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Abstract

Generic programming is an attractive paradigm for de-
veloping libraries for high-performance computing because
of the simultaneous emphases placed on generality and ef-
ficiency. In this approach, interfaces are based on sets of
specified requirements on types, rather than on any par-
ticular type, allowing algorithms to inter-operate with any
data type meeting the necessary requirements. These sets
of requirements, known as concepts, can specify syntac-
tic as well as semantic requirements. Although concepts
are fundamental to generic programming, they are not sup-
ported as first-class entities in mainstream programming
languages, thus limiting the degree to which generic pro-
gramming can be effectively applied. In this paper we ad-
vocate better syntactic and semantic support for concepts
and describe some straightforward language features that
could better support them. We also briefly discuss uses for
concepts beyond their use in constraining polymorphism.

1 Introduction

Generic programming is an emerging programming
paradigm for creating highly reusable domain-specific soft-
ware libraries. Several aspects of this approach make it at-
tractive for developing libraries for high-performance com-
puting. Generic programming emphasizes finding the most
general (or abstract) formulations of algorithms and then
implementing efficient generic representations of them. Al-
though these two features, generality and efficiency, are of-
ten considered to be opposing forces, generic algorithms are
expected to be usable in as many situations as possible with-
out sacrificing any performance at all.

Fundamental to realizing generic algorithms is the no-
tion of abstraction: generic algorithms are specified in terms
of abstract properties of types, not in terms of particular
types. Following the terminology of Stepanov and Austern,
we adopt the term concept to mean the formalization of an
abstraction as a set of requirements on a type (or on a set of
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types) [2]. These requirements may be semantic as well as
syntactic.

Although many languages have support for “generics,”
concepts are not true first-class entities in current program-
ming languages. As a result, it is difficult to fully leverage
the potential of generic programming in modern software
construction. For example, the work in [12] describes seri-
ous scalability issues and other difficulties that arise when
attempting to realize generic programming in languages
that do not support the expression of even simple concepts
(e.g., those including only syntactic requirements). Sec-
tion 3 analyzes the expression of syntactic requirements for
concepts and their use in library development.

In almost all programming languages and all uses of con-
cepts in actual software development practice to date, se-
mantic requirements have only appeared in externally and
informally expressed concepts, such as in the SGI concept
descriptions for the STL [2, 28], rather than in a machine-
checkable concept language. The main exceptions have
been the tagging of certain operators with semantic at-
tributes such as commutativity and associativity, and check-
ing for their presence during instantiation; e.g., in the Ax-
iom computer algebra system [18] or in very high level pro-
totyping languages like Maude [8] (which does allow the
expression of semantic equations within the language, but
does not back them up with formal inference capabilities
beyond their use as rewriting rules in symbolic executions).
In Section 4 we discuss less limited forms of semantic con-
straint checking implemented in STLlint, a tool we devel-
oped for static checking of C++ programs that use the STL
or other libraries in the same spirit [13, 14]. We further dis-
cuss even more general forms of semantic constraint check-
ing that are feasible using formal proof-checking methods.

In addition to constraints on functionality, semantic con-
cepts can include performance constraints. We have ex-
perimented extensively with expression and organization of
such constraints in algorithm concept taxonomies. A major
use of such taxonomies is to provide a well-developed stan-
dard to refer to while designing and implementing a generic
algorithm library. We began by developing sequential algo-
rithm concept taxonomies [27] for two fundamental prob-
lem domains, sequence algorithms from the STL and graph
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algorithms from BGL [30]. In these cases, useful perfor-
mance constraints to place on the algorithms were already
fairly well-understood at the level of asymptotic bounds,
but making distinctions between some of the algorithms in
these domains requires more precision; finding ways to ex-
press that precision so that the constraints can make useful
distinctions has been a major focus of the work. With par-
allel and distributed algorithms, there are additional chal-
lenges in developing a library standard in terms of concept
taxonomies, as we discuss in section 5.

