Block Based Execution and Task Level
Parallelism

Richard H. Littin, J. A. David McWha,
Murray W. Pearson and John G. Cleary

Department of Computer Science,
University of Waikato,
Hamilton, New Zealand
{rhl, jadm, mpearson, jcleary}@cs.waikato.ac.nz

Abstract. A fixed-length block-based instruction set architecture (ISA)
based on dataflow techniques is described. This ISA is the compared
and contrasted to those of more conventional architectures and other
developmental architectures. A control mechanism to allow blocks to be
executed in parallel, so that the original control flow is maintained, is
presented. A brief description of the hardware required to realize this
mechanism is given.

1 Introduction

Modern computer architectures are approaching the limit of easily available per-
formance gains through advances in manufacturing technologies. Increasingly
they must try to improve performance by extracting parallelism. One family of
techniques used to do this is out-of-order instruction execution. Through the use
of reservation stations [Tomasulo, 1967] and reorder buffers, instructions can be
executed in an order other than that of the original code. This can make better
use of the computational resources available. However, steps must be taken to en-
sure that the results of the execution remain the same as a sequential execution,
placing restrictions on the reordering which may be done.

Many studies have been performed [Wall, 1991; Lam and Wilson, 1992] to
evaluate the potential parallelism available in sequential code. In most of these
studies the major emphasis has been on the effects that control flow has on
parallelism. They have looked at the performance issues associated with different
forms of branch prediction and speculation.

Microprocessors require a window of instructions to keep the pipeline full
and the functional units busy. Increasing the size of this window increases the
probability that the functional units can be fully utilized. Branch prediction
mechanisms are one means that can be used to increase the window size. However,
they are not perfect, so after only a few branches the probability that the correct
branch is being followed is too low to be useful [Perleberg and Smith, 1993].

An alternative is to extract coarse-grained parallelism by executing multiple
blocks of instructions in parallel. This requires some way of ensuring that data
dependencies between blocks are preserved. We examine a particular architecture,

the WarpEngine [Cleary et al., 1995]. The facilities for passing data between
blocks are described in section 4. We also examine ways of mapping control flow
onto blocks so that coarse grained parallelism can be extracted. The advantages
of using explicit blocks for optimistic execution are described in section 5.

2 Architecture Evolution

Contemporary production architectures, such as the Pentium Pro [INTEL, 1995],
can reorder instructions within a fixed size instruction pool. Although instruc-
tions can be executed out-of-order (consistent with dataflow constraints) they
must be retired from the system in-order. The instruction window is of fixed size
and its movement to introduce fresh instructions is constrained by the completion
and subsequent in-order retirement of earlier instructions. In order to increase
the parallelism extracted (and hence performance) the instruction window can be
made larger. However, in the case of the Pentium Pro the hardware complexity
of the reorder logic is ©(N?), where N is the size of the window.

In the Wisconsin Multiscalar Machine [Sohi et al., 1995] code is split up into
blocks, with several blocks executing in parallel on essentially independent se-
quential CPUs. These blocks, known as tasks, may be as large as a whole program
or as as small as an individual instruction. Each task is treated as an independent
program. Branches to locations outside the block determine which block should
follow the currently executing one. Between the blocks there may be both control
and data dependencies which are maintained through task squashing and an Ad-
dress Resolution Buffer (ARB), respectively. Potential parallelism is increased,
but since there is now some speculative execution taking place, information needs
to be stored so that incorrect computation can be rectified.

With variable sized blocks, the amount of information to be state saved is
unknown. By fixing the size of a block the problem of efficient state saving be-
comes tractable in hardware. This raises an interesting issue about the structure
of individual blocks, that is, whether they should be fixed or variable length.

Another advantage of fixed sized instruction blocks is that the reorder buffer
can be tuned to a fixed number instructions. Neefs [Neefs and Van Campenhout,
1996] describes a fixed-length block structured instruction set architecture that
removes the register renaming and dispatch stages from an out-of-order CPU
pipeline. This reduces the length of the pipeline with register renaming being
performed by the compiler. Instructions are fired in dataflow order, extracting the
highest amount of parallelism possible within a block. A more detailed description
of the advantages and disadvantages of block structured architectures can be
found in [Neefs, 1996].

