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Abstract 

HPC++ is a C++ library and language extension framework 
that is being developed by the HPC++ consortium as a stan- 
dard model for portable parallel C++ programming. This pa- 
per describes an initial implementation of the HPC++ Parallel 

Standard Template Library (PSTL) framework. This implemen- 
tation includes seven distributed containers as well as selected 
algorithms. We include preliminary performance results from sev- 
eral experiments using the PSTL. 

1 Introduction 

C++ [20] has become a standard programming language for 
desktop applications. Increasingly, it is being used in other 
areas including scientific and engineering applications, and 
there are dozens of research projects focused on designing 
parallel extensions for C++ [21]. 

Several groups have joined to define standard library and 
language extensions for writing portable, parallel C++ ap- 
plications. In Europe, the Europa consortium [16] has de- 
fined a model of parallel C++ computation based on Active 
Objects (1, 6, S] and a meta-object protocol derived from 
the work on reflection in the programming language research 
community [12, 171. In Japan, the Real World Computing 
Partnership has established the MPC++ programming sys- 
tem [ll] which provides broad and powerful mechanisms for 
user-level extensions to a C++ compiler. 

In the United States, the HPC++ consortium has fo- 
cused on extensions to standard C++ class libraries, com- 
piler directives, and a few small language extensions to a- 
chieve the goal of portable parallel programming. The con- 
sortium is a diverse group, with representatives from indus- 
try, academia, and government laboratories (lo]. 

In this paper, we describe an initial implementation of 
HPC++. This implementation is limited, but it does allow 
exploration of some of the ideas proposed by the HPC++ 
consortium. Thus it is an important first step towards defin- 
ing a framework for portable, parallel C++ programming. 
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2 Overview of HPC++ 

The current HPC++ framework (Level 1) describes a C++ 
library along with compiler directives which support parallel 
C++ programming. A future version (Level 2) will include 
language extensions for semantics that cannot be expressed 
by the Level 1 library. 

The standard architecture model supported by HPC++ 
is a system composed of a set of interconnected nodes. Each 
node is a shared-memory multiprocessor (SMP) and may 
have several cont.&s, or virtual address spaces. While the 
implementation described in this paper assumes a homo- 
geneous system, the HPC++ framework will also support 
heterogeneous systems where nodes may be on physically 
distinct computers. 

Level 1 of the HPC++ framework consists of the follow- 
ing parts: 

l parallel loop directives (to support single-context par- 
allelism) , 

l a parallel Standard Template Library, 

l a multidimensional array class, 

and, in the future, 

l a library for distributed active objects, 

l an interface to CORBA [9] via IDL mapping, and 

l a set of programming and performance analysis tools. 

The Parallel Standard Template Library (PSTL) is a 
parallel extension of the C++ Standard Template Library 
(STL). Distributed versions of the STL container classes 
are provided along parallel algorithms and parallel itera- 
tors. These components are discussed in Section 4 below. 
HPC++ also includes another distributed container - a mul- 
tidimensional distributed array class based on A++ [18] and 
LPARX [13]. This array class supports element access via 
standard array indices as well as parallel random access it- 
erators, allowing use of STL and PSTL algorithms on the 
array class. 

Although the last three parts of the HPC++ framework 
are not yet well-defined, our implementation does include 
the global pointers and remote function invocation infras- 

tructure necessary to support active objects. These’are de- 
scribed in Section 3.4. 
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the reference is to a remote object, an RZ’S-get is done to 
make a local copy of the remote object value. 

This design allows the library user to employ standard 
C style to read and write remote values. 

3 HPC++ Run-Time Support 

Our implementation is separated into two layers - the run- 
time system (RTS) and the Parallel Standard Template Li- 
brary. This design provides an opportunity for other devel- 
opers to substitute their own RTS implementation, provided 
that it supports a small set of functions and constructs, de- 
scribed in this section. As can be seen from the examples 
in Section 5, it is possible to do effective parallel program- 
ming using only the higher level PSTL components, but the 
RTS layer components are also available to the applications 
programmer for use in less structured parallel programming. 

While HPC++ supports several execution models, the 
model for our implementation is Single Program, Multiple 
Data (SPMD). In this model, an HPC++ program launches 
a single thread of control in each context. We use Tulip 121, 
a run-time system developed at Indiana University, as the 
basis for our RTS layer. This system runs on various ma- 
chines including the IBM SP-2, SGI Power Challenge, and 
Cray T3D. It provides support for remote member function 
invocation and load/store operations on remote data. A 
key feature of Tulip is that the system provides a consis- 
tent interface across platforms yet its implementation takes 
advantage of machine-specific hardware features. 

