
HPC++: Experiments with the Parallel Standard Template Library*

Elizabeth Johnson Dennis Cannon

Department of Computer Science, Indiana University

{ejohnson,gannon}@cs.indiana.edu

Peter Beckman

Advanced Computing Laboratory, Los Alamos National Laboratory
beckmanQlanl.gov

Abstract

HPC++ is a C++ library and language extension framework
that is being developed by the HPC++ consortium as a stan-
dard model for portable parallel C++ programming. This pa-
per describes an initial implementation of the HPC++ Parallel

Standard Template Library (PSTL) framework. This implemen-
tation includes seven distributed containers as well as selected
algorithms. We include preliminary performance results from sev-
eral experiments using the PSTL.

1 Introduction

C++ [20] has become a standard programming language for
desktop applications. Increasingly, it is being used in other
areas including scientific and engineering applications, and
there are dozens of research projects focused on designing
parallel extensions for C++ [21].

Several groups have joined to define standard library and
language extensions for writing portable, parallel C++ ap-
plications. In Europe, the Europa consortium [16] has de-
fined a model of parallel C++ computation based on Active
Objects (1, 6, S] and a meta-object protocol derived from
the work on reflection in the programming language research
community [12, 171. In Japan, the Real World Computing
Partnership has established the MPC++ programming sys-
tem [ll] which provides broad and powerful mechanisms for
user-level extensions to a C++ compiler.

In the United States, the HPC++ consortium has fo-
cused on extensions to standard C++ class libraries, com-
piler directives, and a few small language extensions to a-
chieve the goal of portable parallel programming. The con-
sortium is a diverse group, with representatives from indus-
try, academia, and government laboratories (lo].

In this paper, we describe an initial implementation of
HPC++. This implementation is limited, but it does allow
exploration of some of the ideas proposed by the HPC++
consortium. Thus it is an important first step towards defin-
ing a framework for portable, parallel C++ programming.

‘This work is supported by DARPA under contract DABT63-94-
C-0029 and Rome Labs from contract 30602-92-C-0135.

Permission to make digitalhud copies of all or pzut of this material for
personal or classr~m use is granted without fee provided that the copies

are not made or distributed for profit or commercial advantage. the copy
right notice, the title ofthe publication and its date appear, and notice is
given that copyright is by permis%ion ofthe ACM, Inc. To copy otherwise,
10 republish, to post oo servers or to redistribute to lists. requires specific
permission and/or fee

RX 97 Vienna Austria
Copyright 1997 ACM O-89791-902-5/97/7..$3.50

2 Overview of HPC++

The current HPC++ framework (Level 1) describes a C++
library along with compiler directives which support parallel
C++ programming. A future version (Level 2) will include
language extensions for semantics that cannot be expressed
by the Level 1 library.

The standard architecture model supported by HPC++
is a system composed of a set of interconnected nodes. Each
node is a shared-memory multiprocessor (SMP) and may
have several cont.&s, or virtual address spaces. While the
implementation described in this paper assumes a homo-
geneous system, the HPC++ framework will also support
heterogeneous systems where nodes may be on physically
distinct computers.

Level 1 of the HPC++ framework consists of the follow-
ing parts:

l parallel loop directives (to support single-context par-
allelism) ,

l a parallel Standard Template Library,

l a multidimensional array class,

and, in the future,

l a library for distributed active objects,

l an interface to CORBA [9] via IDL mapping, and

l a set of programming and performance analysis tools.

The Parallel Standard Template Library (PSTL) is a
parallel extension of the C++ Standard Template Library
(STL). Distributed versions of the STL container classes
are provided along parallel algorithms and parallel itera-
tors. These components are discussed in Section 4 below.
HPC++ also includes another distributed container - a mul-
tidimensional distributed array class based on A++ [18] and
LPARX [13]. This array class supports element access via
standard array indices as well as parallel random access it-
erators, allowing use of STL and PSTL algorithms on the
array class.

Although the last three parts of the HPC++ framework
are not yet well-defined, our implementation does include
the global pointers and remote function invocation infras-

tructure necessary to support active objects. These’are de-
scribed in Section 3.4.