2 Concept-bounded polymorphism
A concept consists of four different kinds of requirements:
associated types, function signatures, semantic constraints,
and complexity guarantees. The associated types of a con-
cept specify mappings from the modeling type to other col-
laborating types (such as the mapping from a container to
the type of its elements). The function signatures specify
the operations that must be implemented for the modeling
type. Alternatively, these can be expressed as valid expres-
sions, which specify operator and function invocations that
must be supported by the modeling type or types. A syntac-
tic concept consists of just associated types and function
signatures, whereas a semantic concept also includes se-
mantic constraints and complexity guarantees [21]. A con-
cept may incorporate the requirements of another concept,
in which case the first concept is said to refine the second.
Types that meet the requirements of a concept are said to
model the concept.

Generic programming has its roots in the higher-order
programming style often used in functional programming
languages [22]. Functions are generalized by type and func-
tion parameters. The higher-order style can express generic
functions, but has the obvious disadvantage of requiring
a large number of parameters for generic functions; each
function that the implementation of a generic function re-
lies on must be explicitly passed to the generic function.
This style obtains genericity using only unconstrained para-
metric polymorphism.

A rudimentary approach for expressing constraints on
type parameters is the where clause mechanism, various
forms of which can be found in CLU [26], Theta [10], and
Ada [35]. A where clause lists function signatures in the
declaration of a generic function. The listed functions must
exist at each call site, and are implicitly passed into the
generic function. This makes calls to generic functions less
verbose. Where clauses do not, however, provide a way to
group requirements into reusable entities, i.e., concepts.

Haskell type classes [36] provide constraint mechanisms
that share much in common with concepts. Type classes
contain function signatures, and optionally their default im-
plementations. Type class constraints define the “context,”
the set of functions that can be used in a generic function.

The functions in required contexts are implicitly passed into
the generic function. Types must be explicitly declared to be
instances of type classes. Thus, when using type classes to
represent concepts, the modeling relation between types and
concepts is by nominal conformance. Type classes provide
a relatively direct representation for concepts. Type classes
cannot, however, properly encapsulate associated types, as
discussed in [12].

ML signatures are a structural constraint mechanism that
can represent syntactic concepts. A signature describes the
public interface of a module, or structure as it is called in
ML. A signature declares which type names, values (func-
tions), and nested structures must appear in a structure. A
signature also defines a type for each value, and a signa-
ture for each nested structure. The ML mechanism for
constrained genericity is functors, which are metafunctions
from structures to structures. Each argument of a functor
is constrained to conform to a particular signature. This is
less than ideal for generic programming, where one wants
to constrain the type parameters of a single function. Each
structure parameter to a functor must be passed in explicitly,
which makes calls verbose [12].

2.1 Bounded quantification
To describe constrained polymorphism mechanisms we use
the general setting of qualified types [19] to allow for a
more uniform presentation. A qualified type is of the form
P => τ where P is some predicate expression and τ is a
type expression. The intuition is that if P is satisfied then
P => τ has type τ . With t representing one or more type
parameters, a qualified polymorphic type is written:

∀t. P => τ

In this framework, a concept-bounded type is a qualified
type where the predicates are assertions ci(ti) stating that
the types ti model the concept ci. Thus, concept-bounded
polymorphic types have the form:

∀t. c1(t1) ∧ · · · ∧ cn(tn) => τ

where ti ⊆ t and τ is a type expression possibly referring
to types in t.

Cardelli and Wegner [6] were the first to suggest using
subtyping to express constraints. The basic idea is to use
subtyping assertions in the predicate of a qualified type. The
predicates are of the form t ≤ σ where ≤ denotes the sub-
type relation, t is a type variable, and σ is a type expression.
In this approach, polymorphic types are of the form

∀t. t ≤ σ => τ [t]

where the type expression τ [t] may refer to t.
In the initial form of bounded quantification, the type

expression σ is not allowed to refer to t. This restriction
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was removed in the generalization to F-bounded polymor-
phism by Canning et al. [5], which allows recursive con-
straints. F-bounded polymorphism was further generalized
to systems of mutually recursive subtyping constraints by
Curtis [9, 11]. A recursively subtype-constrained type is of
the form:

∀t. τ1 ≤ σ1 ∧ · · · ∧ τn ≤ σn => τ

where the type variables in t can appear anywhere in the
type expressions τi, σi, and τ . This is kind of constraints
for type expressions, with some minor restrictions, are used
in the generics extensions of Java and C#.