Using Tulip, we define typed global pointers and a set 
of functions which can be divided into the following groups: 
(1) location information, (2) remote store and fetch, and (3) 
remote function invocation. 

A barrier is also included to provide synchronization for 
operations on distributed containers. The following sections 
describe the components of the run-time system. 

3.1 Global Pointers and Global References 

Global pointers are based on the global type in languages 
Iike CC++ (41, AC (31 and Split-C (71. A global pointer to 
an object of type T IS defined as a ternplated class 

HPCxx-ClobalPtr<T> p; 

Global pointers can be passed between contexts to allow a 

E 
rocessor to read and modify objects on a remote node. Two 
asic operations are defined on global pointers. 

// returna a global reference which can be used for 
// remote at&es and fetches 
template <class T> 
HPCxx-GlobalRef<T> IiPCxx-GlobalPtr::operator *o; 

// carts to a local pointer. If the object ia remote, 
// thir return8 NULL 
template <class T> 
APCxx-GlobalPtr<T>::operator T* 0; 

The result of dereferencing a global pointer is a global 
reference. The primary operations on global references are: 

// remote storr 
template <class T> 
T HPCxx-GlobalRof<T>::operatorl(const T & rhr); 

//rrmotr fetch 
template <class T> 
HPCxx-ClobalRet<T>::oparator T 0; 

The assignment operator performs a simple assignment 
if the global reference refers to a local object. Otherwise, 
an RTS-put (see Section 3.3) is invoked to copy rhs into 
the remote object. An analogous operation occurs when the 
cast operator is used on a global reference. If the global 
reference refers to a local object, that object is returned. If 

HPCxx_ClobalPtr<float> p; 
. . . 
// assign p to a global pointer to a remote object 
. . . 

‘P = 3.14; // a remote write 
float t = *p + 2; // a remote read 

// followed by a local addition. 

In this HPC++ implementation, global pointers are pri- 
marily used to refer to elements in the distributed container. 
In particular, the parallel iterator for the distributed con- 
tainers (described in section 4.1) can be cast into a global 
pointer to a container element. 

3.2 Location Information 

Object location is encapsulated by an ObjectFinder object. 
In Tulip, this is a context number only, but it could in- 
clude other information such as processor number or ma- 
chine number which uniquely identifies a location. Query 
functions are provided to determine locations of objects rep- 
resented by global pointers and global references. 

3.3 Remote Data Access 

Access to remote data is supported via global pointers and 
uses remote store and fetch functions. These functions are: 

// remote store 
template <Clara T> 
void RTS-put(HPCxx-ClobalPtr<T> dart, conrt T* src); 

// remote tatch 
template <class T> 
void RTS-grt(T* dent, HPCxx_GlobalPtrtT> arc); 

In our implementation, these functions utilize the Tulip 
tulip-Get and tulip-Put routines, which use methods ap- 
propriate to the particular machine type to transfer data. 
RTS-put and RTS-get are blocking calls. 

3.4 Remote Function Calls 

Remote function call support consists of class and function 
templates for each possible member function arity (up to an 
implementation-defined limit). Each dass template defines 
a message class. The base class of all message classes, Mes- 
sage&se, is an abstract base class with two virtual func- 
tions: get&e and decipher. These functions are used in 
sending and unpacking each particular message type. The 
message objects are similar to the Mobile Objects defined in 
the CHAOS++ run-time library [5]. 

Each of these message classes is paired with a template 
function to be invoked by the application when a remote call 
is needed. This function instantiates a message object in the 
local context, packs the arguments, and sends the message 
to the appropriate remote context. A remote action handler 
in the receiving context calls decipher on the received mes- 
sage which, in turn, unpacks the arguments and invokes the 
specified method on its local object. A global pointer from 
the calling context is used for storing of the return value by 
the receiver. For non-blocking calls, a mechanism, similar to 
the future class in ABC++ [22], supports subsequent access 
to return values from the remote function invocation. 
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4 Parallel Standard Template Library 

One of the major recent changes to the draft C++ standard 
has been the addition of the Standard Template Library 
(STL) [19]. The STL has five basic components. 

l Container class templates provide standard definitions 
for common aggregate data structures, including uec- 
tar, list, deque, set and map. 

l Iterators generalize the concept of a pointer. There 
are five basic categories of iterators: random access, 
bidirectional, forward, input and output. 

l Generic algorithms are function templates that allow 
standard element-wise operations to be applied to con- 
tainers via iterators. 

l fin&ion objects are created by wrapping functions 
with classes that typically have only operator0 de- 
fined. They are used by the generic algorithms in place 
of function pointers because they provide greater effi- 
ciency. 

l Adaptors are used to modify STL containers, iterators, 
or function objects. For example, container adaptors 
are provided to create stacks and queues, and itera- 
tor adaptors are provided to create reverse iterators to 
traverse an iteration space backwards. 

