid, portals appear to
expedite only simple tasks (e.g., job submissions, and checking
job status) [20], and seemingly lack the flexibility required to
create complex applications made from composing different
services.

3.2 Workflow Systems
Another direction focuses on facilitating the construction of
applications by creating a workflow of services composing the
application [3], [5], [8], [25], [19]. This technology is borrowed
from business processing in which workflow languages like
BPEL [24] have successfully been used to compose and
orchestrate business related Web services.

Due to the similarities between the Grid and the Web, using
workflows appeared to be a suitable methodology to facilitate the
composition of complex Grid applications. However, as is the
case with portals, workflow systems require services to be
independently developed and stored in a repository for later use.
And as seen above, this process is complex and often requires (as
well) the expertise of a multidisciplinary support team.

3.3 Component Frameworks
Even though the simplification of the composition of services is
of paramount importance, the development of the individual
services is equally important. The final research direction attacks
this problem by constructing frameworks that ease the
implementation of individual components. Component
frameworks are engineered to facilitate and accelerate
development of applications by focusing on the reuse of
individual components.

2

There are various examples of this solution with CCA [4] being
probably the most prominent example. However, there are three
problems with this approach:

1. Most component frameworks were developed before
the Grid “era” which means that they have to be
adapted to this new technology (wrappers being the
choice most of the time).

2. Different component frameworks are not standardized,
thus are not configured to be reused in frameworks
other than the one of the original design.

3. Current procedures for composing components are
focused at the code level where the complexities
imposed by the programming languages and the
component frameworks themselves impede their use
for non developers for whom a higher abstract level is
more advantageous.

A result of these problems is that multidisciplinary support teams
are once again required for using component frameworks in a
Grid environment.

4. METHODOLOGY
As seen in the previous analysis, Grid computing relies heavily
on support teams. This is contrary to many other areas of
computer science where there has been extensive research to
create tools that empower users to create complex applications
without the need of such teams. Though most Grid applications
are still being developed in standard programming languages and
using standard approaches, there seems to be a need of support
tools that function in domains more familiar to end-users.
Furthermore, for these tools to be effective it is of paramount
importance that they should not be based on ad-hoc methods but
instead rely on modern software engineering practices that can
not only increase software quality but also improve the
development of such tools.

As explained in the Grid Computing section (section 2) above,
creating Grid applications consists of two separate issues: (1) the
creation of the individual application components (or services),
and (2) the deployment of those components in the distributed
resources. Accordingly, the difficulty of creating Grid
applications resides in acquiring a proficient knowledge in the
use of the different Grid technologies (e.g., Grid middleware or
Grid Services). However, in order to increase the number of
individual researchers that utilize the Grid, it is an imperative to
hide the accidental complexities of use (i.e., specific details of
Grid technologies) from the end-users and embed this knowledge
into a code generator that can generate the complex
configurations. A leading technology that helps when working at
this level is Domain-specific modeling (DSM) [13], which
enables users to employ familiar concepts to the domain while
constructing models of applications. These models can then
(even) be translated into one or more representations. The
benefit of creating these models is that the models can be
manipulated as first class development artifacts which means
that work with them can be automated [14].

The process for creating the domain models entails the following
issues:

1. Analyze the domain in order to extract concepts
relevant to the domain as well as knowledge on how to
build applications in that domain (this process is also
known as domain engineering [11]).

2. Build a meta-model with the knowledge extracted
during the domain engineering steps, creating in the
process a graphical domain-specific language to specify
applications for the domain.

3. Create a model interpreter to generate the appropriate
low-level configurations. The model interpreter
provides the semantics for the visual models.

Users then interact with the graphical models which represent
concepts familiar to them and the corresponding Grid
applications are automatically generated by the tool. The
particular code that enables use of the distributed resources can
be reused because the underlying Grid technologies are the same
on every application domain. This means that this code can be
optimized and developed by Grid experts and then used by end-
users working on different application domains.

The quality of the applications is also improved since the rules of
the programs that can be created are embedded in the meta-
models. This often means that only valid models can be created,
illegal models being rejected at modeling time. Bugs are also
minimized at earlier stages since the tool generates code that was
already tested and was developed by experts in the Grid area.

Furthermore, the development of the modeling tool, in general, is
facilitated by the use of MetaCASE tools which, according to
Czarnecki et al. [7] are beneficial for this endeavor since they
provide support for meta-model editing as well as the creation of
new notations.

