
STAPL: A Standard Template Adaptive Parallel
C++ Library

Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel Tanase,
Nathan Thomas, Nancy M. Amato, Lawrence Rauchwerger

Abstract— The Standard Template Adaptive Parallel Library (STAPL)
is a parallel library designed as a superset of the ANSI C++ Standard
Template Library (STL). It is sequentially consistent for functions with
the same name, and executes on uni- or multi-processor systems that uti-
lize shared or distributed memory. STAPL is implemented using simple
parallel extensions of C++ that currently provide a SPMD model of paral-
lelism, and supports nested parallelism. The library is intended to be gen-
eral purpose, but emphasizes irregular programs to allow the exploitation
of parallelism in areas such as particle transport calculations, molecular
dynamics, geometric modeling, and graph algorithms, which use dynami-
cally linked data structures. STAPL provides several different algorithms
for some library routines, and selects among them adaptively at run-time.
STAPL can replace STL automatically by invoking a preprocessing trans-
lation phase. The performance of translated code is close to the results
obtained using STAPL directly (less than 5% performance deterioration).
However, STAPL also provides functionality to allow the user to further
optimize the code and achieve additional performance gains. We present
results obtained using STAPL for a molecular dynamics code and a particle
transport code.

I. MOTIVATION

In sequential computing, standardized libraries have proven
to be valuable tools for simplifying the program development
process by providing routines for common operations that allow
programmers to concentrate on higher level problems. Simi-
larly, libraries of elementary, generic, parallel algorithms pro-
vide important building blocks for parallel applications and spe-
cialized libraries [9], [8], [24]. Due to the added complexity of
parallel programming, the potential impact of libraries could be
even more profound than for sequential computing. Indeed, we
believe parallel libraries are crucial for moving parallel comput-
ing into the mainstream since they offer the only viable means
for achieving scalable performance across a variety of applica-
tions and architectures with programming efforts comparable to
those of developing sequential codes. In particular, properly
designed parallel libraries could insulate less experienced users
from managing parallelism by providing routines that are easily
interchangeable with their sequential counterparts, while allow-
ing more sophisticated users sufficient control to achieve higher
performance gains.

Designing parallel libraries that are both portable and efficient
is a challenge that has not yet been met. This is due mainly
to the difficulty of managing concurrency and the wide variety
of parallel and distributed architectures. For example, due to
the differing costs of an algorithm’s communication patterns on

Dept. of Computer Science, Texas A&M University, College Sta-
tion, TX 77843-3112. Email:

�
pinga, alinj, silviusr,

sms5644, tgs7381, gabrielt, nthomas, amato, rwerger�
@cs.tamu.edu. Research was supported in part by NSF by CAREER

awards CCR-9624315 and CCR-9734471, by NSF grants IRI-9619850,
ACI-9872126, EIA-9805823, EIA-9810937, EIA-9975018, by DOE ASCI
ASAP Level 2 grant B347886, by Sandia National Laboratory, and by a
Hewlett-Packard Equipment Grant. Thomas supported in part by a Dept. of
Education Graduate Fellowship.

different memory systems, the best algorithm on one machine is
not necessarily the best on another. Even on a given machine,
the algorithm of choice may vary according to the data and run-
time conditions (e.g., network traffic and system load).

Another important constraint on the development of any soft-
ware package is its inter-operability with existing codes and
standards. The public dissemination and eventual adoption of
any new library depends on how well programmers can inter-
face old programs with new software packages. Extending or
building on top of existing work can greatly reduce both devel-
oping efforts and the users’ learning curve.

To liberate programmers from the concerns and difficulties
mentioned above we have designed STAPL (Standard Template
Adaptive Parallel Library). STAPL is a parallel C++ library with
functionality similar to STL, the ANSI adopted C++ Standard
Template Library [20], [26], [16]. To ease the transition to par-
allel programming and ensure portability across machines and
programs, STAPL is a superset of STL that is sequentially con-
sistent for functions with the same name. STAPL executes on
uni- or multi-processor architectures with shared or distributed
memory and can co-exist in the same program with STL func-
tions. STAPL is implemented using simple parallel extensions
of C++ which provide a SPMD model of parallelism and sup-
ports nested (recursive) parallelism (as in NESL [9]). In a
departure from previous parallel libraries which have almost ex-
clusively targeted scientific or numerical applications, STAPL
emphasizes irregular programs. In particular, it can exploit par-
allelism when dynamic linked data structures replace vectors as
the fundamental data structure in application areas such as geo-
metric modeling, particle transport, and molecular dynamics.

STAPL is designed in layers of abstraction: (i) the interface
layer used by application programmers that is STL compatible,
(ii) the concurrency and communication layer that expresses
parallelism and communication/synchronization in a generic
manner, (iii) the software implementation layer which instan-
tiates the concurrency and communication abstractions to high
level constructs (e.g., m fork and parallel do for concurrency,
and OpenMP synchronizations and MPI primitives for commu-
nication), and (iv) the machine layer which is OS, RTS and ar-
chitecture dependent. The machine layer also maintains a per-
formance data base for STAPL on each machine and environ-
ment.

STAPL provides portability across multiple platforms by in-
cluding its own (adapted from [21]) run-time system which sup-
ports high level parallel constructs (e.g., forall). Currently
STAPL can interface directly to Pthreads and maintains its own
scheduling. It can issue MPI and OpenMP directives and can
use the native run-time system on several machines (e.g., HP

V2200 and SGI Origin 2000). Thus, there is no need for user
code modification when porting a program from one system to
another. Only the machine layer needs to be modified when
STAPL is ported to a new machine.