The Parallel Standard Template Library extends the STL 
to include distributed containers, parallel iterators, and par- 
allel algorithms. Currently, our implementation includes 
distributed versions of all seven STL containers along with 
parallel iterators for each. In addition, parallel versions of 
many of the STL algorithms have also been completed. The 
following sections describe parallel iterators, the distributed 
versions of STL containers, and the parallel algorithms. 

4.1 Parallel lterators 

Parallel iterators extend the functionality of global pointers. 
In the case of mndom access parallel itemtors, the opera- 
tors ++, --, +n,-n, and [i] allow random access to the entire 
contents of a distributed container, while the weaker bidirec- 
tional parallel itemtors only provide access via the ++ and 
-_ operators. In general, each distributed container class C 
has a subclass for the strongest form of parallel iterator that 
it supports (e.g. random access, forward, or bidirectional). 

Each container class provides methods of the form: 

template <char T> 
da88 c { 

. . . . 
class iterator{ . . . }; 
clam paritsrator{ . . . }; 
paritarator parbegin(); 
pwiterator parondo; 
iterator begin0 ; 
iterator endO; 

The parbegin and parend() methods return parallel it- 
erators which point to the beginning and one element past 
the end, respectively, of the container elements. The begin0 
and end0 methods return local iterators which point to the 
beginning and one element past the end, respectively, of the 
local portion of the container elements. 

In order to facilitate effective use of the parallel algo- 
rithms (described in Section 4.3), each container has sev- 
eral functions which modify parallel iterators. These include 

functions to return iterators to the beginning and end of the 
local section (if any) of an iteration space defined by two 
parallel iterators. 

4.2 Distributed Container Classes 

Distributed containers are data structures whose elements 
are distributed across several contexts. There are seven dis- 
tributed containers in the PSTL. These mirror the contain- 
ers in the basic STL. Three of the containers are sequence 
containers, which store elements in a sequential order. 

l dislributed-vector is a one-dimensional array. 

l distributed-deque is a double-ended queue. 

l distributed-list is a doubly-linked list. 

The other four are associative containers. Elements are or- 
dered by a key, which can also be used to retrieve elements 
from the container. 

l distributed-set is an ordered set of unique keys. 

l distributed-multiset is like a distributed-set except that 
duplicate keys are allowed. 

l distributed-map is an ordered set of unique keys along 
with associated objects. 

l distributed-multimap is like a distributed-map except 
that duplicate keys are allowed. 

As described in Section 4.1, each container provides a 
local and global view through iterators which access local 
and global elements. Iterators for the sequence containers 
traverse elements in sequence while associative container it- 
erators traverse in the order of the element keys. 

The PSTL containers use irregular block distribution 
across contexts. Each context is assigned a unique ID and 
contexts are ordered by these IDS when determining place- 
ment of element blocks. The elements in a particular con- 
text form a contiguous segment of the container’s element 
iteration space. 

The distribution itself is specified using a ContainerRatio 
object, which may be modified during execution. This ob- 
ject contains information about the proportion of the total 
elements to be assigned to each context. If no ratio ob- 
ject is specified for a container, block distribution is used - 
elements are divided evenly among the contexts, with any 
extra elements assigned to the last context. The creation 
of a distributed container and the manipulation of its ratio 
object are collective operations. The ratio object must be 
identical in each context. 

The PSTL containers are dynamic - the size will vary as 
elements are inserted and/or deleted. For this reason, the 
distribution of elements in a container is only guaranteed to 
comply with its ratio object after either container construc- 
tion or invocation of the redistribute method on the container 
or its ratio object. This compliance remains in effect until 
the first operation which modifies the size of the container 
or until the ratio object itself is changed or replaced. 

Containers may share a ratio object. Invoking redis- 
tribute on the ratio object redistributes all containers which 
share that object. Invoking redistribute on the container it- 
self only redistributes that container’s elements; the other 
containers which share the ratio object remain unchanged. 
Note also that the containers need not be of the same type 
in order to share a ratio object. A distributed-vector, for 
example, may share a ratio object with a distributed-list. 
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4.3 Parallel Algorithms 

As in the STL, the PSTL algorithms are generic - the argu- 
ments to the algorithms are not the containers themselves, 
but rather iterators which access container elements. This 
approach has several advantages. First, the same algorithm 
can be used for any container which utilizes an iterator of 
sufficient capability. So, for example, an algorithm which 
applies a function to each element can be called for any con- 
tainer which provides an iterator capable of the increment 
(+ +) operation. Second, algorithms can be easily applied to 
subranges of elements by passing as arguments to the algo- 
rithm the iterators which mark the beginning and one past 
the end of the subrange. In addition, through the use of 
user-defined iterator adaptors, subgroups of elements, such 
as odd- or even- indexed elements or elements with values 
above a certain threshold, can be accessed. 