3 Supporting syntactic concepts

We reported notable difficulties in following the generic
programming approach with several object-oriented lan-
guages, including Generic Java, C#, and Eiffel [12]. All
these languages use subtyping to constrain type parame-
ters. Even though subtype-based constraints may not to be
ideal for generic programming, most of the difficulties we
encountered originate from how languages define subtyp-
ing, rather than being inherent to subtype-based constraints.
Current object-oriented languages could be extended to bet-
ter support generic programming without drastic modifica-
tions to or departing significantly from the object-oriented
paradigm. In particular, this section discusses how express-
ing associated types and constraints on them could be better
supported, and describes extensions needed to support con-
straint propagation and multi-type concepts.

3.1 Associated types

Associated type constraints are a mechanism to encapsulate
constraints on several functionally dependent types into one
entity. For example, consider Figures 1 and 2 showing two
concepts from the domain of graphs. The Incidence Graph
concept requires the existence of vertex and edge associated
types, and places constraints on them.

All but the most trivial concepts have associated type re-
quirements, and thus a language for generic programming
must support their expression. Generic Java and C# do not,
however, provide a way to access and place constraints on
type members of generic type parameters. Nevertheless, as-
sociated types can be emulated using other language mech-
anisms. A common idiom used to work around the lack of
support for associated types is to add a new type parame-
ter for each associated type. This approach is frequently
used in practice. The C# IEnumerable<T> interface, from
the Generic C# collection library, for iterating through con-
tainers serves as an example. When a type implements
IEnumerable<T> it must bind a concrete value, the value
type of the container, to the type parameter T. The graph
concepts in Figure 1 and 2 can be expressed as follows:

interface GraphEdge<Vertex> {
Vertex source();
Vertex target();

}
interface IncidenceGraph<Vertex, Edge, OutEdgeIter>

where Edge : GraphEdge<Vertex>,
where OutEdgeIter : IEnumerable<Edge> {
OutEdgeIter out edges(Vertex v);
int out degree(Vertex v);

}

The main problem with this technique is that it fails to
encapsulate associated types and their constraints into a sin-
gle concept abstraction. Every use of a concept as a con-
straint of a generic function or a refinement declaration must
list all of its associated types, and all constraints on those
types. In a concept with several associated types, this be-
comes burdensome. In the study described in [12], the num-
ber of type parameters in generic algorithms was often more
than doubled due to this effect.

Adding a direct representation for associated types to
an object-oriented language, such as Generic C#, can be
achieved by allowing member types in interfaces. Such
members are placeholders for types, for which interfaces
can place subtype constraints. Classes implementing such
interfaces must bind a concrete value to every member type.

As an example, using member types the graph concepts
from Figures 1 and 2 could be expressed as:

interface GraphEdge {
type Vertex;
Vertex source();
Vertex target();

}
interface IncidenceGraph {

type Vertex;
type Edge : GraphEdge;
Vertex == Edge.Vertex;

type OutEdgeIter : IEnumerable<Edge>;

OutEdgeIter out edges(Vertex v);
int out degree(Vertex v);

}

The GraphEdge interface declares the member type
Vertex. The IncidenceGraph interface has two associated
types: Vertex and Edge. Note the two constraints: Edge
must be a subtype of GraphEdge; and Vertex must be the
same type as the associated type, also named Vertex, of
Edge. The member types correspond directly to the asso-
ciated types in Figure 2, and the subtype constraints corre-
spond to requirements that types model concepts. A trans-
lation from the member type representation for associated
types into the above described emulation that uses an extra
type parameter for each associated type is described in [17].
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Expression Return Type or Description

Edge::vertex type Associated vertex type
source(e) Edge::vertex type
target(e) Edge::vertex type

Figure 1. Graph Edge concept. Type Edge is a model of Graph Edge if the above requirements are
satisfied. Object e is of type Edge.