We have defined and implemented several key extensions of
STL for STAPL: parallel containers and algorithms (pCon-
tainer and pAlgorithms), and an entirely new construct
called pRange which allows random access to elements in a
pContainer. Analogous to STL iterators, pRanges bind pCon-
tainers and pAlgorithms. Unlike STL iterators, pRanges also in-
clude a distributor for data distribution and a scheduler
that can generically enforce data dependences in the parallel ex-
ecution according to execution data dependence graphs (DDGs).
The STAPL executor is responsible for executing subranges
of the pRange on processors based on the specified execution
schedule. STAPL allows for STL containers and algorithms to
be used together with STAPL pContainers and pAlgorithms in
the same program. STAPL provides a means of automatically
transforming code that uses STL to code that uses STAPL. In
a preprocessing step at compile time, calls to STL algorithms
are replaced with calls to special STAPL algorithms that cre-
ate the necessary pRanges and call the appropriate pAlgorithms.
This parallelizes the application with very little user modifica-
tion, but incurs some run-time overhead. To obtain even better
performance, STAPL allows users to avoid the translation over-
head by directly writing applications using pContainers, pAlgo-
rithms, and pRanges. STAPL provides recursive data decompo-
sition through its pRange which allows programs to be naturally
mapped to hierarchical architectures.

To achieve wide adoption, STAPL must obtain reasonable
performance across a wide spectrum of applications and archi-
tectures and free its users from problems related to portability
and algorithm selection. This is achieved in STAPL by adap-
tive selection among various algorithmic options available for
many STAPL library routines. Built–in performance monitors
will measure actual performance, and using performance mod-
els [4], [3] that incorporate system specific information and cur-
rent run-time conditions, STAPL will predict the relative perfor-
mance of the algorithmic choices for each library routine and
will adaptively select an appropriate algorithm for the current
situation.

II. RELATED WORK

There is a relatively large body of work that has similar goals
to STAPL. Table I gives an overview of different projects. We
will now briefly comment on some of them and attempt to com-
pare them with STAPL. For further work in this area see [27].

The Parallel Standard Template Library (PSTL) [18], [17]
has similar goals to STAPL; it uses parallel iterators as a par-
allel equivalent to STL iterators and provides some parallel al-
gorithms and containers. NESL [9], CILK [15] and SPLIT-C
[13] provide the ability to exploit nested parallelism through
their language support (all three are extended programming lan-
guages with NESL providing a library of algorithms). How-
ever only STAPL is intended to automatically generate recur-
sive parallelization without user intervention. Most of listed
packages (STAPL, Amelia [25], CHAOS++ [11] and to a cer-
tain extent CHARM++ [1]) use a C++ template mechanism and

assure good code reusability. STAPL emphasizes irregular data
structures like trees, lists, and graphs, providing parallel oper-
ations on such structures. Charm++ and CHAOS++ also pro-
vide support for irregular application through their chare objects
and inspector/executor, respectively. Both POOMA [23] and
STAPL borrow from the STL philosophy, i.e., containers, itera-
tors, and algorithms. The communication/computation overlap-
ping mechanism is present in the STAPL executor, which also
supports simultaneous use of both message passing and shared
memory (MPI and OpenMP) communication models. Charm++
provides similar support through message driven execution and
a dynamic object creation mechanism. The split phase assign-
ment (:=) in Split-C also allows for overlapping communication
with computation.

STAPL is further distinguished in that it emphasizes both au-
tomatic support and user specified policies for scheduling, data
decomposition and data dependence enforcement. Further-
more, STAPL is unique in its goal to automatically select the
best performing algorithm by analyzing data, architecture and
current run-time conditions.

III. STAPL – PHILOSOPHY, INTERFACE AND

IMPLEMENTATION

STL consists of three major components: containers,
algorithms, and iterators. Containers are data struc-
tures such as vectors, lists, sets, maps and their associated meth-
ods. Algorithms are operations such as searching, sorting, and
merging. Algorithms can operate on a variety of different con-
tainers because they are defined only in terms of templated it-
erators. Iterators are generalized C++ pointers that abstract the
type of container they traverse (e.g., linked list to bidirectional
iterators, vector to random access iterators).

STAPL’s interface layer consists of five major compo-
nents: pContainers, pAlgorithms, pRanges, sched-
ulers/distributors and executors. Figure 1 shows
the overall organization of STAPL’s major components. The
pContainers and pAlgorithms are parallel counterparts
of the STL containers and algorithms; pContainers are back-
wards compatible with STL containers and STAPL includes
pAlgorithms for all STL algorithms and some additional al-
gorithms supporting parallelism (e.g., parallel prefix). The
pRange is a novel construct that presents an abstract view
of a scoped data space which allows random access to a par-
tition, or subrange, of the data space (e.g., to elements in a
pContainer). A pRange can recursively partition the data do-
main to support nested parallelism. Analogous to STL itera-
tors, pRanges bind pContainers and pAlgorithms. Unlike STL
iterators, pRanges also include a distributor for data dis-
tribution and a scheduler that can generically enforce data
dependences in the parallel execution according to data depen-
dence graphs (DDGs). The STAPL executor is responsible
for executing subranges of the pRange on processors based on
the specified execution schedule. Users can write STAPL pro-
grams using pContainers, pRanges and pAlgorithms, and, op-
tionally, their own schedulers and executors if those provided
by STAPL do not offer the desired functionality.

Application programmers use the interface layer and the con-
currency/communication layer, which expresses parallelism and

2

STAPL AVTL CHARM++ CHAOS++ CILK NESL POOMA PSTL SPLIT-C
Paradigm SPMD/MIMD SPMD MIMD SPMD SPMD/MIMD SPMD/MIMD SPMD SPMD SPMD
Architecture Shared/Dist Dist Shared/Dist Dist Shared/Dist Shared/Dist Shred/Dist Shared/Dist Shared/Dist
Nested Par. yes no no no yes yes no no yes
Adaptive yes no no no no no no no no
Generic yes yes yes yes no yes yes yes no
Irregular yes no yes(limited) yes yes yes no yes yes
Data de-
comp

auto/user auto user auto/user user user user auto/user user

Data map auto/user auto auto auto/user auto auto user auto/user auto
Scheduling block, dyn,

partial self-
sched

user -
MPI-
based

prioritized
execution

based
on data
decompo-
sition

work steal-
ing

work and
depth
model

pthread
scheduling

Tulip RTS user

Overlap
comm/comp

yes no yes no no no no no yes

TABLE I

RELATED WORK

communication generically. The software and machine lay-
ers are used internally by STAPL, and only the machine layer
requires modification when porting STAPL to a new system.
In STAPL programmers can specify almost everything (e.g.,
scheduling, partitioning, algorithmic choice, containers, etc) or
they can let the library decide automatically the appropriate op-
tion.

