Standard Templates Adaptive Parallel Library
(STAPL)

Lawrence Rauchwerger, Francisco Arzu, and Koji Ouchi

Dept. of Computer Science
Texas A&M University
College Station, TX 77843-3112
http://www.cs.tamu.edu/faculty /rwerger
{rwerger,farzu,kouchi}@cs.tamu.edu

Abstract. STAPL (Standard Adaptive Parallel Library) is a parallel
C++ library designed as a superset of the STL, sequentially consis-
tent for functions with the same name, and executes on uni- or multi-
processors. STAPL is implemented using simple parallel extensions of
C++ which provide a SPMD model of parallelism supporting recursive
parallelism. The library is intended to be of generic use but emphasizes
irregular, non-numeric programs to allow the exploitation of parallelism
in areas such as geometric modeling or graph algorithms which use dy-
namic linked data structures. Each library routine has several different
algorithmic options, and the choice among them will be made adap-
tively based on a performance model, statistical feedback, and current
run-time conditions. Built-in performance monitors can measure actual
performance and, using an extension of the BSP model predict the rel-
ative performance of the algorithmic choices for each library routine.
STAPL is intended to possibly replace STL in a user transparent man-
ner and run on small to medium scale shared memory multiprocessors
which support OpenMP.

1 Motivation

Although multi-processors have become commercially viable, exploiting their
potential to obtain scalable speedups has remained an elusive goal, and today
their use is still mostly confined to research environments. This lack of popular-
ity among users is due to the difficulty of developing parallel applications that
can efficiently exploit the hardware. We believe that parallel processing can be
successful only when the effort to achieve scalable performance across a variety
of applications and architectures is comparable to that of developing sequential
codes.

In sequential computing, standardized libraries have proven to be valuable
tools for simplifying the program development process by providing routines
for common operations that allow programmers to concentrate on higher level
problems. Similarly, libraries of elementary, generic, parallel algorithms would
provide important building blocks for parallel applications or specialized libraries

[2,3,6]. Due to the added complexity of programming parallel machines, we
believe that the potential impact of libraries on the future of parallel computing
will be more profound than for sequential computing. Properly designed libraries
could insulate naive users from managing parallelism by providing routines that
are easily interchangeable with their sequential counterparts, while allowing more
sophisticated users to use their expertise to extract higher performance gains.

Unfortunately, however, designing parallel libraries that are both portable
and efficient is a challenge that has so far not been met. This is due mainly to
the difficulty of managing concurrency and the wide variety of parallel and dis-
tributed architectures. For example, due to the differing costs of an algorithm’s
communication patterns on different memory systems, the best algorithm on one
machine is not necessarily the best on another. On a given machine, the algo-
rithm of choice may vary depending upon the data and run-time conditions (e.g.,
network traffic and system load). We believe programmers should be liberated
from such concerns by parallel libraries that automatically determine which al-
gorithm to use and how to schedule it based on a performance model, statistical
feedback, and run-time conditions.

An important constraint on the development of any software is its inter-
operability with existing codes and standards. The dissemination and eventual
adoption by the public of any new library depends on how well programmers
can interface the old programs with the new software packages. At the same
time, extending or building on top of existing work can greatly reduce both the
developing efforts as well as the users’ learning experience. It is for this reason
that we have chosen to develop a parallel template library (STAPL) that offers
full compatibility with the recently ANSI adopted Standard Template Library
(STL) [5].

In a departure from previous approaches to libraries which have almost ex-
clusively targeted scientific, numerical applications, STAPL will emphasize ir-
regular, non-numeric programs. It will allow users to exploit parallelism when
dynamic linked data structures replace vectors as the fundamental data structure
in application areas such as geometric modeling or when algorithms operate on
graphs. While we understand the difficulty of this task we believe that modern
applications in all fields are rapidly evolving in this direction.

For STAPL to gain widespread acceptance and use, it is essential that the
library routines achieve reasonable performance across a wide spectrum of appli-
cations and architectures and free its users from problems related to portability
and algorithm choice. In STAPL, each library routine will have several different
algorithmic options, and the choice among them will be made adaptively based
on a performance model, statistical feedback, and current run-time conditions.
Built—in performance monitors will measure actual performance and, using a an
extension of the BSP model [1] that incorporates system specific information,
STAPL will predict the relative performance of the algorithmic choices for each
library routine and thus become an adaptive library.