There are three types of parallel algorithms in the PSTL: 

. STL algorithms with parallel semantics, 

. par- versions of STL algorithms, and 

l par- algorithms for standard parallel operations. 

The algorithms in the first group retain their STL names, 
but allow pariterator arguments in place of iterators. These 
new algorithms are collective and have parallel semantics. 

The algorithms in the second group are also versions of 
the STL algorithms, but par- will be prepended to their 
names. When invoked with parallel iterators, these algo- 
rithms are semantically equivalent to the first type of algo- 
rithm (and are collective). When invoked with local itera- 
tors, these algorithms are not collective. Execution is local 
to a particular context, but has parallel semantics (so a loop 
may be parallelized, for example). 

The differentiation between the versions of these algo- 
rithms is accomplished using iterator tags. The body of 
each algorithm consists of a call to another function with 
an added argument: iterotor_categoy(first). The local or 
parallel iterator version of the function is called, depending 
on the iterator tag. Note that this differentiation is done at 
compile time using function templates. 

The following example illustrates these algorithm ver- 
sions. 

// create a distributed vector oi size 100 and 
// initialize each element to 6.0 
distributed-vrctor<doublr) myVec(100, 5.0); 

// 8um the local elsmants in this context 
double sum1 - accumulate(myVac.beginO, myVec.endO, 

0.0); 

// sum all elements - collective operation 
double sum2 = accumulate(myVsc.parbaginO, 

myVec.parendO, 0.0); 

// sum the local elements in this context 
// using single-context parallelism 
double sum3 = par-accumulate(myVec.begin(), 

myVec.snd(), 0.0) ; 

// sum all elements - collectivs operation 
double sum4 = par-accumulats(myVac.parbrgin(), 

myVac.parsndO, 0.0); 

In this example, let us assume that 3 contexts are in- 
volved. We first create a distributed vector with 100 ele- 
ments of type double. Since the default distribution is used 
(no ContainerRatio object is specified in the constructor), 

33 elements are stored in the first two contexts and 34 are 
stored in the last. Each element is initialized to 5.0. 

The STL algorithm accumulate is declared as: 

template <class Iterator. class T> 
T accumulata(Iterator first, Itarator last, T initial) 

The algorithm sums the elements in the iteration space (first, 

last) using initial as the initial value. 
The first call to accumulate is a non-collective operation 

and results in the invocation of the STL version of occumu- 
late in the calling context. While it does not need to be 
invoked in each context, it is in this case. Each invocation 
is, however, completely independent of the other contexts. 
In contexts 0 and 1, the value of sum1 is 165.0 (5 * 33). 
In context 2, the value is 170.0 because there is one extra 
element. 

The second accumulate call is differentiated from the first 
by the use of parallel iterators. It is a collective operation 
and must be called in all contexts. The local elements are 
summed in each context and then a global sum is computed 
using a reduction operation. In all contexts, sum2 is 500.0. 

Because it is invoked with local iterators, the first call 
to par-accumulate is a non-collective operation. Unlike oc- 

cumulate, however, par-accumulate with local iterators uses 
single-context parallelism, if available, to compute the local 
sum. Lightweight threads are used in a context to accumu- 
late partial sums of the local elements; these are summed 
to get the total for the local context. The value of sum3 in 
each context corresponds to the value of suml; they differ 
only in the processing involved. Finally, the second call to 
par-accumulate is equivalent to the second call to accumu- 
late since behavior of the algorithms is the same when they 
are called with parallel iterators. 

The third group of algorithms consists of special par- al- 
gorithms such as par-apply, par-scan, and pnr-reduce. These 
are collective operations with parallel semantics. The follow- 
ing have been defined thus far: 

par-apply: Applies a function object pointwise to the 
elements of a set of containers. 

par-reduction: Applies a function object pointwise to 
the elements of a set of containers and then does a 
reduction on an associative binary operator. 

par-scan: Applies a function object pointwise to the 
elements of a set of containers and then does a parallel 
prefix operation using an associative binary operation. 