Expression Return Type or Description

Graph::vertex type Associated vertex type
Graph::edge type Associated edge type
Graph::out edge iterator Associated iterator type
out edge iterator::value type == edge type
edge type models Graph Edge
out edge iterator models Iterator
out edges(v,g) out edge iterator
out degree(v,g) out edge iterator

Figure 2. Incidence Graph concept. Type Graph is a model of Incidence Graph if the above requirements
are satisfied. Object g is of type Graph and object v is of type Graph::vertex type.

3.2 Constraint propagation

Mainstream object-oriented languages do not support con-
straint propagation; the constraints on the type parameters
to generic types do not automatically propagate to uses of
those types. For example, although a container concept
may require that its iterator type model a specified iterator
concept, any generic algorithm using that container concept
will still need to repeat the iterator constraint. As another
example, consider the declaration of a function for finding
the first neighbor of a vertex in a graph;

G Vertex first neighbor<G, G Vertex,
G Edge, G OutEdgeIter>(G g, G Vertex v)

where G : IncidenceGraph
<G Vertex, G Edge, G OutEdgeIter>;

Without constraint propagation, the declaration becomes:

G Vertex first neighbor<G, G Vertex,
G Edge, G OutEdgeIter>(G g, G Vertex v)

where G : IncidenceGraph
<G Vertex, G Edge, G OutEdgeIter>,

where G Edge : GraphEdge<G Vertex>,
where G OutEdgeIter : IEnumerable<G Edge>;

The additional constraints in this example merely repeat
properties of the associated types of G which are already
specified by the IncidenceGraph interface. A type cannot
be bound to G unless it inherits from the IncidenceGraph
interface. This requires the type to provide the associated
types Vertex, Edge, and OutEdgeIter, such that they sat-
isfy the constraints specified in the IncidenceGraph inter-
face. Thus, the compiler could safely assume that G Vertex,
G Edge, and G OutEdgeIter in the generic first neighbor
function also satisfy the constraints in IncidenceGraph.

Not making this assumption greatly increases the verbosity
of generic code and adds extra dependencies on the exact
contents of the IncidenceGraph interface, thus breaking the
encapsulation of the concept abstraction. This problem is
not inherent to subtype-based constraint mechanisms. For
example, the Cecil language automatically propagates con-
straints to uses of generic types [7, § 4.2]. Constraint prop-
agation can be implemented by copying the type parameter
constraints from each interface to each of the uses of the
interface.

3.3 Subclassing vs. subtyping

In subtype-bounded polymorphism constraints are imposed
using the subtyping relation, so the expressiveness of the
constraints very much depends on how the subtype rela-
tion is defined in the language. Much of the literature on
bounded and F-bounded polymorphism [5,6] discusses lan-
guages with records, variants, and recursive types, and a
structural subtyping relation. Main-stream object-oriented
languages, however, use a subtype relation based on named
conformance, which requires explicit subtype declarations
in addition to the structural conformance requirement.

Object-oriented languages commonly unify the subtype
and the subclass relation, which is established in the class
declarations. This prevents later additions to the set of su-
perclasses of a given class, directly affecting the modeling
relation between types and concepts: If a type structurally
conforms to the requirements of a generic algorithm, but
is not a nominal subtype of the required interface, the type
cannot be used as the type parameter of the algorithm; types
cannot retroactively be declared to be models of a given
concept. Such retroactive modeling is, however, important
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when combining separately developed libraries.
The lack of retroactive modeling is not an inherent

problem of subtype-based constraints. Retroactive subtyp-
ing can be implemented for object-oriented languages, as
demonstrated by several authors [3,4,7,15,24]. Retroactive
modeling is further discussed in [12].