In the remainder of this section we present a more detailed
discussion of the basic STAPL components and their current im-
plementation.

A. pRanges

A pRange is an abstract view of a scoped data space pro-
viding random access to a partition of the data space that al-
lows the programmer to work with different (portions of) con-
tainers in a uniform manner. Note that random access to (inde-
pendent) work quanta is an essential condition for parallelism.
Each subspace of the scoped data space is disjoint and can itself
be described as a pRange, thus supporting nested parallelism. A
pRange also has a relation determining the computation order
of its subspaces and relative weights (priorities) for each sub-
space. If the partition, ordering relation, and relative weights
(execution priorities) are not provided as input, then they can
be self-computed by the pRange or imposed (by STAPL or the
user) for performance gains.

A.1 pRange implementation

So far we have implemented the pRange for pvectors, plists
and ptrees. The pRange and each of its subranges provide the
same begin() and end() functions that the container provides,
which allows the pRange to be used as a parallel adapter of the
container. For example,

stapl::pRange(pC.begin(), pC.end());

constructs a pRange on the data in pContainer pC. STL has no
direct sequential equivalent of pRange, but a structure to main-
tain a range could be implemented as a simple pair of iterators.
For example, a range on a sequential STL vector of integers vec
can be constructed as follows.

typedef std::vector<int>::iterator vi;
std::pair<vi,vi> seqRange(vec.begin(), vec.end());

The pRange provides random access to each of its subranges
(recursively) , while the elements within each subrange at the
lowest level (of the recursion) must be accessed using the under-
lying STL iterators. For example, a pRange built on a list would
provide bidirectional iterators to the begin and end of each sub-
range, and elements within the subranges could only be accessed
in a linear fashion from either point using the bidirectional iter-
ators. In contrast, a pRange built on a vector would provide
random access iterators to the begin and end of each subrange,
and internal elements of each subrange could be accessed in a
random manner using them.

stapl::pRange<stapl::pVector<int>::iterator>
dataRange(segBegin, segEnd);

dataRange.partition(4);
stapl::pRange<stapl::pVector<int>::iterator>

dataSubrange = dataRange.get_subrange(3);
dataSubrange.partition(4);

Fig. 2. Creating a pVector dataRange from iterators, partitioning it into 4
subranges, selecting the 3rd subrange dataSubrange, and sub-partitioning it
into 4 (sub)subranges.

STAPL provides support for nested parallelism by maintain-
ing the partition of a pRange as a set of subranges, each of which
can itself be a complete pRange with its own partition of the data
it represents (see Figure 2). This allows for a parallel algorithm
to be executed on a subrange as part of a parallel algorithm be-
ing executed on the entire pRange. The bottom (hierarchically
lowest level) subrange is the the minimum quantum of work that
the executor can send to a processor.

The pRange can partition the data using a built in distributor
function, by a user specified map, or it might be computed ear-
lier in the program. A simple of distribution tuning is static
block data distribution where the chunk sizes are either pre-
computed, given by the user, or automatically computed by the
pRange and adjusted adaptively based on a performance model
and monitoring code. In the extreme case, each data element is
a separate subrange, which provides fully random access at the
expense of high memory usage. Usually, larger chunks of data
are assigned to each subrange.

3

pRange

pRange

pRange

pRange
pAlgorithm

algorithm

parallel region manager

scheduler executor

processor

processor

processorpContainer

Fig. 1. STAPL Components

B. pContainers

A pContainer is the parallel equivalent of the STL con-
tainer and is backward compatible with STL containers through
its ability to provide STL iterators. Each pContainer provides
(semi–) random access to its elements, a prerequisite for effi-
cient parallel processing. Random access to the subranges of a
pContainer’s data is provided by an internal pRange maintained
by the pContainer. The internal pRange is updated when the
structure of the pContainer is modified (e.g. insertion or dele-
tion of elements) so that a balanced, or user-defined, partition
can be maintained.

B.1 pContainer Implementation

The pContainers currently implemented in STAPL are
pvector, plist and ptree. Each adheres to a common
interface and maintains an internal pRange. Automatic trans-
lation from STL to STAPL and vice-versa requires that each
pContainer provides the same data members and member func-
tions as the equivalent STL containers along with any class
members specifically for parallel processing (e.g., the internal
pRange). Thus, STAPL pContainer interfaces allow them to be
constructed and used as if they were STL containers (see Fig. 3).

stapl::pVector<int> pV(i,j);
stapl::pSort(pV.get_pRange());

(a)
std::vector<int> sV(i,j);
std::sort(sV.begin(),sV.end());

(b)
Fig. 3. (a) STAPL and (b) STL code fragments creating pContainers and Con-
tainers (line 1) and sorting them (line 2).

The STAPL pContainer only maintains its internal pRange
during operations that modify the pContainer (e.g., insertion and
deletion). Any pRanges copied from the internal pRange or cre-
ated externally on a portion of the container may be invalidated
by changes made to the container data. The same is true of iter-
ators in STL, where a user must take care not to use invalidated
iterators. Similarly, it is the user’s responsibility to avoid using
a pRange that may have been invalidated.

The pContainer’s internal pRange maintains (as persistent
data) the iterators that mark the boundary of the subranges.
The continual adjusting of subranges within the internal pRange
may eventually cause the distribution to become unbalanced.
When the number of updates (insertions and deletions) made to

a pContainer reach a certain threshold (tracked using an update
counter in the pContainer) the overall distribution is examined
and the subranges and pRange are adjusted to bring the distribu-
tion back to a near balanced state, or a user-defined distribution
if one is provided. The maintenance of a distributed internal
pRange is critical to the performance of STAPL so that a re-
distribution of a pContainer’s data before beginning execution
of each parallel region can be avoided.