As is the case for all PSTL algorithms, the main arguments 
to these algorithms are iterators which access container el- 
ements. When invoked with local iterators, the algorithms 
are non-collective and use single-context parallelism. When 
invoked with parallel iterators, the operations are collective 
and have parallel semantics across contexts. The function 
object may change only the value of the elements in the 
space defined by the first two iterators in the argument list. 
Changes made to elements accessed via any other parallel 
iterator argument are lost since the function is applied to a 
temporary local copy of those elements. 

For example! the declaration of par-apply for a binary 
function object IS: 

template <class ForuardIteratorl. 
class ForvardIterator2, 
class BinaryOperation> 

void par-apply(ForvardItarator1 baginl, 
ForwardIteratorl endl, 
ForvardItarator2 beginl. 
BinaryOperation binop) ; 
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Context 0 

x.parbegln() 

I 

I 
Context 1 

I x.prrbegln() + 10 x.parend() 

y.parbagln() + 7 y.pawW 

par-apply(x.parbegin ), x.parbe in()+lO, 
y.parbegln ), add-too ; I s 

Figure 1: Example of par-apply usage 

Here, the first iteration space is defined by peginl, endl). 
If this iteration space contains k elements, then the second 
iteration space consists of pegin2, begin2 + k). In apply- 
ing the binary function, each element in the first iteration 
space is paired with the corresponding element in the second 
iteration space. 

Consider the following example. 

class add-to { 
public : 

void operatorO(intt m, int n) { m += n; } 
1; 

// create vectors 
distributed-vactor<innt) x(16); 
distributed-vector<int> ~(10); 

// initialize alament values 
do-initialization(x.parbsginO.x.parendO); 
do~more~initialization(y.parb~ginO.y.parsnd()); 

// add tha first 10 rlements of y to the 
I/ corresponding alamanta in x 
par~apply(x.parbaginO.x.parbaginO+lO.y.parbaginO, 

add-too) ; 

Figure 1 shows the two vectors, with the elements from 
the iteration spaces shaded in gay. The processing within 
par-apply in each context is as follows: 

1. The iteration space [z.parbegin(),z.parbegin()+lO) is 
restricted to its local elements. As shown, in context 
0, seven elements are local and in context 1, three el- 
ements are local. 

2. The portion of [y.parbegin(), y.parbegin()+lO) which 
corresponds to these local elements is identified. In 
context 0, this begins at y.parbegin(), while in context 
1 it begins at y.parbegin()+7. 

3. The opemtor() method of addto is applied to each pair 
of elements in the iteration spaces identified in steps 
1 and 2. Paired elements are connected by arrows 
in the figure. Note that all of the elements in the 
first iteration space are local, while in the second space 
elements may be local or remote. In the case of remote 
elements, a remote fetch is done to get a local copy 
for the operation. Step 3 is done in parallel if single- 
context parallelism is supported. 

5 Examples 

The next two sections describe several examples using the 
PSTL. First, we show experiments with implementing a par- 
tial differential equation (PDE) solver. Second, we describe 
use of the PSTL to implement an algorithm which finds ana- 
grams in a dictionary. In both examples, note that the pax- 
allelism is provided via standard algorithms from the PSTL. 
The applications programmer must write the code in terms 
of container iterators in order to use these algorithms, but 
no extra effort is required in order to add parallelization it- 
self. In addition, the location of elements is transparent to 
the programmer in terms of writing the code since remote 
elements are fetched as necessary when the parallel iterator 
is dereferenced. 

5.1 A Fast Poisson Solver 

An example of a data-parallel computation that is easy to 
program with the HPC++ PSTL is a simple Fast Poisson 
Solver which computes the solution to an elliptic partial dif- 
ferential equation on a two-dimensional grid of size n by 
n. The computation is very simple in structure. The dif- 
ferential operator is converted to a 5-point finite difference 
operator and the problem is reduced to solving an algebraic 
system A*U=F, where F is a matrix of input data and U is 
another matrix of the same size representing the solution. 

The algorithm works as follows: 

1. Compute the fast sine transform of each row of F, stor- 
ing the result in U. The sine transform is computed by 
means of a complex FFT of size n/2. 

2. Transpose the matrix U. Each column defines the co- 
efficients in a tridiagonal matrix equation. In parallel, 
for each column, solve the tridiagonal system of equa- 
tions and put the solution into the F matrix. Trans- 
pose F. 

3. Apply the fast sine transform again to each row of F 
and store the results in U. U now contains the solution 
to the PDE. 

4. To check the result, compute F-A*U. This is done in 
parallel because A is a simple 5-point finite difference 
operator. 