In the WarpEngine instruction set [Cleary, 1995] this concept is taken one step
further by removing restrictions on the number of each type of instruction in a
block. This allows for better filling of blocks. In the WarpEngine multiple blocks
are executed in parallel, speculatively, providing parallelism at the block level,
as well as the instruction level. Synchronization and dependency correctness are
implemented using the Time Warp algorithm [Pearson et al.; 1997].

Neefs’ ISA and the WarpEngine are both examples of fixed sized block struc-
tured ISAs. We will follow Neefs [Neefs and Van Campenhout, 1996] in referring
to these as fixed length Block Structured Architectures (BSA). In a BSA registers
have unique names within a block, which are determined statically at compile
time, taking register renaming away from the hardware.

3 Speculation with BSA

The main thrust of this paper is to show the advantages of BSAs for parallel
execution. A sequential processor would execute blocks one after another. The
control and data dependencies for such a machine are shown in figure 1 a).

O

— Control Flow

D = Datadependencies

Fig. 1. Block control and data flow for a) a sequential machine, b) the Multiscalar

Real Time

Machine, and c¢) the WarpEngine.

If blocks are invoked speculatively then computation within a block can be
overlapped with that of other blocks. Figure 1 b) shows how a speculative control
mechanism, such as the one in the Multiscalar Machine, controls block invocation.
Each block is started (and retired) in order but execution may overlap with the
previous block. Speculation is used when determining which block to next fire in
the chain. If an incorrect decision is made then the wrongly executed block and
its successors are squashed and the correct block is then invoked. There is still a
linear control sequence amongst the blocks.

In this model communication between blocks is achieved via standard register
and memory accesses. If a location is read speculatively and the value returned
is wrong (determined by a write to that location) then the affected instruction
and any of its descendents need to be re-executed with the new correct value.
This requires some form of state saving. In the Multiscalar Machine state saving
is achieved by retaining block invocation information. Any data violations are
satisfied by restarting the block of the affected instruction from its beginning
(the register and memory reads then get the latest versions of values).

With this form of state saving some computation is unnecessarily undone as
instructions that are prior to, or independent of, an affected instruction are also

re-executed. To get better performance finer grained state saving is required.
This is achievable in a BSA since registers in a block are all single-assignment,
therefore any changes to the data in a register occurs because the previous value
was incorrectly (speculatively) calculated. The WarpEngine uses this level of
state saving and the Time Warp mechanism to maintain the correct ordering
amongst the states [Pearson et al.; 1997].

With this finer grained state saving and the use of the Time Warp mechanism
in hardware, the WarpEngine can use a control mechanism similar to that shown
in figure 1 ¢). Here blocks are scheduled for execution in a tree structured manner.
A tree can be generated through knowledge of code convergence. If an earlier block
has been incorrectly invoked then only blocks that are direct descendents of that
block need to be squashed. Blocks in other parallel sub-trees can keep processing.

4 Block control

This section describes how a tree is generated to control the optimistic parallel
execution of sequential code. The program code blocks are mapped onto a control
flow tree. The program’s virtual ordering is maintained by traversing the tree
top-down and left-to-right (a pre-order traversal). But the nodes in the tree are
executed as they are created—top-down.

A; A;
for (i from 1to 4) if B then Cdse D
B; E
C, ’
N DN unconditional
A fo\r\\\ C A B . E - conditional
BB B B)
virtual order

Fig. 2. Control trees for simple code structures; a) a for loop, and b) a conditional
statement surrounded by unconditionally executed statements.

Figure 2 shows how the basic blocks in code segments are transformed into
tree control structures. The dotted lines indicate conditional node creation, where
the dependent node is not evaluated until the calculation of the conditional test
has been completed. Figure 2 b) shows how control flow convergence can be ex-
ploited. Basic blocks A, B and E are guaranteed to execute, whereas C and D
are dependent on the result of B. If A, B and E are largely independent, starting
them early increases the parallelism.

Each basic block of the program is mapped onto a node in the control tree.
Data flows in two ways: either through the memory system (when the sources
and destinations cannot be determined statically); or by direct transfer between
parent and child blocks or near relatives (this corresponds to transfers that would
be done via registers in more conventional architectures).