When possible, each pContainer’s methods have been paral-
lelized (e.g. pVector’s copy constructor). The methods may
be parallelized in two ways: (i) internal parallelization – the
method’s operation is parallel, and (ii) external parallelization
(concurrency) – the method may be called simultaneously by
different processors in a parallel region. These two approaches
of method parallelization coexist and are orthogonal. A method
of a pContainer can utilize both methods of parallelism simulta-
neously to allow for nested parallelism.

C. pAlgorithms

A pAlgorithm is the parallel counterpart of the STL algo-
rithm. There are three types of pAlgorithms in STAPL. First,
pAlgorithms with semantics identical to their sequential coun-
terparts (e.g., sort, merge, reverse). Second, pAlgorithms with
enhanced semantics (e.g., a parallel find could return any (or
all) elements found, while a sequential find generally returns
only the first element). Third, pAlgorithms with no sequential
equivalent in STL.

STL algorithms take iterators marking the start and end of
the input as parameters. STAPL pAlgorithms take pRanges as
parameters instead. STAPL provides a smooth transition from
STL by providing an additional interface for each of its pAlgo-
rithms that is equivalent to its STL counterpart and automat-
ically constructs a pRange from the iterator arguments. The
pAlgorithms express parallelism through calls to a parallel re-
gion manager, which frees the implementor from low level is-
sues such as construction of parallel structures, scheduling and
execution. STAPL also allows users to implement custom pAl-
gorithms through the same interface.

C.1 pAlgorithm implementation

Currently, STAPL provides parallel equivalents for all STL
algorithms that may be profitably parallelized. Some algorithms
perform sequentially very well and we have chosen to focus
our efforts on exploiting parallelism on other algorithms (this
may change as STAPL matures and more systems are studied).

4

STAPL pAlgorithms take the pRanges to process as arguments
along with any other necessary data (e.g. a binary predicate).
See Fig. 3 for examples of pSort and sort.

The pAlgorithms in STAPL are implemented by expressing
parallelism through the parallel region manager of STAPL’s
concurrency and communication layer. The parallel region man-
ager (e.g., pforall) issues the necessary calls to the STAPL
run-time system (implemented on top of Pthreads, native, etc.)
to generate or awaken the needed execution threads for the func-
tion, and passes the work function and data to the execution
threads. Each pAlgorithm in STAPL is composed of one or more
calls to the parallel region manager. Between parallel calls, the
necessary post processing of the output of the last parallel region
is done, along with the preprocessing for the next call. The argu-
ments to parallel region manager are the pRange(s) to process,
and a pFunction object, which is the work to be performed
on each subrange of the pRange.

The pFunction is the base class for all work functions. The
only operator that a pFunction instance must provide is the () op-
erator. This operator contains the code that works on a subrange
of the provided pRanges. In addition, a pFunction can option-
ally provide prologue and epilogue member functions that can
be used to allocate and deallocate any private variables needed
by the work function and perform other maintenance tasks that
do not contribute to the parallel algorithm used in the work func-
tion. The pFunction and parallel construct interfaces can be ac-
cessed by STAPL users to implement user-defined parallel algo-
rithms. Figure 4 is an example of a simple work function that
searches a subrange for a given value and returns an iterator to
the first element in the subrange that matched the value. The
example assumes the == operator has been defined for the data
type used.

template<class pRange, class T>
class pSearch : public stapl::pFunction {
private:

const T value;
public:

pSearch(const T& v) : value(v) {}

typename pRange::iterator opera-
tor()(pRange& pr) {

typename pRange::iterator i;
for (i = pr.begin(); i != p.end(); i++) {

if (*i == value)
return i;

}
return pr.end();

}
};

Fig. 4. STAPL work function to search a pRange for a given value

D. Scheduler/Distributor and Executor

The scheduler/distributor is responsible for deter-
mining the execution order of the subspaces in a pRange and the
processors they will be assigned to. The schedule must enforce
the natural data dependences of the problem while, at the same
time, minimizing execution time. These data dependences are
represented by a Data Dependence Graph (DDG).

The STAPL executor is responsible for executing a set of
given tasks (subranges of a pRange and work function pairs) on
a set of processors. It assigns subranges to processors once they

are ready for processing (i.e. all the inputs are available) based
on the schedule provided by the scheduler. There is an executor
that deals with the subranges at each level in the architectural
hierarchy. The executor is similar to the CHARM++ message
driven execution mechanism [1].

D.1 Scheduler/Distributor and Executor Implementation

STAPL provides several schedulers, each of which use a dif-
ferent policy to impose an ordering on the subranges. Each
scheduler requires as input the pRange(s) that are to be sched-
uled and the processor hierarchy on which to execute. The
static scheduling policy allows two types of scheduling: block
scheduling and interleaved block scheduling of subranges to
processors. The dynamic scheduling policy does not assign a
subrange to any given processor before beginning parallel exe-
cution, but instead allows the executor to assign the next avail-
able subspace to the processor requesting work. The partial self
scheduling policy does not assign subspaces to a specific pro-
cessor, but instead creates an order in which subspaces will be
processed according to their weight (e.g., workload or other pri-
ority) and the subspace dependence graph. The executor then
assigns each processor requesting work the next available sub-
space according to the order. Finally, the complete self schedul-
ing policy enables the host code to completely control the com-
putation by indicating an assignment of subspaces to particular
processors and providing a subspace dependence graph for the
pRange. If no ordering is provided, then STAPL can sched-
ule the subspaces according to their weights (priorities), begin-
ning with the subspaces that have the largest weights, or, if no
weights are given, according to a round robin policy.

The recursive pRange contains, at every level of its hierar-
chy, a DAG which represents an execution order (schedule) of
its subranges. In the case of a doall no ordering is needed and
the DAG is degenerate. The subranges of a recursive pRange
(usually) correspond to a certain data decomposition across the
processor hierarchy. The distributor will, at every level
of the pRange, distribute its data and associated (sub) schedule
(i.e., a portion of the global schedule) across the machine hier-
archy. The scheduler/distributor is formulated as an optimiza-
tion problem (a schedule with minimum execution time) with
constraints (data dependences to enforce, which require com-
munication and/or synchronization). If the scheduler does not
produce an actual schedule (e.g., a fully parallel loop) then the
distributor will either compute an optimal distribution or use a
specified one (by the user or a previous step in the program).