5. Compute the sum of the squares of the components of 
F-A*U. 

One possible data structure for F and U is a distributed 
vector of Row objects. The class Row consists of an array 
of double precision numbers which can be accessed with the 
standard array ([O operator, a function which returns the 

1 array size, and a unction that returns the Row position in 
the vector. 

class Row{ 
public : 

float LoprratorO tint) ; 
int size0 ; 
int indaxo; // position in the vector 

1; 

We use the par-apply function to compute the sine trans- 
forms in parallel to each Row object in the vector. The 
par-reduction function is used to compute the sum of the 
squares of the residual vector components. 
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double FastPoissionSolver( int II. 
distributed-vector< Row> L U, 
distributed-vector< Row> L F) { 

//apply the sine transforms to each row in F 
I/ and put result in U 
par-apply(U.parbegin(),U.parandO,F.parbeginO, 

rov,tftsO) ; 

//transpose U. aolva the tri-diagonal systrma 
// of equations, put solution in F, transpose F 
SolveTridiagonalSystema(n, F, U); 

//apply the sine transforms to each rev in F 
// again and put rrault in U 
par-apply(U.parbsgin(),U.parend(),F.parbeginO, 

rov_fftaO); 

I/ check for errora. apply the differential operator. 
/I F - A*U 
par-apply(F.parbegin(),F.parendO, DiffOper(U)); 

// compute the auma of squares of the differences to 
// get the residual 
double reaid = par-raduction(F.parbeginO,F.parendO, 

plua<doubls>O. squareso. 
(double) 0.0) ; 

return rssid; 

) 

The row-@s function object computes the transform on 
Row x (of matrix F here) and puts the result in Raw y (of 
U matrix here). We do not show the details of the sine 
transform function. 

The most difficult part is the solution of the system of 
tridiagonal equations. As was described above, the individ- 
ual tridiagonal equations are associated with the columns 
of the matrix. Hence, one solution is to first transpose the 
matrix so that columns become rows. Then we apply a 
standard sequential tridiagonal system solver to each row in 
parallel across the distributed vector of Row ob’ects. 

The transpose function object has a copy o / the appro- 
priate Row from the source vector. For each element of the 
destination row, we must access the corresponding (column) 
element of the source vector Row. 

claaa transpoaa{ 
public : 

Row R; 
tranrpoae(diatributed_vrctorcRov> &X, int il{ 

distributed-vector<Row>::paritarator r; 
R = X[i] ; // R = ith Row of X 

1 
void operator()(Rov ty){ 

int i = R.indoxO; 
int j = y.indrx() ; 
yCi1 = RCjl; 

1 
1; 

The tridiagonal solver takes the following simple form. 

void SolveTridiagonalSyatema(int n, 
diatributad-vactor<Rou) tF. 
diatributad-vectorcRow> tU I{ 

for lint i-0; i < n ; i++) 
par_apply(F.parbeginO.F.parend(),tranaposa(U,i)); 

par,apply(U.parbegin(),U.parendO. F.parbaginO, 
aolve_tridiagO); 

// each itaration fills jth column of F vith 
// jth Rov of U 
for (int j-0; j < n ; j+*) 

par-apply(F.parbaginO,F.parendO,transpoae(U,j)); 

1 

This Fast Poisson Solver was instrumented and run on the 
SGI Power Challenge and the IBM SP/2. Although the SGI 
Power Challenge is a shared memory machine, the Tulip run- 
time system provides a mechanism to run in SPMD mode. 
The remote fetches and stores, however, do take advantage 
of the shared memory configuration. Tulip on the IBM 
SP/2 utilizes the Message Passing Interface (MPI) for re- 
mote fetches and stores. 

The results, in terms of execution times in seconds for 
each of the rnmn functions for various numbers of processors 
and grid size 1024 by 1024 are shown below. 

For lo-node SC1 Challanga: 
FFTs Transpose Tridiagonal b*U rum-of-sq total 

P=i 14.94 2.01 1.76 1.77 1.07 21.55 
P=2 7.50 1.41 0.88 0.90 0.54 11.23 
P-4 3.81 1.32 0.46 0.45 0.27 6.31 
P=a 1.96 1.58 0.24 0.24 0.15 4.17 

For 24-nods IBI4 SP/2: 
FFTa Transpose Tridiagonal A*U sum-of-aq total 

P=l 13.26 3.66 1.81 1.73 1.27 21.73 
P=2 6.63 5.89 0.92 0.90 0.63 14.97 
P=4 3.36 6.02 0.46 0.47 0.32 10.63 
P=a 1.68 9.26 0.23 0.29 0.16 11.62 
P=l6 1.42 71.91 0.24 0.31 0.23 74.11 

The degradation of performance apparent in the SP/2 
16-node case probably results because only 8 nodes may be 
reserved for exclusive use on our machine. Jobs using greater 
than 8 nodes compete for system resources with other prc- 
cesses. In the other cases, all components except the trans- 
pose operation scale down very well as the number of pro 
cessors increases. There are two factors which may explain 
the timings for the transpose operation. First, all processors 
iterate through the loop over the rows of the distributed vec- 
tor in the same order. So all try to fetch a row from processor 
0 first, then all try to fetch the next row, and so on. This 
results in loss of parallelism as one processor tries to accom- 
modate all of the requests. This problem worsens as more 
processors are added. Providing some means to stagger the 
row requests may help this problem. 