2 STAPL General Specifications

STAPL will be a parallel C++ library with functionality similar to STL. To ease
the transition to parallel programming and to insure portability and continuity
for the current use of STL, STAPL will be a superset of the STL, it will be
sequentially consistent for functions with the same name, and will execute on
uni- or multi-processors. These characteristics will have the added benefit of
introducing programmers to parallelism in a rather smooth and painless manner.

STAPL will be implemented using simple parallel extensions of C++ which
provide a SPMD model of parallelism and will support recursive (nested) par-
allelism (as in NESL [2]). Although nested parallelism is not widely supported
in the currently targeted commercial DSM machines we believe that it is an
important feature that needs to be provided from the very beginning for several
reasons: (i) large parallel processors have a hierarchical topology and will support
a hierarchical run-time system in the near future, (ii) current compilers do not
exploit well parallelism at the multi- and microprocessor level (at the same time)
— but we believe improvement will come soon, and (iii) library functions are used
as basic, elementary blocks which can be themselves nested or incorporated in
a larger parallel application, thus requiring appropriate support. We intend to
use the machine native run-time system and, as soon as it becomes available,
generate OpenMP directives, thus insuring portability across platforms.

We have defined and have initial implementations of the three key extensions:
(i) pforall, (ii) prange, and (iii) pcontainer. The pforall function applies a
function to every object in a container in parallel and its implementation is so
far the only architecture specific component of STAPL. The prange class is a
parallel equivalent of the iterator class in STL that allows random access to
all objects in a (certain range) in a container. The pcontainer is the parallel
equivalent of the STL container and offers (semi—) random access to its elements,
a pre-condition for parallel processing.

We will embrace the STL design philosophy of separating container from
generic algorithm, which will be connected by pranges. There will be three types
of parallel algorithms in STAPL. First, parallel algorithms with semantics iden-
tical to their sequential counterparts (e.g., sort, merge, reverse). Second, parallel
algorithms with enhanced semantics. For example, a sequential find operation
might return the first element found while a parallel find operation might return
any (or all) elements found. Third, parallel algorithms with no sequential equiv-
alent in STL, e.g., parallel prefix, a basic operation in many parallel algorithms.
These algorithms will be implemented in the extended C++ language mentioned
above and the containers will be manipulated through pranges. STAPL will use
its own specially designed pcontainers that will allow pseudo-random access to
its elements and thus be usable in parallel computation. For compatibility STL
containers and pcontainers can co-exist in the same program. Furthermore,
STAPL functions can use STL containers which, when necessary, can be trans-
lated internally into their parallel counterparts (pcontainers). For example, a
linked list which does not support random access will be translated internally
(without changing the interface) into a parallel linked list (e.g., one sublist for

each processor). Initial speedups are not expected to be very high because of
the translation overhead. Thus, we will also provide the user with the means to
directly use pcontainers which will avoid this translation cost. For example,
directly invoking a parallel sorting algorithm

void psort(container.prange);
would avoid any internal translation required to run the original STL sort in
parallel.

Adding Adaptive Capabilities to STAPL. The goal of this phase is
to add features to the STAPL routines that optimize performance by selecting
the best algorithm, the number of processors, scheduling, and data layout, thus
guaranteeing a certain level of performance across platforms and applications.
The two major components that will confer adaptive capabilities to STAPL
are execution-time instrumentation for performance monitoring and a relatively
simple yet accurate performance model for parallel computation.

For example, load imbalance, network congestion, and cache miss ratios are
factors that should be taken into account when determining which and how
many processors should be used; hardware monitors now available on modern
machines (e.g., SGI Origin2000) provide low overhead performance monitoring
capabilities. Also, the algorithm’s impact on system resources (e.g., memory
traffic and workload) should be considered.

The performance model, a modified BSP model [1] is currently being devel-
oped and experimentally validated by our collaborators. Finally, the library will
provide performance feedback to the programmer, either during or after program
execution which can be used to design more efficient methods.

3 STAPL Components Overview

In this section we briefly present the basic STAPL components and their overall
organization.

STL consists of three major components; containers, iterators and generic
algorithms. Containers are data structures such as vectors, lists, sets and maps,
and generic algorithms are operations such as searching, sorting and merging.
Algorithms are generic in the sense that every algorithm can work on a variety of
containers. This is accomplished by defining algorithms in terms of iterators
which are generalized C++ pointers. Iterator types are specific to the different
type of container they traverse, e.g., forward, backward, random.

STAPL consists of five major components: p_containers, iterators, p_ranges,
the function p_for_all and p_algorithms. Although p_for_all() is the main
component which manages parallelism, it is usually hidden from users. Users
can write STAPL parallel programs just by using p_containers, p_ranges and
p-algorithms. Also, p_ranges can be constructed via STL (sequential) contain-
ers and iterators.