5 Architecture

Any architecture that is going to implement this tree structured execution model
needs to deal with causal violations that arise from data dependencies by either
preventing them from occurring or detecting and correcting any that do occur.
The WarpEngine architecture introduced here uses a combination of these. For
dependencies within a block or its immediate descendants (children), using a
dataflow mechanism prevents causal violations. For any other data dependencies
that may exist between blocks a timestamped memory capable of detecting and
correcting causal violations is used.

5.1 Optimism

The WarpEngine supports a form of speculation on memory reads which we refer
to as optimism. Instructions that are dependent upon other earlier instructions,
including reads, wait until the results of the instructions are available before
executing. In the case of reads the results may be returned early and speculatively.
For example the read may locate a value of the correct location but be uncertain
as to whether it is the correct (most recently written) value. The value will be
returned anyway, allowing the dependent instructions to proceed. If the value
was in fact correct then all is well. If the value was incorrect then the read is
re-executed and the dependent instructions (and any instructions dependent on
them) are also re-executed.

5.2 Timestamped Memory

As memory read and write operations can occur out-of-order some mechanism
is required to synchronize the reads and writes to memory to make sure that no
causal violations occur. The WarpEngine uses a timestamped memory system
that is based on Time Warp principles [Jefferson, 1985]. The memory system
receives from the CPU read and write request messages and sends back reply
messages in response to the reads. Each read and write request is accompanied
by a timestamp. These timestamps impose a single linear temporal order relating
all the reads and writes. The value returned for a read is the value from the last
write prior to the read (in timestamp order) for that address. Note that we
are assuming an optimistic system here, so that writes may be generated in a
different order from their timestamps. This means a read which is satisfied by
an earlier write may need to be re-satisfied if a write with a timestamp between
the read and the earlier write arrives later in real time. Further details of the
timestamped memory system can be found in [Cleary et al., 1995].

5.3 Frames

In the WarpEngine instructions are organized into blocks that roughly correspond
to a basic block in classical CPUs. The only instructions that can be condition-
ally executed within a block are the instructions associated with scheduling the

block’s children. A block has a maximum number of fixed-width instructions (in
the current incarnation of the instruction set it is 16 instructions). Instructions
specify the destinations of their results rather than the operand sources. Figure 3
illustrates how this mechanism works.

In memory each instruction is represented by two words. The first, the I-word
contains the op-code and related information. The second, the C-word, contains
a single literal or constant value that can be used as one of the instructions
operands. An instruction goes through a number of stages in its execution. The
block is initiated and is allocated a frame. A frame resides in the CPU and
consists of 16 slots, one for each instruction. A slot contains three fields: an

op-code field and two registers.

} ——- - constants
|
[
Instruction block
in memory
[
[
[
[
op codes _
} } Frame
) _ =
register 1---F [[
] = Function
register 2----|--__ .
= Units
[
|
[

f f results |

Fig. 3. Flow of Instructions in CPU.

The op-code is loaded directly from the instruction’s I-word. Registers within
a slot can be loaded either from the C-word of an instruction or as a result
of another instruction. Once both registers in a slot have been filled with valid
values then the instruction can be transferred to a functional unit for execution.
The functional unit performs its computation returning up to four results back
to the appropriate registers in the frame.

In addition to extracting maximum parallelism within a block, the frame
structure provides an ideal state saving mechanism. All resources necessary for
state saving the block are allocated as part of scheduling the block for execution.
It offers a hierarchical form of register renaming without the complex resources
that are required to implement it dynamically.

6 Experimental Framework

This section describes the methodology used to analyze the potential parallelism
that can be obtained from a WarpEngine based architecture. Instruction counts
are obtained both from a WarpEngine simulator and from SPIM, a MIPS in-
struction set simulator [Larus, 1993].

6.1 Programs

The programs which we have simulated span the types of operations that are
performed in many programs including sorting, dynamic structure manipulation,
matrix/array operations and recursion. The algorithms are simple in concept, but
vary in the relative amounts of data and control dependence.

Two tree insertion routines are examined. A naive binary tree insertion (bin)
and the AVL algorithm (avl). Sorting is covered by HeapSort (heap) and two
versions of QuickSort (qul & qu2) which differ in the manner in which they
select a pivot point. Matrix multiplication (mat), Gauss-Jordan elimination (gj)
and transitive closure (trans) are all examples of array based manipulations.