Second, during creation of the transpose function object, 
an entire row is fetched by each processor for each column. 
Only the portion of the row matching the locally stored col- 
umn elements is actually needed. We are working on a ver- 
sion of the program which uses the remote function call in- 
frastructure to fetch partial rows. 

Another approach to this problem is to avoid the trans- 
pose operation by rewriting the tridiagonal system solver so 
that it uses a parallel tridiagonal algorithm which operates 
on Rows of tridiagonal systems in sequence. 

The algorithm used is called cyclic t-educlion. It is a form 
of Gaussian elimination with log(n) stages. At stage i, all 
variables in rows 2**(i-1) are eliminated from the equations 
for row 8**i. The al 
and a log(n) f 

orithm requires a lo 
back-so ue sweep. The basic orm of the parallel P 

(n) forward sweep 

computation is shown below. (The details of the elimination 
process and the back-solve are not included here). 

void 
SolveTridiagonalSyatema2(int n, 

distributed-vectorcRov> tF, 
distributed-vector<Rov> WI{ 

int i,k, a; 
double c; 
CyclicReductionInito; 
for(a = 1; a < n/2; a = Z*a) 
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par,apply(U.parbrginO, U.parendO , 
factor(s. U)); 

for(s = n/2; s >= 1; * = s/2) 
par,apply(U.parbeginO, U.parendO , 

backsolvofs, U)); 
F = U; 

The important property of this method is that each Bow ob- 
ject need only access two other Bow objects to complete the 
factorization and backsolve step. The detailed performance 
numbers for this version of the program are given below. 

For l&nods SC1 Challenge: 
FFTs CyclicReduct A*U sum-of-squares total 

F-1 16.31 6.89 2.41 1.09 26.71 

P=2 7.81 4.31 1.22 0.65 13.89 

P=4 3.97 3.17 0.62 0.29 8.04 

P=8 1.99 2.63 0.32 0.16 4.98 

For 24-node IBH SP/2: 
FFTs CyclicReduct A+U sum-of-squares total 

PO1 13.76 6.37 2.49 1.26 23.88 

P=2 6.91 3.96 1.28 0.63 12.78 

P=4 3.46 2.69 0.67 0.32 7.14 

P=8 1.81 2.17 0.36 0.17 4.61 

P=16 1.66 4.06 0.46 0.22 6.37 

Except for the cyclic reduction operation, the operations 
scale down well (with the same problems on 16 nodes as 
in the other formulation). The cyclic reduction operation 
involves fetching entire Row objects, so communication la- 
tency may play a part here. Also, it should be noted that 
while the cyclic reduction algorithm is, for the problem size 
and processor numbers cited here, somewhat faster than the 
transpose plus parallel apply tridiagonal solver, cyclic reduc- 
tion is a more complex parallel algorithm that does not scale 
as well. Consequently, with a large number of processors 
(P=n), the transpose method may be superior. F’urther- 
more, with an efficient remote member function call, the 
transpose method will be superior for much smaller values 
of P. 

5.2 An Anagram Group Finder 

Our second example uses the dihbuted-vector class and a 
parallel version of the STL sort algorithm. The basic prob- 
lem is to determine the anagram groups (groups of words 
which are permutations of each other) in a dictionary. This 
problem is described in [15] as an example of STL use. 

The algorithm is as follows: 

1. Bead in words from dictionary. For each word, store it 
along with a key consisting of the word’s letters sorted 
in alphabetical order. 