5. EXAMPLE
This section presents an initial exploration for creating a tool that
automates work with the Grid. This example involved the
creation of a general workflow system that abstracts and
simplifies the development of Grid applications by hiding the
low-level implementation details of the Grid middleware. The
intention is to facilitate the deployment part of the Grid
application construction process. The resulting tool helps the
inexperienced Grid users by providing an environment in which
they can graphically specify the workflow for their application
and automatically generate the code that manages the execution
of the application (For an in-depth explanation of this tool such
as its capabilities and the range of applications that can be
created the reader is referred to [16], [17]).

Applications can be created by specifying jobs on distributed
resources and by specifying file transfers between those
resources. Usually, jobs require one or more input files and also
produce one or more output files. The following example
presents a simple application using Hidden Markov Models to
illustrate how this interaction is performed by this tool.

A Hidden Markov Model (HMM) was constructed to compare
the differences between English and Spanish language patterns
[9]. The input to the HMM is an intermingled file (parts in
English and parts in Spanish) that only indicates if a letter is a

3

vowel or a consonant (1 or 0). The output file consists of the
language prediction.

Figure 1. Model specification for Upcase task.

Figure 1 illustrates the manner in which a job is specified by the
users. The name of the executable file, environment variables,
name of the output file, number of processors required, and the
machine in which this job is to be executed (in this case
cherokeeCompute) are required to specify this particular task.
Figure 2 shows the corresponding Java code that is generated
from the model information.

1
2
3
4
5
6
7
8

……
GlobusRSL UpcaseRSL = new GlobusRSL();
UpcaseRSL.setEnvironmentVariables
 ("(DIR=/home/hernandf)(IN=raw.txt)”);
UpcaseRSL.setExec("upcase");
UpcaseRSL.setNumProc(2);
UpcaseRSL.setStdOut(“/home/hernandf/out.txt”);
……

Figure 2.Code generated by the model interpreter for the
Upcase job.

Figure 3. Definition of the application as a model.

After all of the tasks are defined, the application can be
constructed by specifying the required sequence of tasks (Figure
2). File images indicate file transfers, and computer images
indicate jobs to execute. The star in the far left indicates the start
of the Grid application, and the sphere on the far right indicates
its end. The input file is copied to the remote host (upRawData).
A preprocessing job is executed on that file and its output is
analyzed by the HMM job. The output of the HMM job is then

modified in the postProcessing step. Finally the output of the
postProcessing job is downloaded to the local computer
(downAnalysis).

After the model is specified, a model interpreter traverses the
internal representation of the model and generates the control
code that manages the application execution. With this tool, end-
users need only to know the particulars of their applications and
are not required to learn the manner in which the Grid
technologies operate. Nevertheless, they are able to specify
complex applications and execute them in distributed resources.

6. CONCLUSIONS
The goal of the research described in this paper is to improve the
development of tools that automate the creation of Grid
applications from particular domains. Tools created using this
approach permit the graphical definition of models and the
automatic generation of the code that controls the execution of
the Grid applications. Our current focus has been on the
deployment aspect of the construction process but, as noted in the
introduction, the development of the individual components is an
integral part of the process. Our future work considers this
aspect.

This research is based on domain-specific modeling techniques.
The benefits of using these techniques which motivated this
study were:

1. Domain modeling focus on higher levels of abstraction
at the problem space rather than solution space, such
as specific Grid middleware and their usage. End-users
have a better understanding of the applications by
working at the problem space.

2. Modeling tools and their code generators facilitate the
more rapid ability to change the application’s details.
That is, it is easier to manipulate and change domain
models rather than the associated code. Furthermore,
the domain knowledge is embedded in the rules that
govern the visual models (meta-model) as well as in
the model interpreters.

3. Quality of the systems is improved since the high level
models only permit the specification of correct models
and the low level implementations are coded by Grid
experts.

4. The use of MetaCASE tools facilitates the rapid
development of Grid tools for different application
domains. They do this by providing different facilities
such as a language by which new meta-model notations
can be specified and overall graphical support for
interacting with the models.

Using these modeling techniques, an example tool was
constructed. This tool abstracted the Grid domain and permitted
the specification of applications that were able to run in
distributed resources. Users were able to submit their
applications by graphically specifying the details of their
application.

End-users are able to better understand models that are
expressed in their day-to-day language rather than in

4

cumbersome and often extraneous programming languages. This
kind of tools will help enable end-user developers to gain access
to the processing capabilities of the Grid without depending on
the expertise of support teams resulting in end-users’ ability to
create complex applications by themselves.

7. REFERENCES
[1] Special Issue: Grid Computing Environments. Concurrency

and Computation: Practice and Experience, 14:1035-1593,
2002.

[2] End-user development: tools that empower users to create
their own software solutions. Communications of the ACM,
47(9), September 2004.