3.4 Constraining multiple types
Some abstractions define interactions between multiple in-
dependent types, in contrast to an abstraction with a main
type and several associated types. An example of this is
the mathematical concept Vector Space in Figure 3 (more
examples can be found in [20]).

In this example it is tempting to think that the scalar
type should be an associated type of the vector type. For
example, the class vector<complex<float>> would have
complex<float> as its scalar type. However, in general, the
scalar type of a vector space is not determined by the vec-
tor type. The popular linear algebra subroutine library LA-
PACK contains examples that demonstrate this. One such
example is the CLACRM subroutine, which multiplies a
complex matrix by a real matrix. The vector-scalar mul-
tiplications performed in this subroutine contain multiplica-
tions between complex<float> and float, which are signif-
icantly more efficient than converting the second argument
to a complex number and performing complex multiplica-
tion [25]. Modeling the scalar type of a vector as an associ-
ated type would lead to this inefficient algorithm.

It is cumbersome to express multi-parameter concepts
using object-oriented interfaces and subtype-based con-
straints. One must split the concept into multiple interfaces:

interface VectorSpace Vector<V, S>
: AdditiveAbelianGroup<V>

{ V mult(S); }
interface VectorSpace Scalar<V, S> : Field<S>
{ V mult(V); }

Algorithms that require the Vector Space concept must
specify two constraints now instead of one. In general, if
a concept hierarchy has height n, and places constraints on
two types per concept, then the number of subtype con-
straints needed in an algorithm is 2n, an exponential in-
crease in the size of the requirement specification. The con-
straint propagation extension discussed in Section 3.2 ame-
liorates this problem; the exponential increase in the num-
ber of requirements can be avoided. However, the interface
designer must still separate concepts in an arbitrary fash-
ion. This could be overcome by an automatic translation of
multi-parameter concepts into several interfaces.

4 Semantic concept checking
We are gaining valuable experience with semantic con-
cept checking in the forms in which it is implemented

in STLlint [13, 14]. STLlint allows one to extend the
use of semantic properties beyond attribute tag check-
ing to include static detection of range violations (e.g.,
dereferencing a past-the-end iterator), or missing proper-
ties such as the somewhat subtle “multi-pass” requirement
imposed in the Forward Iterator concept (e.g., the STL
max element generic algorithm, which returns an itera-
tor to the maximum element of a sequence, depends on
the multi-pass property, and STLlint can detect the error
of applying max element to a sequence accessed through
istream iterators, which belong only to the Input Iterator
concept and not to Forward Iterator).

Though not the main emphasis of STLlint, it does incor-
porate specifications of refinement relations in an algorithm
concept taxonomy. An algorithm thus declares the concept
it models most specifically. Algorithm specification exten-
sions are introduced via entry/exit handlers for a particular
concept: entry handlers check preconditions and exit han-
dlers check/enforce postconditions. For example, sorting
algorithms introduce a sortedness property that can be used
in checking for proper use of algorithms that require it, such
as binary search, or to suggest an algorithm optimization, as
illustrated by the following actual STLlint warning:

Warning: potential optimization: the incom-
ing sequence [first, last) is sorted,
but will be searched linearly with this algo-
rithm. Consider replacing this algorithm with
one specialized for sorted sequences (e.g.,
lower bound):

vector<int>::iterator i = find(v.begin(), v.end(), 42);

STLlint only suggests optimizations: it does not have
enough semantic information to verify or implement them.

These kinds of semantic checks and suggestions for op-
timizations are achieved in STLlint with specialized infer-
ence methods. We have begun experiments to show that
it is feasible to extend the use of concepts in mainstream
programming to include more general semantic require-
ments. For example, the aforementioned max element al-
gorithm also requires that the sequence element type have
a comparison functor defined on it (either by an overload-
ing of the < operator or supplied through a functor passed
to max element) and that it obey the axioms of the Strict
Weak Order concept (see Figure 4). Presence or absence
of a functor with a suitable signature can be detected in lan-
guages such as ML or Haskell through the use of signatures.
This is possible even in C++, currently through the use of
the Boost Concept-Checking Library [29, 31] but possibly
in the future with concept constraints expressed within the
language as proposed by Stroustrup and Dos Reis [32–34]
to the C++ standards committee. In none of these cases,
however, is there provision to check for satisfaction of the
axioms.