124

the reference is to a remote object, an RZ’S-get is done to
make a local copy of the remote object value.

This design allows the library user to employ standard
C style to read and write remote values.

3 HPC++ Run-Time Support

Our implementation is separated into two layers - the run-
time system (RTS) and the Parallel Standard Template Li-
brary. This design provides an opportunity for other devel-
opers to substitute their own RTS implementation, provided
that it supports a small set of functions and constructs, de-
scribed in this section. As can be seen from the examples
in Section 5, it is possible to do effective parallel program-
ming using only the higher level PSTL components, but the
RTS layer components are also available to the applications
programmer for use in less structured parallel programming.

While HPC++ supports several execution models, the
model for our implementation is Single Program, Multiple
Data (SPMD). In this model, an HPC++ program launches
a single thread of control in each context. We use Tulip 121,
a run-time system developed at Indiana University, as the
basis for our RTS layer. This system runs on various ma-
chines including the IBM SP-2, SGI Power Challenge, and
Cray T3D. It provides support for remote member function
invocation and load/store operations on remote data. A
key feature of Tulip is that the system provides a consis-
tent interface across platforms yet its implementation takes
advantage of machine-specific hardware features.

Using Tulip, we define typed global pointers and a set
of functions which can be divided into the following groups:
(1) location information, (2) remote store and fetch, and (3)
remote function invocation.

A barrier is also included to provide synchronization for
operations on distributed containers. The following sections
describe the components of the run-time system.

3.1 Global Pointers and Global References

Global pointers are based on the global type in languages
Iike CC++ (41, AC (31 and Split-C (71. A global pointer to
an object of type T IS defined as a ternplated class

HPCxx-ClobalPtr<T> p;

Global pointers can be passed between contexts to allow a

E
rocessor to read and modify objects on a remote node. Two
asic operations are defined on global pointers.

// returna a global reference which can be used for
// remote at&es and fetches
template <class T>
HPCxx-GlobalRef<T> IiPCxx-GlobalPtr::operator *o;

// carts to a local pointer. If the object ia remote,
// thir return8 NULL
template <class T>
APCxx-GlobalPtr<T>::operator T* 0;

The result of dereferencing a global pointer is a global
reference. The primary operations on global references are:

// remote storr
template <class T>
T HPCxx-GlobalRof<T>::operatorl(const T & rhr);

//rrmotr fetch
template <class T>
HPCxx-ClobalRet<T>::oparator T 0;

The assignment operator performs a simple assignment
if the global reference refers to a local object. Otherwise,
an RTS-put (see Section 3.3) is invoked to copy rhs into
the remote object. An analogous operation occurs when the
cast operator is used on a global reference. If the global
reference refers to a local object, that object is returned. If

HPCxx_ClobalPtr<float> p;
. . .
// assign p to a global pointer to a remote object
. . .

‘P = 3.14; // a remote write
float t = *p + 2; // a remote read

// followed by a local addition.

In this HPC++ implementation, global pointers are pri-
marily used to refer to elements in the distributed container.
In particular, the parallel iterator for the distributed con-
tainers (described in section 4.1) can be cast into a global
pointer to a container element.

3.2 Location Information

Object location is encapsulated by an ObjectFinder object.
In Tulip, this is a context number only, but it could in-
clude other information such as processor number or ma-
chine number which uniquely identifies a location. Query
functions are provided to determine locations of objects rep-
resented by global pointers and global references.

3.3 Remote Data Access

Access to remote data is supported via global pointers and
uses remote store and fetch functions. These functions are:

// remote store
template <Clara T>
void RTS-put(HPCxx-ClobalPtr<T> dart, conrt T* src);

// remote tatch
template <class T>
void RTS-grt(T* dent, HPCxx_GlobalPtrtT> arc);

In our implementation, these functions utilize the Tulip
tulip-Get and tulip-Put routines, which use methods ap-
propriate to the particular machine type to transfer data.
RTS-put and RTS-get are blocking calls.