Each pRange has an executor object which assigns sub-
spaces (a set of nodes in a DDG) and work functions to proces-
sors based on the scheduling policy. The executor maintains a
ready queue of tasks (subspaces and work function pairs). After
the current task is completed, the executor uses point-to-point
communication primitives to transmit, if necessary, the results to
any dependent tasks. On shared memory systems, synchroniza-
tions (e.g., post/await) will be used to inform dependent tasks
the results are ready. This process continues until all tasks have
been completed. STAPL can support MIMD parallelism by,
e.g., assigning each processor different DDGs, or partial DDGs,
and work functions. Nested parallelism is achieved by nested
pRanges, each with an associated executor.

5

E. STAPL Run-time System

The STAPL run-time system provides support for parallel
processing for different parallel architectures (e.g., HP V2200,
SGI Origin 2000) and for different parallel paradigms (e.g.,
OpenMP, MPI). We have obtained the best results by manag-
ing directly the Pthread package. The STAPL run-time sys-
tem supports nested parallelism if the underlying architecture
allows nested parallelism via a hierarchical native run-time sys-
tem. Otherwise, the run-time system serializes the nested paral-
lelism. We are in the process of incorporating the HOOD run-
time system [21].

While memory allocation can create performance problems
for sequential programs, it is often a source of major bottlenecks
for parallel programs [28]. For programs with very dynamic
data access behavior and implicit memory allocation, the un-
derlying memory allocation mechanisms and strategies are ex-
tremely important because the program’s performance can vary
substantially depending on the allocators’ performance. STL
provides such a dynamic-behavior framework through the use
of the memory heap. STAPL extends STL for parallel com-
putation, and therefore relies heavily on efficient memory allo-
cation/deallocation operations. The memory allocator used by
STAPL is the HOARD parallel memory allocator [7]. Hoard is
an efficient and portable parallel memory allocator that enhances
STAPL’s portability.

All algorithms and containers whose characteristics may
change during execution have been instrumented to collect run-
time information. For now we collect execution times of the
different stages of the computation and “parallel behavior”, e.g.,
load imbalance, subrange imbalance (suboptimal distribution).
The output of the monitors is used as feedback for our devel-
opment effort and, in a few instances, as adaptive feedback to
improve performance (see Section IV-C).

IV. PERFORMANCE

This section presents performance results for some of
STAPL’s pContainers and pAlgorithms. We also use sorting
as a case study to describe run-time adaptive algorithm se-
lection in STAPL. Additional details and examples illustrat-
ing STAPL’s flexibility and ease of use can be found in [6];
these include the STAPL parallelization (both automatically and
manually) of a sequential C++ molecular dynamics code and a
programmed from scratch in STAPL discrete ordinates particle
transport code.

All experiments were run on a 16 processor HP V2200 with
4GB of memory running in dedicated mode. All speedups re-
ported represent the ratio between the sequential algorithm’s
running time and its parallel counterpart.

A. STAPL pContainers: The pTree

Several containers in STL are implemented with Red-Black
trees. To parallelize algorithms using sets, multisets, maps, etc.,
we have implemented a parallel tree container (pTree).

The parallel insertion and deletion operations for a pTree are
assumed to be order-commutative, i.e., we assure the user of
such a container that its final state (after the global synchroniza-
tion) will contain exactly the same nodes and in the same order

as the corresponding STL tree. However, we do not guaran-
tee anything about the inner structure of the container, i.e., the
results are only guaranteed to be sequentially consistent at syn-
chronization points. The STAPL implementation of this con-
tainer requires only negligible additional memory over its se-
quential counterpart, thus assuring scalability.

There are two types of tree operations: (i) Bottom-up opera-
tions start from the leaves and go upward until they reach the
root, and (ii)Top-down operations start from the root and go
down until they reach a leaf. Usually, top-down operations are
Read operations and bottom-up operations are Write/Read.

Sub−Trees

Boundary nodes

Fig. 5. pTree structure

In Fig. 5 we show the general pTree structure. Each processor
locally manages one or more subtrees. The topmost tree struc-
ture, called the base, has the same root as the tree and its leaves
(called boundary nodes) are roots of subtrees. The base con-
nects the subtrees and together they form a tree. All operations
performed on subtrees are local to the processor which “owns”
the subtree and can be executed in parallel, while operations
on the base are executed atomically. Atomic operations on the
base ensure overall tree coherence and preserve tree and subtree
properties. The base has the following properties: (i) every base
leaf is the root of a subtree, and (ii) all operations performed on
the base are atomic. Each processor owns one or more boundary
nodes (and hence subtrees). A base that yields good parallel per-
formance will have: (i) a small number of nodes to minimize the
time in critical sections, and (ii) the resulting subtrees should be
balanced (in their number of nodes) to assure good load balance.

We provide a generic way for parallelizing each type of tree
operation. Usually bottom-up operations are Read/Write oper-
ations and are required to maintain tree properties. Generally,
the height of the propagation (distance up from the leaf) is dy-
namically determined – as soon as the desired property is ob-
tained, then the operation finishes. Propagations through (up or
down) the base are atomic. Bottom-up operations on subtrees
are local and independent. As soon as a bottom-up operation
reaches the base, it locks it (selectively), finishes its process-
ing, and then releases the locks. In many cases, only a small
fraction of the bottom-up operations propagate information to
the base. In our experimental results for randomized input data,
the number of bottom-up operations that reach the base is very
small, and grows extremely slowly with data size. Top-down
operations start from the root and move down the tree until they
reach a leaf (e.g., search operations). Concurrent top-down op-
erations could create a bottleneck at the base if proper care is
not taken. A naive implementation could start every operation
from the root, which would make the base a hot-spot (even if the
base were not locked, it would require broadcast of the base to
all processors). In top-down search operations (as are the ma-

6

2 4 6 8 10 12 14 16
1

2

3

4

5

6

7

8

9

10

Number of processors

S
pe

ed
up

Speedup for Parallel Insertion in Red−Black tree

10 K
50 K
100 K
500 K
1 M
2 M
3 M

Data Size

(a)

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

20

Number of processors

E
xe

cu
tio

n
tim

e
(s

ec
)

 Execution time (sec) for
Parallel Insertion on 1 million integers

(b)

Fig. 6. (a) Speedup of parallel insertion of Red-Black trees (b) Execution time
for parallel insertion in Red-Black trees for 1 million integers

jority of top down operations), it is not always necessary to start
searching from the root. Instead, each processor could simply
start searching from the roots if its subtrees, and avoid reading
the base.