To implement a general semantic checking capability we
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Expression Return Type or Description

mult(v, s) V
mult(s, v) V

Figure 3. Vector Space concept. Types V and S model the Vector Space concept if, in addition to the type
S modeling the Field concept and the type V modeling the Additive Abelian Group concept, the above
requirements are satisfied. Object v is of type V and object s is of type S.

Irreflexive (forall x: domain, not (x < x))
Transitive (forall x, y, z: domain, x < y and y < z implies x < z)

E-Definition (forall x, y: domain, E(x, y) = (not (x < y) and not (y < x)))
E-Transitive (forall x, y, z: domain, E(x, y) and E(y, z) implies E(x, z))

Figure 4. Axioms of a Strict Weak Order concept. From these axioms two additional properties of
E, symmetry and reflexivity, can be derived as theorems, showing that E is in fact an equivalence
relation. These axioms are the minimal requirements on < for correctness of many search or sorting-
related algorithms, including STL’s max element, binary search, sort, etc. Although they are specified in
the C++ standard [16], there is currently no requirement on compiler or library implementors for any
kind of formal check for their satisfaction when instantiating generic algorithms like max element.

are taking advantage of recent advances in proof languages
and proof-checking systems that permit development and
use of proofs at a generic level. In such a system, proofs can
themselves be generic components, in the sense that one can
express a proof once and subsequently instantiate it many
times to prove more specific cases, in much the same way
as one does with generic algorithms.

This strategy enables a second key idea, which is to con-
centrate on the specification and use of semantic properties
of generic library components, rather than broader classes
of software. There are several advantages to such concen-
tration of effort. One is the greater payoff for the (consid-
erable) effort required to carry out proofs, by amortization
over the many possible instances. Another is that we do not
depend on acceptance and mastery of this technology by
large number of programmers; it need only be carried out
by the relatively small number of software designers and
programmers involved in generic library development. Pro-
grammers who merely use the libraries do not need to be
able to produce or to understand the proofs involved.

The proofs needed in semantic concept-checking are
thus supplied by library component developers along with
the specified concept requirements of the components.
Therefore the language processor must only do proof check-
ing, not proof search. As is well-known in the automated or
interactive theorem proving research community, it is much
more efficient to check a given proof than it is to search for
an a priori unknown proof.

For this approach to work, the proof language and check-
ing capability must itself support generalization and spe-
cialization in a natural and effective way. A key break-
through in this area is K. Arkoudas’s notion of a Deno-

tational Proof Language (DPL) [1], which he has imple-
mented in his Athena language and proof checker. DPL
proofs can be written at a sufficiently abstract level that they
can be instantiated to prove properties showing constraints
are satisfied in many different instances, just as generic al-
gorithms can be instantiated many different ways to produce
different useful concrete algorithms.

Proof checking in Athena The Athena language is really
two distinct (but interwoven) languages: one for ordinary
computation, and one for proof. The computation (or ex-
pression) language is similar to ML (but with Scheme-like
syntax); in particular, it has first-class functions, in that
they can be passed into, and returned from, other functions.
Athena’s proof language has language constructs for ordi-
nary computation, including first-class methods, the analog
of ordinary functions, whose purpose is to carry out proofs,
updating the assumption base, an associative memory of
propositions that have been asserted or proved in a proof
session. The assumption base is fundamental to Athena’s
approach to deduction; all proof activity centers around it.

The proof language analog of expression is called a de-
duction. Like expressions, deductions are executed. Proper
deductions (ones which correctly use primitive or pro-
grammed inference methods) produce theorems and add
them to the assumption base; improper deductions result in
an error condition.