Parallelism is embedded as follows. A p_range is a collection of iterators to
which parallel processing is applied. A p_range is divided into subranges of type
s_range each of which is a minimum quantum processed by a single processor

p_for_all

p_range

iterators

/— s_range p_scheduler processor
list
p_ _—|| s_range processor

.
: \¥ (]
s_range processor

p_sort

Fig.1. STAPL Components

at a time. The function p_for_all() has a subcomponent p_scheduler which
gets another s_range, associates it with a copy of p_algorithm and executes the
algorithm over the s_range on some processor. Note that we provide random
access to the set of s_ranges. Figure 1 shows the overal organization of STAPL’s
major components.

3.1 P_ranges and P_containers

The p_range class in STAPL is a generalization of the STL iterator. It allows,
in essence, semi-parallel access to all objects in a container or within a certain
range. The p_range type provides the same begin() and end() functions that
the container provides, since a p_range can be seen as a parallel adapter to the
container. p_ranges allow the programmer to work with different containers in a
uniform manner.

To support nested parallelism the p_range is partioned in a set of sub-
p-ranges. At the lowest level of parallelism every p_range will hold a group of
serial ranges, called s_ranges, which are a range of contiguous elements in the
container. The s_range is the minimum quantum that the scheduler can send
to a processor for parallel processing. The union of all s_ranges constitutes the
p_range of a container (or p_container). At the limit this means that if we have a
list of N elements and every s_range has only one element, we obtain full random
access to the list. The ratio between the number of s_ranges of a container to
the number of processors (currently kept at 1:1) is a user modifiable parameter
and will be adaptively tunable. The scheduler maps each s_range to a specific
processor at run time. The p_range class provides methods for partitioning the
container or p_container in an efficient way. Any modification of the STAPL
P _container (e.g., dynamic insertion or deletion of elements) will be reflected in
the information kept by its associated p_range and will be memorized for future
instantiations. On the other hand, a STL container is unable to inform its as-
sociated p_range of any structural change and the responsibility of keeping its
associated p_range up-to-date rests with the programmer.

Every STL container type, has a STAPL counterpart (e.g., p-vector,p-list).
In addition STAPL includes new, complex data structures which are not trivially
parallelized (e.g., p-graph, p-hash) but are necessary in modern, non-numeric
applications.

While similar to and backwards compatible to sequential STL containers,
p-containers support p_ranges via new member functions and record their dis-
tribution information. For example, the p_list (Parallel List) can reuse its per
processor distribution information from previous instances, thus avoiding an ex-
pensive re-distribution operation. The beginning and ending of each sub-list or
s_range (sequential range) can be randomly accessed via its s_range index, but
the components inside this s_range will be traversed with the same limitations as
that of the sequential iterators for that container (e.g., forward iterators for lists,
random iterators for vectors) . This organization offers ”semi-random” access to
the p_container (and containers). All generic parallel algorithms in STAPL have
to follow this rule to work with the different types of containers.

3.2 P _Forall Function Template

P forall is, so far, the only STAPL parallel programming primitive and is the
only machine dependent function template. The function p_forall() applies in
parallel the function passed in as an argument to the container p_range. It can
work with one or many p_ranges at the same time, depending on the needs of
the parallel operation.

On every processor the argument function used in p_forall() is applied to
its corresponding s_range (group of elements). The p_forall() construct does not
guarantee by itself that its application is correct, i.e. that it will satisfy all the
data dependence conditions associated with the concurrent application of the
chosen function. This responsibility will rest with the programmer, as in most
other languages that support parallel extensions.

The current version of STAPL generates calls to the native run time systems,
e.g., the SGI’s m_fork library, to implement its parallel processing environment.
p-forall() will generate Open-MP standard directives in the near future. When
the run-time system allows it, p_forall() supports nested parallelism.

An instantiation of a p_forall causes each processor to create its own copy of
the argument function class via its copy constructor. Any instance variables in
the function are automatically privatized to each processor’s stack. It is expected
that most private storage will be allocated and initialized in the prologue()
method and freed up in the epilogue() method of this function.

The p_forall() also accepts an optional parameter through which the pro-
grammer can provide their own scheduler. If not specified, a default scheduler
provided by STAPL will be used.

3.3 Generic P_algorithms

P _algorithms are generic parallel algorithms. P _algorithms are written in terms
of p_ranges and iterators. There are three types of parallel algorithms in STAPL.