Typically, a parallel insertion of multiple elements into a
pTree will consist of two or more fully parallel phases. Ini-
tially, each processor has multiple elements to insert into the tree
(not necessarily its own subtree(s)). In the first parallel phase,
each processor determines which of its original elements should
be inserted into which subtrees; this requires that all processors
know/read the boundary nodes of the pTree. In the next phase,
the elements to be inserted into each subtree will be collected
into buckets in the corresponding processors’ memory. This
involves a prefix computation of � elements for each bucket,
and then a total exchange operation to place the elements in the
correct buckets. The prefix computation may be executed se-
quentially or in parallel, depending on the number of processors
and subtrees. In the final phase, which is executed in parallel,
each processor will insert the elements in its buckets into its sub-
tree(s). This phase requires no communication, but may involve
atomic update of the base.

We used STAPL to parallelize the STL Red-Black tree. Fig-
ure 6(a) shows the speedup for parallel insertion in Red-Black

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

processors

S
pe

ed
up

1.0E4
1.0E5
1.0E6
1.0E7
Ideal

Fig. 7. Parallel Find on Integers

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

processors

S
pe

ed
up

1.0E4
1.0E5
1.0E6
1.0E7
Ideal

Fig. 8. Parallel Inner Product on Integers

trees. For these experiments the initial size of the tree was
50,000. We have chosen to start our parallel insertion in a tree
which already has nodes in it, since we need to create a base
first. Note that the performance is scalable as the work per pro-
cessor remains constant. In figure 6(b) we show the raw execu-
tion times on different numbers of processors for the insertion
of one million integers in a Red-Black tree.

B. STAPL Basic Algorithms

Figures 7 and 8 show the speedups obtained by STAPL’s
p inner product and p find pAlgorithms over their (sequential)
STL counterparts. The speedups reported for p find are the aver-
age speedups for fifty runs, each run having the key in a different
location of the input vector (to obtain a uniform distribution). If
the key value is very close to the beginning of the first ��� � ele-
ments (assuming block scheduling) then the STL algorithm will
be faster than the STAPL one because pfind must wait for all
processors to finish their search before gathering the results and
returning the location. The closer the key value is to the end of
the search space the greater the speedup of the parallel algorithm
will be. We are implementing a faster version that can interrupt
the parallel loop as soon as a key is found.

The speedups reported for p inner product are also the av-
erage of fifty executions. The algorithm is not input depen-
dent, but multiple runs were done to ensure an accurate tim-
ing was obtained. Figure 8 shows the speedup obtained by the

7

Installation Benchmarks

Architecture &
Environment Performance

Algorithm

Data Repository

User
Code

Run−Time
Tests

Parallel
Algorithms

Run−Time
System

STAPL
Model

Data Characteristics Algorithmic Choices

Run−Time Tests

Selected Algorithm

Adaptive Executable

Fig. 9. Adaptive Framework

p inner product algorithm. Super-linear effects are due to
cache effects. When data sizes are small it is not profitable to
execute in parallel.

To evaluate the profitability of parallelization, each STAPL
pAlgorithm has instrumentation code that checks data size (as
an approximation of workload) and decides automatically when
to use the STAPL version and when to use STL. The threshold
data size for this decision is determined experimentally for each
machine during STAPL’s installation on the system.

C. Algorithm Adaptivity

Sequential computing benefits from the fact that the relative
performance of several algorithms solving the same problem can
be successfully modeled without the need to use detailed infor-
mation about the environment or the problem instance. How-
ever, parallel computing greatly increases the sensitivity to these
external influences, often making it less clear which approach to
use for a given situation. Specifically, the best parallel algorithm
to use often is sensitive to:
Architecture - processor to memory interconnection network,
communication network, and available resources.
Environment - thread management and operating system policy
(e.g., memory allocation and management, migration policies).
Data Characteristics - algorithmic sensitivity to input data type
or layout.

To ensure maximum performance across a number of dif-
ferent architectures, environments and data characteristics, we
must adapt our approach to the dynamic context of the problem.
To this end, we have developed an adaptive framework, shown
in Figure 9, to enable STAPL to select the best algorithm given
the dynamic situation.

The framework begins by collecting statically available infor-
mation about the architecture and environment, and storing it
in a data repository to facilitate later analysis. It also requires
installation benchmarks of various algorithms to collect perfor-
mance characteristics. This dynamic testing can be aided by
static information. For instance, if the cache sizes in the mem-

ory hierarchy are known, the data sizes to benchmark can be
selected around cache boundaries.

Once this information has been collected, a model is gener-
ated to predict the best algorithm based on various execution
parameters. This off-line analysis is used to generate simple
and inexpensive run-time tests that are inserted into the STAPL
functions. Coupling this information together with a user’s code
produces an adaptive executable. The executable can effectively
select the most appropriate algorithm based on the dynamic data
characteristics and available algorithms. The results of each exe-
cution can also be stored in the repository, allowing for periodic
updates to the run-time tests for increased precision.

C.1 Application: Parallel Sorting

As an example of algorithm selection in STAPL, we have ap-
plied the adaptive framework to parallel sorting. Sorting is a
fundamental function in a large number of codes, and STL con-
tains a number of sort functions which STAPL parallelizes. We
first discuss the specific framework implementation, then give
an example of adaptive sort selection.

Implementation

The data repository is implemented as a PostgreSQL
database. Information about architecture and environment, such
as number of processors, the amount of main memory, and a list
of the various cache levels and their respective sizes, is collected
from header files and system calls. Algorithm performance in-
cludes information such as execution time, input parameters,
data characteristics, and measures of statistical confidence.