2. Sort words in dictionary by their keys. Anagram groups 
are now stored consecutively. 

3. Find the first two words with matching keys. These 
words form the beginning of an anagram group. 

4. Compare the key with keys of subsequent words until 
a non-matching key is found. 

5. Save the anagram group to a list containing other ana- 
gram groups of the same size. 

6. If there are more words remaining, repeat steps 3, 4 
and 5, beginning with the non-matching word found 
in step 4. 

We store the initial word list from step 1 in a distributed 
vector. The vector elements are of type PS: 

class PS { 
public: 

char ordered-vord[Nl ; 
char vord CN] ; 

where N is an upper limit of the word length. The strings 
are fixed-size arrays because the current implementation of 
PSTL does not allow pointers as data members since there is 
no mechanism for remote stores and fetches to copy the data 
referenced by the local pointer. Comparison for ordering 
during the sort uses the following function object: 

stnrct FirstLass : public binary-function<PS, PS, bool>{ 
boo1 operator()(const PSL p, const PSL q) const 

( 
if (strcmp(p.ordered-vord,q.ordered-vord) < 0) 

return true; 
else 

returu false; 

1 
} f irstless; 

The dictionary is read in by one processor and inserted 
into the distributed vector. In order to redistribute the 
data evenly, a redistribute operation is then done on the 
distributed vector. This moves elements from the single pro- 
cessor context and distributes them to the other processor 
contexts. The vector is then sorted using the PSTL sort 
algorithm, which is a parallel bitonic sort [14]. 

The anagram group finding portion of the algorithm is 
done in each context in a loop over the context’s local ele- 
ments. Step 3 is accomplished using the STL adjacent-find 
algorithm (which finds the first adjacent pair of equivalent 
elements) along with one extra check which is invoked when 
the current element is the last local element. In this case, the 
next (remote) element is retrieved and a check for a match 
of these keys on the boundary is done. 

Step 4 uses the STL find-ifalgorithm to find the next key 
which does not match the key found in step 3. Again, since 
anagram groups can overlap more than one context, this 
checking must continue into the next context’s elements if a 
non-matching key has not yet been found. 

In Step 5, an STL map is used to store the newly dis- 
covered anagram group. A map consists of keys and their 
associated values. The key in this case is the anagram group 
size. The value is a list of parallel iterator pairs, with each 
pair marking the beginning and end of an anagram group. 
After processing is complete, a parallel reduction operation 
is used to sum the list length for each group size over all 
processors and the results are output. 

This imnlementation was instrumented and run on the 
SGI Challenge and the IBM SP/2 with the following results. 
The dictionary consists of 403,200 words. 

For lo-node SGI Challenge: 

Input Redist Sort Group-Anagrams Output Total 
P-l 8.07 0.00 23.22 1.11 0.00 32.41 
P-2 8.19 1.24 20.75 0.69 0.50 30.82 
P=4 8.18 0.76 14.84 0.30 0.10 24.21 
P98 10.96 1.40 12.87 0.20 0.30 26.74 

For 24-node IBM SP/2: 
Input Redist Sort GroupJnagrams Output Total 

P-1 8.75 0.00 14.47 3.63 0.01 26.87 
P-2 8.71 1.84 16.06 1.84 0.37 27.82 
P-4 8.73 1.33 11.38 0.94 0.70 23.09 
P-8 8.81 1.08 8.16 0.47 1.03 19.57 
P=l6 8.93 1.62 12.97 0.64 19.25 43.37 
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Again, we see degradation of performance in the runs with 8 
(on the SGI) and 16 nodes (on the IBM SP/2), probably due 
to competition with other processes. The input step is fairly 
stable across all runs because words are read in by only one 
processor and then the redistribute step balances the ele- 
ments among the processors. We could achieve speed-up on 
the input step by utilizing parallel I/O, but chose not to do 
this in these experiments since we are primarily interested in 
data structure performance. Redistribution does not occur 
in the l-processor case, but there is some speed-up when 
the 2-processor case is compared to 4 and 8. This speed- 
up occurs because the primary operations are copying the 
vector segments from the first context and inserting them 
into the remote vector segment. As the number of proces- 
sors increases, the size of the segment is reduced, resulting 
in smaller messages and shorter insert operations. The sort 
operation also shows speedup, but the major cost of this 
operation (about 2/3 of the time) is the local sort at the 
beginning and end of the bitonic sort. We used the HP STL 
stable-sort without modification (HP STL sort had a bug 
which inhibited its use in this program); we will look closely 
at this implementation to see where improvement might be 
made. As expected, the portion of the program which finds 
the anagram groups has very good speed-up. This is be- 
cause the elements are evenly divided among the contexts 
and, except for the checks at the boundaries, all work for 
the local elements can be done in the local context. 

6 Conclusion 

This paper describes initial experiments with implementing 
the HPC++ Parallel Standard Template Library. While 
much work remains to be done, these experiments show the 
power of the HPC++ framework in terms of the expression 
of parallelism in applications. The experiments have also 
raised interesting questions about implementation details 
and their relationship to performance bottlenecks. In par- 
ticular, the inefficiencies of remote fetches and other global 
pointer operations provide ripe ground for exploration. We 
plan to continue work on the PSTL implementation in the 
coming months. 
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