3.4 Remote Function Calls

Remote function call support consists of class and function
templates for each possible member function arity (up to an
implementation-defined limit). Each dass template defines
a message class. The base class of all message classes, Mes-
sage&se, is an abstract base class with two virtual func-
tions: get&e and decipher. These functions are used in
sending and unpacking each particular message type. The
message objects are similar to the Mobile Objects defined in
the CHAOS++ run-time library [5].

Each of these message classes is paired with a template
function to be invoked by the application when a remote call
is needed. This function instantiates a message object in the
local context, packs the arguments, and sends the message
to the appropriate remote context. A remote action handler
in the receiving context calls decipher on the received mes-
sage which, in turn, unpacks the arguments and invokes the
specified method on its local object. A global pointer from
the calling context is used for storing of the return value by
the receiver. For non-blocking calls, a mechanism, similar to
the future class in ABC++ [22], supports subsequent access
to return values from the remote function invocation.

125

4 Parallel Standard Template Library

One of the major recent changes to the draft C++ standard
has been the addition of the Standard Template Library
(STL) [19]. The STL has five basic components.

l Container class templates provide standard definitions
for common aggregate data structures, including uec-
tar, list, deque, set and map.

l Iterators generalize the concept of a pointer. There
are five basic categories of iterators: random access,
bidirectional, forward, input and output.

l Generic algorithms are function templates that allow
standard element-wise operations to be applied to con-
tainers via iterators.

l fin&ion objects are created by wrapping functions
with classes that typically have only operator0 de-
fined. They are used by the generic algorithms in place
of function pointers because they provide greater effi-
ciency.

l Adaptors are used to modify STL containers, iterators,
or function objects. For example, container adaptors
are provided to create stacks and queues, and itera-
tor adaptors are provided to create reverse iterators to
traverse an iteration space backwards.

The Parallel Standard Template Library extends the STL
to include distributed containers, parallel iterators, and par-
allel algorithms. Currently, our implementation includes
distributed versions of all seven STL containers along with
parallel iterators for each. In addition, parallel versions of
many of the STL algorithms have also been completed. The
following sections describe parallel iterators, the distributed
versions of STL containers, and the parallel algorithms.

4.1 Parallel lterators

Parallel iterators extend the functionality of global pointers.
In the case of mndom access parallel itemtors, the opera-
tors ++, --, +n,-n, and [i] allow random access to the entire
contents of a distributed container, while the weaker bidirec-
tional parallel itemtors only provide access via the ++ and
-_ operators. In general, each distributed container class C
has a subclass for the strongest form of parallel iterator that
it supports (e.g. random access, forward, or bidirectional).

Each container class provides methods of the form:

template <char T>
da88 c {

. . . .
class iterator{ . . . };
clam paritsrator{ . . . };
paritarator parbegin();
pwiterator parondo;
iterator begin0 ;
iterator endO;

The parbegin and parend() methods return parallel it-
erators which point to the beginning and one element past
the end, respectively, of the container elements. The begin0
and end0 methods return local iterators which point to the
beginning and one element past the end, respectively, of the
local portion of the container elements.

In order to facilitate effective use of the parallel algo-
rithms (described in Section 4.3), each container has sev-
eral functions which modify parallel iterators. These include

functions to return iterators to the beginning and end of the
local section (if any) of an iteration space defined by two
parallel iterators.

4.2 Distributed Container Classes

Distributed containers are data structures whose elements
are distributed across several contexts. There are seven dis-
tributed containers in the PSTL. These mirror the contain-
ers in the basic STL. Three of the containers are sequence
containers, which store elements in a sequential order.

l dislributed-vector is a one-dimensional array.

l distributed-deque is a double-ended queue.

l distributed-list is a doubly-linked list.

The other four are associative containers. Elements are or-
dered by a key, which can also be used to retrieve elements
from the container.

l distributed-set is an ordered set of unique keys.

l distributed-multiset is like a distributed-set except that
duplicate keys are allowed.

l distributed-map is an ordered set of unique keys along
with associated objects.

l distributed-multimap is like a distributed-map except
that duplicate keys are allowed.