6.2 WarpEngine Simulator

Each algorithm is hand coded from C to an assembly level language. Evaluation
of the potential parallelism within an algorithm is achieved by taking the machine
executable and running it on a functional level simulator of the WarpEngine. This
simulator performs a pre-order traversal of the control tree executing the code at
each node. The program is run in its virtual order and information about the real
time that events occur is retained and used to determine the parallel execution
time. The reported measure in each case is the potential parallelism—total time
for the execution of all instructions divided by the time the last instruction
completes. The simulator assumes that an infinite number of CPUs are available
and that there are no constraints due to finite bandwidth to memory or cache
systems.

7 Results

In this section we analyze the instruction counts for a WarpEngine based BSA
and compare it to the of a MIPS instruction set. We examine the block utilization
(number of useful instructions in the block) and also the performance gains that
are possible when using a BSA.

Table 1 gives compiled and executed instruction counts for each of the al-
gorithms for the MIPS and WarpEngine instruction sets. The norm. and opt.
fields in the MIPS section correspond to the gcc compiler optimization levels
‘00’ and ‘O3’ respectively. The dynamic instruction counts for the WarpEngine
are comparable to those of the MIPS ISA, with the majority falling between the
normal and optimised MIPS instruction counts. Extra instructions are necessary
because there are more control instructions in a BSA| especially for straight line
code.

The algorithm/problem size combinations in Table 1 show block instruction
utilization of between 48.1% and 63.0% (mean 53.3%, standard deviation 5.1%)
for the static compiled code, and ranges between 34.6% and 67.9% (mean 47.8%,
standard deviation 9.9%) for the dynamic executed code.

MIPS WarpEngine

problem| static dynamic static dynamic
code | size |norm.|opt.| norm. opt. |insts.| util. | insts. | util.
avl 2000 353|373|1023887| 456406 462|48.1%(1497710(43.3%
bin 2000 97| 89| 896869| 420156 134(55.8%| 471070(45.8%
gj 25| 701|303|1435987| 552146| 492(50.4%| 911488|50.9%
heap 2000 363|187(3306575|1459528| 185(55.1%(1354999|53.1%
mat 50| 100| 79|5450731|1402770| 107|55.8%|3578560|46.6%
qul 2000 155| 67| 995247| 320967| 143|49.6%| 706433|40.2%
qu2 2000 152| 79| 892772| 407571 248|48.4%(1090203|34.6%
trans 30] 198| 79|2019334| 345177| 121|63.0%|1457056(67.9%

Table 1. MIPS and WarpEngine instruction counts and block utilization

code problem size

100| 200| 500| 1000
avl [19.4| 29.7| 49.7 75.6
bin |27.2| 39.3| 59.9] 75.8
heap |12.4| 13.2| 16.0| 17.5
qul |22.2] 35.6] 53.3| &80.9
qu2 | 4.1] 4.4 4.3 6.2
5 10 15 20 25
gj 39.9101.6| 179.6| 340.1| 393.3
trans|82.9(412.4(1133.0(2213.7|3808.8
5 10 20 30 40
mat [56.8|267.4(1417.0|3784.2|7440.3

Table 2. Potential parallelism for various problem sizes.

When executing just one block at a time on the WarpEngine simulator the
average parallelism extracted was 1.62 (standard deviation, 0.15) with all instruc-
tions set to 1 cycle. When instruction timings were set to more typical values
the average parallelism extracted rose to 2.24 (standard deviation, 0.29). These
numbers confirm Neefs’ [Neefs, 1996] assertion that there is less instruction level
parallelism in a single threaded BSA than in a conventional ISA.

Table 2 shows potential parallelism for each algorithm /problem size combina-
tion using typical instruction cycle times. In all but qu2 the amount of parallelism
obtainable increases with the problem size. This shows that there is significant
parallelism available in sequential code which can be extracted by optimistic

BSAs.

Figure 4 shows the potential parallelism that is available in the sorting algo-
rithms tested. The difference between the parallelism curves of the two Quick-
Sort routines is significant. Although the same underlying algorithmic concept
is used the manner in which the pivot point is selected is critical. In this case
the choice of algorithm has affected the data dependencies. With the correct

110 T T

Quicksort(1)_-=-xce=--
p -t 1----- QUicKSOT(2) x |

potential parallelism

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
items sorted

Fig. 4. Sorting, potential parallelism vs problem size.

choice of algorithm the BSA is able to support significant potential parallelism.
Final transformation of this potential into execution speed up requires careful
implementation of the underlying execution mechanisms.