For installation benchmarks, the number of processors and in-
put size and data type are varied and tested for each the available
algorithms. In addition, values of algorithm input parameters are
varied where applicable.

We model the information in the database using Quinlan’s
ID3 algorithm to generate a decision tree model of the predic-
tions inducted from the benchmarking runs [22]. This approach
works well for sorting on the systems we have studied; however,
we in general envision a toolbox of modeling approaches that al-
lows us to choose among competing analytical techniques.

Sort Strength Weakness
Column time optimal many passes
Merge low overhead poor scalability
Radix extremely fast integers only
Sample two passes high overhead

Fig. 10. Parallel Sort Summary

The run-time tests are directly generated from the decision
tree, and inserted as a series of nested if-then statements into the
STAPL source code. We have implemented four shared memory
parallel sorts from which to choose (See Fig. 10). Column sort
is a version of one of the first parallel sorts to prove a

��������� �
	
lower bound [19], [12]. Merge sort is an implementation of par-
allel odd-even merge sort [2]. Radix sort is a version of the
commonly known linear time sequential sort for integers, imple-
mented by parallel counting [5], [10]. Sample sort is a two pass
technique that first samples the data to distribute it into discrete
buckets, and then sorts each bucket independently [10], [14].

8

When STAPL, augmented with run-time tests, is compiled
with a user’s code (we use a simple program that generates ran-
dom data and then sorts), an adaptive executable is produced. At
run-time, the if-then tests are executed during a call to STAPL
sort, and the best parallel sort is selected and executed.

Results

We first consider how to adaptively select sorts across differ-
ent architectures. This experiment was run using 10 million ran-
dom integers as input on three different machines. The V2200
is a Hewlett Packard system that contains 16 processors with
2MB L2 caches and 8 memory banks connected by a crossbar.
The Power Challenge is an SGI system with 24 processors with
1MB L2 caches and a single shared memory connected by a
bus. The SGI Origin 2000 is a DSM, configured as a hypercube,
where each node contains 2 processors with 4MB L2 caches and
a single memory bank. Speedup is measured as the sequential
STL sort’s execution time divided by a given parallel sort’s time.

Figures 12, 13, and 14 demonstrate the sorts on the three sys-
tems. As expected, radix sort is the clear winner (we’re sorting
integers). However, given that many other data types are possi-
ble, we must also consider the other sorts’ performance. Merge
sort runs very well on 1-4 processors, but fails to scale well to
higher number of processors. On the HP V2200, sample sort
is the best choice for 5-16 processors, yet on the two SGI ma-
chines, column sort is the best. This difference is significant,
with the correct choice affecting performance by up to 34%.

We also found that algorithmic scalability varied by machine.
As seen in Figure 13, contention on the bus in the Power Chal-
lenge causes all the sorts to lose scalability at higher numbers of
processors. Figure 14 shows a substantial loss of scalability for
all sorts on the Origin 2000. This is due to the input not being
properly distributed between processors, and is a problem we
are addressing since it is not only limited to Origin systems.

Regardless of these machine specific features, the adaptive
framework can still generate appropriate run-time tests for a spe-
cific machine. Our installation tests varied processor counts be-
tween two and eight, along with element counts ranging from
50,000 to 10 million. Ten decision tree creation iterations were
run through our model on the V2200, each using a different 10
percent of the data to test a decision tree created with the re-
maining 90 percent.

if (data_type = INTEGER)
radix_sort()

else if (num_procs < 5)
merge_sort()

else sample_sort()

Fig. 11. Sample Run–Time Test

The experiment yielded an average tree accuracy of 99 per-
cent, representing a single mis-prediction by one of the trees.
Figure 11 shows code generated from a generated decision tree.
This code represents exactly the adaptation desired to correctly
fit the cases mentioned earlier.

Although this is a simple example, it demonstrates our frame-
work’s ability to generate inexpensive run-time tests based on
offline analysis. For sorting, we are working to make our selec-
tion process more sophisticated by incorporating a run-time test

1 2 4 8 16
Number of Processors

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

ideal
column
merge

radix
sample

Fig. 12. Sorting on a HP V2200

1 2 4 8 16
Number of Processors

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

ideal
column
merge

radix
sample

Fig. 13. Sorting on a SGI Power Challenge

1 2 4 8 16
Number of Processors

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

ideal
column
merge

radix
sample

Fig. 14. Sorting on a SGI Origin 2000

of presortedness into the algorithm selection process. Our tests
show that this data characteristic can greatly affect the perfor-
mance of some of the comparison-based approaches.

Adaptive Parameter Selection

Once an algorithm has been selected for a given situation, it
is often possible to further adapt by the selection of key param-
eters. One example is the number of bits to consider (�) on each
pass of radix sort. Table 15 shows the optimal value of � for var-
ious ratios of number of elements (�) over number of processors
(�). The discrete steps of 6, 8, and 11 correspond to radix sort
using 6, 4, and 3 passes over the 32-bit integers. These steps in
� correspond to overflows into lower levels of the memory hi-
erarchy. Radix sort requires at least twice as much memory as
the input, meaning 2MB are used for

���������	���
4-byte integers

9

(
� ����� ������� 	 . Since this no longer fits into L2 cache, it makes

sense that fewer iterations would yield better performance by
producing fewer cache misses. A similar effect occurs at 4k el-
ements.

��� � Optimal �

1250 6
2500 6
5000 8
50,000 8
250,000 11
500,000 11
1,000,000 11

Fig. 15. Optimal Selection of � in Radix Sort

The performance gain of adaptively choosing � based on ��� �
as opposed to fixing � at a value of 8 yielded an average perfor-
mance gain of 7%. We feel the benefit of the adaptive technique
will increase even more on architectures with deeper memory
hierarchies and steeper increases in latencies between levels.

As our results clearly indicate, the best sort varies across ar-
chitecture and number of processors being used. Our framework
provides a straightforward means of generating run-time tests to
correctly select the best sort for a given situation. In addition,
the framework can focus on a specific sort and produce addi-
tional tests, such as for the selection of � , to yield additional
gain.