1. Parallel algorithms with semantics identical to their sequential counterparts
(e.g., sort, merge, reverse)

2. Parallel algorithms with enhanced semantics. For example, a sequential find
operation might return the first element found while a parallel find operation
might return any (or all) elements found.

3. Useful parallel algorithms which are often used in parallel programs (e.g.,
p-way merge, parallel prefix.).

Figures 3 and 2 represent examples of the speedup obtained for two sorting
algorithms, radix sort and merge sort respectively, that have been implemented
in STAPL and executed on an SGI Power Challenge. Note that the represent
the STL implementation as a baseline (number of processors = 0) followed by
the speedup obtained with STAPL on 1, 2, 4 and 8 processors.

In the following section we present some criteria for adaptively choosing and
tuning the parallel algorithm.

Speed Up Speed Up
T T T T

T T T T T T
5 100
G——o p_sort (merge sort), p_vector of 4*10° integers G p_radix_sort, p_vector of 10° integers

Speed Up
>
:

©
T

L L L 05 " L L
3 7 8 0 1 2 3

0 1 2 3 4 5| 4 5 6 7 8
Number of Processors. Number of Processors

Fig. 2. STAPL Merge Sort Speedup Fig. 3. STAPL Radix Sort Speedup

3.4 Adaptive Features of STAPL

STAPL will provide mechanisms for both programmer directed and automatic
algorithm selection. Optional arguments will allow programmers to use a pri-
ori knowledge of the input to specify which method to employ. If the choice
of algorithm is left to STAPL, then a newly developed performance model [1]
will be used to determine the best algorithm (possibly sequential) for the given
system and data size. Also, the library will be able to sample the input data
and to help choose the most appropriate method. Then, the algorithm selection
feature will compute the best algorithm based on the performance model and
other information such as sensitivity to input data. We will provide methods
that automatically analyze this information at execution-time and determine
the algorithm of choice.

The Modified BSP model. The BSP is an attractive performance model
due to its relative simplicity. Briefly, it measures the time complexity of an algo-
rithm by breaking it into so called supersteps (computation and communication
taking place between barrier synchronizations) and analyzing each superstep
separately. The machine independent complexity is expressed in terms the data
size n, number of processors p, and parameters g and [accounting for communi-
cation costs such as bandwidth and synchronization. Each machine has different
values of g and [which are measured experimentally. The algorithm selection
is made by evaluating the complexities using the machine’s values for g and [,
the available processors p, and the data size n. Amato et al[1] have recently
enhanced this model by taking into account more general architectural features
and predicting upper and lower bounds on performance, thus making it a more
practical model of parallel performance.

Performance Monitoring. Adaptive tuning of performance requires real
time data; it is therefore imperative for such an adaptive library to incorpo-
rate from the very beginning execution-time instrumentation for performance
monitoring. We have started early on with the implementation of execution-
time instrumentation for performance monitoring. For example, load imbalance,
network congestion, and cache miss ratios, factors that may determine which
and how many processors should be used can be easily measured by using the
hardware monitors now available on modern machines (e.g., SGI Origin2000).
Finally, the library will provide performance feedback to the programmer either
during or after program execution, to be used to design more efficient methods.

3.5 Relation to Other Work.

The goal of this research is not to substitute but to complement other current
efforts to parallelize C++ with static, compile-time methods. The other parallel
STL implementations known to us (e.g., [4]) target scientific applications which
employ array data structures (which support random access). STAPL tries to
explore linked dynamic structures (for which random access iterators do not
exist) and their application in non-numeric applications.

References

1. N. M. Amato, A. Pietracaprina, G. Pucci, L. K. Dale and J. Perdue, “A Cost Model
for Communication on a Symmetric Multiprocessor”, TR 98004, Dept. of Computer
Science, Texas A&M University, January, 1998.

2. G.E. Blelloch, “NESL: A nested data-parallel language,” Technical Report CMU-

(CS-92-103, School of Computer Science, Carnegie Mellon University, April 1993.
. G.E. Blelloch, Vector Models for Data-Parallel Computing, MIT Press, 1990.
4. E. Johnson and D. Gannon, HPC++: Ezperiments with the Parallel Standard Li-
brary, In Proc. of the 1997 Int. Conf. on Supercomputing, 1997, pp. 124-131.
. D. Musser and A. Saini, STL Tutorial and Reference Guide, Addison-Wesley, 1996.
. R. Sedgewick, Algorithms in C++, Addison-Wesley, 1992.

w

D ot