8 Conclusions

We have demonstrated how Block Structured Architectures can be used in a CPU
that is designed to extract parallelism at both the instruction and task level. At
the instruction level a simple dataflow mechanism was used to communicate be-
tween instructions. The result is that parallelism and instruction re-ordering are
possible without the need for reservation stations or dynamic checks on whether
instructions can be re-ordered. Thus the benefits of modern high performance
CPUs can be extracted with significantly reduced complexity.

At the level of task parallelism the WarpEngine uses a system of timestamping
memory accesses and optimistic control to allow tasks to be executed in parallel
even when there are potential data dependencies. The use of blocks enables a rich
set of communication mechanisms for data. When no static information is avail-
able about the usage of a variable then communication is via relatively expensive
time-stamped memory. When static information is available then data can be
directed to a particular instruction within a block. This can be done directly to
the children of the sending block or indirectly to more remote blocks. That is,
low overhead mechanisms can be used when static information is available and
higher overhead mechanism are needed only in the fully dynamic case.

Blocks also provide a convenient unit for controlling the task parallelism.
For example a block of about 16 instructions fits well with what is needed for
tree structured control within loops. As well many overheads can be dealt with
at the block level, thus amortizing them over more instructions. These include
fetching the instructions, providing resources for state saving and rollback, and
retirement.

One problem has been identified from our study. That is the increased amount
of code that needs to be fetched and stored. This arises from a number of sources.
First, there is a small increase in the number of control instructions because
blocks tend to break up the control of sequential code. Second, it is not possible
to always fill all the instructions in a block. The measured efficiencies are around
50%. This problem can be addressed either through improving the code genera-
tion (the test examples were hand coded assembler) or through altering the ISA
to allow a more compact representation of code.

References

Cleary, John G. (1995). WarpEngine instruction set. Internet Web Page. URL
http://www.cs.waikato.ac.nz/timewarp/wengine/instset /index.html.

Cleary, John G., Pearson, Murray W., and Kinawi, Husam (1995). The archi-
tecture of an optimistic CPU: The WarpEngine. In Proceedings of HICSS,
volume 1, pages 163-172, Hawaii.

INTEL (1995). PENTIUM PRO processor at 150 mhz. INTEL Corporation
Datasheets. Order Number: 242769-001.

Jefferson, David (1985). Virtual time. Transactions on Programming Languages
and Systems, 7(3):404-425.

Lam, M. S. and Wilson, R. P. (1992). Limits of control flow on parallelism.
In 19th Annual International Symposium On Computer Architecture, pages
46-57, New York, N.Y. ACM.

Larus, James R. (1993). SPIM S20: A MIPS R2000 Simulator. Computer Sci-
ences Department, University of Wisconsin-Madison.

Neefs, Henk (1996). A preliminary study of a fixed-length block-structured in-
struction set architecture. Technical Report 96-07, Eletronics and Informa-
tion Systems Department, University of Gent, Belgium.

Neefs, Henk and Van Campenhout, Jan (1996). A microarchitecture for a fixed
length block structured instruction set architecture. In Fighth IASTED In-
ternational Conference on Parallel and Distributed Computing and Systems.

Pearson, Murray W., Littin, Richard H., McWha, J. A. David, and Cleary,
John G. (1997). Applying Time Warp to CPU design. In High Performance
Computing Conference '97, Bangalore, India. IEEE.

Perleberg, C. H. and Smith, A. J. (1993). Branch target buffer design and opti-
mization. IEFE Transactions on Computers, 42(4):396-412.

Sohi, G. S., Breach, S., and Vijaykumar, T. N. (1995). Multiscalar processors.
In 22nd International Symposium on Computer Architecture (ISCA-22).
Tomasulo, R. M. (1967). An efficient algorithm for exploiting multiple arithmetic

units. IBM Journal, 11:25-33.

Wall, Daivd W. (1991). Limits of instruction-level parallelism. In 4th Interna-

tional Conference on ASPLOS, pages 176-188, New York, N.Y. ACM.