Organizing axioms, proofs, and theorems for reuse in
Athena An apparent drawback of the Athena language is
its lack of of code organization capabilities above the level
of functions or methods; i.e., module, class, package or
namespace constructs commonly found in mainstream lan-
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guages intended for development of large programs. Nor is
there a type parameterization construct like generics or tem-
plates, making it appear that functions, methods, axioms,
theorems, and proofs must be “concrete,” that is, about spe-
cific functions and constants, rather than generic.

We have been able to show, however, that we can achieve
both good organization and genericity without such addi-
tional constructs, by taking advantage of Athena’s first-
class functions and methods. We package up sets of ax-
ioms into functions, pass them around to other functions
and methods that need them—and only to those functions
and methods, so no others have to search through them or
have name conflicts with them. Furthermore, we simulate
type-parameterization simply by parameterizing functions
and methods by functions that carry operator mappings.
This approach is illustrated in the way we have already
formalized—and used in proofs—numerous properties of
ordering concepts (such as partial ordering, strict weak or-
dering, total ordering); algebraic concepts (such as monoid,
group, ring, integral domain, field), and sequential compu-
tation concepts (such as container, iterator, range).

5 Parallel and distributed algorithm con-
cepts

In most of the literature, the performance of parallel and
distributed algorithms is typically indicated only in terms of
asymptotic bounds on numbers of messages and time com-
plexities, omitting other performance issues. For example,
local computation at a node is rarely accounted for. How-
ever, mobile and sensor networks, where local computation
is at a premium, are becoming increasingly common. Thus,
when deciding between algorithms, a designer should be
aware of how much local computation is involved. In ad-
dition to specifying requirements, concept descriptions can
also organize and present detailed actual performance mea-
surements. A comprehensive parallel and distributed algo-
rithm concept taxonomy thus aids in our understanding of
algorithms, helps in the design of new ones (based on situ-
ations where no known algorithms for a particular concept
refinement exist), and helps a system designer to pick the
correct algorithm for a particular application.

The distributed algorithms concept taxonomy we are de-
veloping [23] classifies algorithms on seven orthogonal di-
mensions: (1) Problem. This classifies the algorithms based
on the problem that they solve. (2) Topology of the under-
lying network. Some algorithms are designed for special-
ized, while others for arbitrary topologies. Further refining
this concept leads to some of the well known topologies
like ring, completely connected graph, etc. (3) Tolerance
to component failures. Some algorithms do not tolerate
any failures while some can tolerate particular kinds of fail-
ures. Further refining this concept leads to Byzantine and
non-Byzantine failures of nodes and links. (4) Method of

information sharing between processes. We have thus far
concentrated on message passing. (5) Strategy of the al-
gorithm. Further refining this concept leads to well known
paradigms like centralized control, distributed control, ran-
domized, compositional, heart beat, probe echo, etc. (6)
Timing properties required from the underlying network.
Further refining this concept leads to synchronous, asyn-
chronous, and partially-synchronous networks. (7) Process
management. This classification accounts for static and dy-
namic process management capabilities and for algorithms
that allow new nodes to join in dynamically as opposed to
those that do not.

We have begun exploring the development of a paral-
lel algorithms taxonomy, and a corresponding generic li-
brary based on the data-parallel programming paradigm.
Data-parallel programming can achieve greater efficiency
than what is possible with current automated parallelizing
compilers that transform sequential programs into paral-
lel executables. This is true also of programming directly
with low-level concurrency and communication mecha-
nisms, such as threads, processes, locks, semaphores, and
messages, but data-parallel programs can generally be ex-
pressed at a higher level of abstraction. The program-
mer still thinks and programs in parallel, but more ab-
stractly, thus reducing the complexity of parallel program-
ming. As an alternative to a full data-parallel program-
ming language, our concept-based library approach lever-
ages the capabilities of a mainstream base language (in our
case, C++) while concentrating the desired new functional-
ity into library modules. Moreover, this generic program-
ming approach is infinitely extensible and is adaptable—by
design—to the needs of particular application domains.
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