V. CONCLUSIONS AND FUTURE WORK

STAPL is a parallel programming library designed as a super-
set of STL. STAPL provides parallel equivalents of STL con-
tainers, algorithms, and iterators, which allow parallel applica-
tions to be developed using the STAPL components as build-
ing blocks. Existing applications written using STL can be par-
allelized semi-automatically by STAPL during a preprocessing
phase of compilation that replaces calls to STL algorithms with
their STAPL equivalents. Our experiments show the perfor-
mance of applications that utilize the automatic translation to be
similar to the performance of applications developed manually
with STAPL. The automatic translation of STL code to STAPL,
the handling of the low level details of parallel execution by the
parallel region manager, and the adaptive run-time system allow
for portable, efficient, and scalable parallel applications to be de-
veloped without burdening the developer with the management
of all the details of parallel execution.

STAPL is functional and covers almost all of the equivalent
STL functionality. However much work lies ahead: Implement-
ing several algorithmic choices for each function, full support of
the recursive pRange on very large machines, a better RTS and
its own, parallel memory manager are only a few of the items on
our agenda.

Acknowledgements

We would like to thank Danny Rintoul of Sandia National
Laboratories for providing us with a sequential C++ molecular
dynamics application that has been an excellent test code for
STAPL development.

REFERENCES

[1] The CHARM++ Programming Language Manual.
http://charm.cs.uiuc.edu, 2000.

[2] Selim Akl. Parallel Sorting Algorithms. Academic Press, Inc., 1985.
[3] N. M. Amato, J. Perdue, A. Pietracaprina, G. Pucci, and M. Mathis. Pre-

dicting performance on SMPs. a case study: The SGI Power Challenge.
In Proc. International Parallel and Distributed Processing Symposium
(IPDPS), pages 729–737, 2000.

[4] N. M. Amato, A. Pietracaprina, G. Pucci, L. K. Dale, and J. Perdue. A
cost model for communication on a symmetric multiprocessor. Technical
Report 98-004, Dept. of Computer Science, Texas A&M University, 1998.
A preliminary verson of this work was presented at the SPAA’98 Revue.

[5] Nancy Amato, Ravishankar Iyer, Sharad Sundaresan, and Yan Wu. A com-
parison of parallel sorting algorithms on different architectures. Technical
Report TR98-029, Department of Computer Science, Texas A&M Univer-
sity, January 1996.

[6] Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel
Tanase, Nathan Thomas, Nancy Amato, and Lawrence Rauchwerger.
Stapl: An adaptive, generic parallel programming library for c++. Techni-
cal Report TR01-012, Dept. of Computer Science, Texas A&M University,
June 2001.

[7] Emery Berger, Kathryn McKinley, Robert Blumofe, and Paul Wilson.
HOARD: A scalable memory allocator for multithreaded applications. In
International Conference on Architectural Support for Programming Lan-
guages and Operatings Systems (ASPLOS), 2000.

[8] Guy Blelloch. Vector Models for Data-Parallel Computing. MIT Press,
1990.

[9] Guy Blelloch. NESL: A Nested Data-Parallel Language. Technical Report
CMU-CS-93-129, Carnegie Mellon University, April 1993.

[10] Guy Blelloch, Charles Leiserson, Bruce Maggs, Greg Plaxton, Stephen
Smith, and Marco Zagha. A comparison of sorting algorithms for the
connection machine cm-2. In Symposium on Parallel Algorithms and Ar-
chitectures (SPAA), 1991.

[11] C. Chang, A. Sussman, and J. Saltz. Object-oriented runtime support for
complex distributed data structures, 1995.

[12] Geeta Chaudhry, Thomas Cormen, and Leonard Wisniewski. Columnsort
lives! An efficient out-of-core sorting program. In Symposium on Parallel
Algorithms and Architectures (SPAA), 2001.

[13] David Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishna-
murthy, Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Par-
allel programming in Split-C. In International Conference on Supercom-
puting, November 1993.

[14] Andrea Dusseau, David Culler, Klaus Erik Schauser, and Richard Mar-
tin. Fast parallel sorting under LogP: Experience with the CM-5. IEEE
Transactions on Parallel and Distributed Systems, 7(8):791–805, 1996.

[15] Matteo Frigo, Charles Leiserson, and Keith Randall. The implementation
of the Cilk-5 multithreaded language. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 1998.

[16] International Standard ISO/IEC 14882. Programming Languages – C++,
1998. First Edition.

[17] Elizabeth Johnson. Support for Parallel Generic Programming. PhD the-
sis, Indiana University, 1998.

[18] Elizabeth Johnson and Dennis Gannon. HPC++: Experiments with the
parallel standard library. In International Conference on Supercomputing,
1997.

[19] Tom Leighton. Tight bounds on the complexity of parallel sorting. IEEE
Transactions On Computers, C–34:318–325, 1985.

[20] David Musser, Gillmer Derge, and Atul Saini. STL Tutorial and Reference
Guide, Second Edition. Addison-Wesley, 2001.

[21] C.G. Plaxtion N.S. Arora, R.D. Blumofe. Thread scheduling for multipro-
grammed multiprocessors. In Proceedings of the 10th ACM Symposium
on Parallel Algorithms and Architectures, June 1998.

[22] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106,
1986.

[23] J. Reynders. Pooma: A framework for scientific simulation on parallel
architectures, 1996.

[24] Robert Sedgewick. Algorithms in C++. Addison-Wesley, 1992.
[25] Thomas Sheffler. A portable MPI-based parallel vector template li-

brary. Technical Report RIACS-TR-95.04, Research Institute for Ad-
vanced Computer Science, March 1995.

[26] Bjarne Stroustrup. The C++ Programming Language, Third Edition.
Addison-Wesley, 1997.

[27] Gregory Wilson and Paul Lu. Parallel Programming using C++. MIT
Press, 1996.

[28] Paul Wilson, Mark Johnstone, Michael Neely, and David Boles. Dynamic
storage allocation: A survey and critical review. In International Workshop
on Memory Management, September 1995.

10