[3] E. Akarsu, F. Fox, W. Furmanski, and T. Haupt. WebFlow
– high level programming environment and visual authoring
toolkit for high performance distributed computing. In
Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing, pages 1-7, 1998.

[4] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L.
McInnes, S. Parker, and B. Smolinski. Toward a common
component architecture for high performance scientific
computing. In Proceedings of the 8th. IEEE International
Symposium on High Performance Distributed Computing,
1999.

[5] H. Bivens. Grid Workflow. Grid Computing Environments
Working Group Document, 2001. http://zuni.cs.vt.edu/grid-
computing/papers/draft-bivens-grid-workflow.pdf. [February
8, 2005].

[6] C. Boeres and V. Rebello. EasyGrid: Towards a framework
for the automatic grid enabling of legacy mpi applications.
Concurrency and Computation: Practice and Experience,
16(5):425-432, April 2004.

[7] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker.
Generative programming for embedded software: An
industrial experience report. In D. Batory, C. Consel, and
W. Taha, editors, Proceedings of ACM SIGPLAN/SIGSOFT
Conference, GPCE 2002, volume 2487 of LNCS, pages 156-
172. Springer-Verlag, 2002.

[8] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K.
Vahi, K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh,
and S. Koranda. Mapping abstract complex workflows onto
grid environments. Journal of Grid Computing, 1:25-39,
2003.

[9] J. Fisher, F. Hernandez, and A. Sprague. Language patterns:
Comparison and prediction using hidden markov models. In
Proceedings of the 41st Annual ACM Southeast Conference,
pages 246-250, 2003.

[10] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. International Journal of
Supercomputing Applications, 11:115-128, 1997.

[11] J. Gerlach. Domain Engineering and Generic Programming
for Parallel Scientific Computing. Elektrotechnik und
Informatik, Doktor der Ingenieurwissenschaften, Technishen
Universitat Berlin, Berlin, Germany, 2002.

[12] E. Giloi, M. Kessler, and A. Schramm. PROMOTER: A
high level object-parallel programming language. In
Proceedings of International Conference on High
Performance Computing, 1995.

[13] J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling
crosscutting constraints in domain-specific modeling.
Communications of the ACM, 44(10):87-93, October 2001.

[14] J. Greenfield and K. Short. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and
Tools. Wiley Publishing, Inc., 2004.

[15] T. Haupt, P. Bangalore, and G. Henley. Mississippi
computational web portal. Concurrency and Computation:
Practice and Experience, 14:1275-1287, 2002.

[16] F. Hernández, P. Bangalore, J. Gray, Z. Guan, and K.
Reilly. GAUGE: Grid automation and generative
environment. Concurrency and Computation: Practice and
Experience, to appear. 2005.

[17] F. Hernández, P. Bangalore, J. Gray, and K. Reilly. A
graphical modeling environment for the generation of
workflows for the globus toolkit. In V. Getov and T.
Kielman, editors, Component Models and Systems for Grid
Applications. Proceedings of the Workshop on Component
Models and Systems for Grid Applications held June 26,
2004 in Saint Malo, France, pages 79-96. Springer, 2005.

[18] P. Kacsuk, A. Goyeneche, T. Delaitre, T. Kiss, Z. Farkas,
and T. Boczko. High-level grid application environment to
use legacy codes as ogsa grid services. In Proceedings of the
5th IEEE/ACM International Workshop on Grid
Computing, 2004.

[19] M. Lorch and D. Kafura. Symphony – A java-based
composition and manipulation framework for computational
grids. In Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGrid2002), pages 136-143, 2002.

[20] J. Novotny. The grid portal development kit. Concurrency
and Computation: Practice and Experience, 14:1129-1144,
2002.

[21] J. Siek and A. Lumsdaine. The matrix template library: A
generic programming approach to high performance
numerical algebra. In Proceedings of ISCOPE 1998, volume
1505 of LNCS, pages 59-70. Springer-Verlag, Santa Fe,
NM, 1998.

[22] B. Sotomayor. The globus toolkit 3 programmer’s tutorial.
http://gdp.globus.org/gt3-tutorial/. [February 8, 2005].

[23] A. Sutcliffe and N. Mehandjiev. Introduction.
Communications of the ACM, 47(9):31-32, 2004.

[24] S. Thatte. Business Process Execution Language for Web
Services.http://www106.ibm.com/developerworks/webservic
es/library/ws-bpel/. [February 8, 2005], May 2003.

[25] G. von Laszewski, K. Amin, M. Hategan, N. Zaluzec, S.
Hampton, and A. Rossi. Gridant: A client-controllable grid
workflow system. In Proceedings of the 37th Hawaii
International Conference on System Science, pages 210-219,
2004.

5