As described in Section 4.1, each container provides a
local and global view through iterators which access local
and global elements. Iterators for the sequence containers
traverse elements in sequence while associative container it-
erators traverse in the order of the element keys.

The PSTL containers use irregular block distribution
across contexts. Each context is assigned a unique ID and
contexts are ordered by these IDS when determining place-
ment of element blocks. The elements in a particular con-
text form a contiguous segment of the container’s element
iteration space.

The distribution itself is specified using a ContainerRatio
object, which may be modified during execution. This ob-
ject contains information about the proportion of the total
elements to be assigned to each context. If no ratio ob-
ject is specified for a container, block distribution is used -
elements are divided evenly among the contexts, with any
extra elements assigned to the last context. The creation
of a distributed container and the manipulation of its ratio
object are collective operations. The ratio object must be
identical in each context.

The PSTL containers are dynamic - the size will vary as
elements are inserted and/or deleted. For this reason, the
distribution of elements in a container is only guaranteed to
comply with its ratio object after either container construc-
tion or invocation of the redistribute method on the container
or its ratio object. This compliance remains in effect until
the first operation which modifies the size of the container
or until the ratio object itself is changed or replaced.

Containers may share a ratio object. Invoking redis-
tribute on the ratio object redistributes all containers which
share that object. Invoking redistribute on the container it-
self only redistributes that container’s elements; the other
containers which share the ratio object remain unchanged.
Note also that the containers need not be of the same type
in order to share a ratio object. A distributed-vector, for
example, may share a ratio object with a distributed-list.

126

4.3 Parallel Algorithms

As in the STL, the PSTL algorithms are generic - the argu-
ments to the algorithms are not the containers themselves,
but rather iterators which access container elements. This
approach has several advantages. First, the same algorithm
can be used for any container which utilizes an iterator of
sufficient capability. So, for example, an algorithm which
applies a function to each element can be called for any con-
tainer which provides an iterator capable of the increment
(+ +) operation. Second, algorithms can be easily applied to
subranges of elements by passing as arguments to the algo-
rithm the iterators which mark the beginning and one past
the end of the subrange. In addition, through the use of
user-defined iterator adaptors, subgroups of elements, such
as odd- or even- indexed elements or elements with values
above a certain threshold, can be accessed.

There are three types of parallel algorithms in the PSTL:

. STL algorithms with parallel semantics,

. par- versions of STL algorithms, and

l par- algorithms for standard parallel operations.

The algorithms in the first group retain their STL names,
but allow pariterator arguments in place of iterators. These
new algorithms are collective and have parallel semantics.

The algorithms in the second group are also versions of
the STL algorithms, but par- will be prepended to their
names. When invoked with parallel iterators, these algo-
rithms are semantically equivalent to the first type of algo-
rithm (and are collective). When invoked with local itera-
tors, these algorithms are not collective. Execution is local
to a particular context, but has parallel semantics (so a loop
may be parallelized, for example).

The differentiation between the versions of these algo-
rithms is accomplished using iterator tags. The body of
each algorithm consists of a call to another function with
an added argument: iterotor_categoy(first). The local or
parallel iterator version of the function is called, depending
on the iterator tag. Note that this differentiation is done at
compile time using function templates.

The following example illustrates these algorithm ver-
sions.

// create a distributed vector oi size 100 and
// initialize each element to 6.0
distributed-vrctor<doublr) myVec(100, 5.0);

// 8um the local elsmants in this context
double sum1 - accumulate(myVac.beginO, myVec.endO,

0.0);

// sum all elements - collective operation
double sum2 = accumulate(myVsc.parbaginO,

myVec.parendO, 0.0);

// sum the local elements in this context
// using single-context parallelism
double sum3 = par-accumulate(myVec.begin(),

myVec.snd(), 0.0) ;

// sum all elements - collectivs operation
double sum4 = par-accumulats(myVac.parbrgin(),

myVac.parsndO, 0.0);

In this example, let us assume that 3 contexts are in-
volved. We first create a distributed vector with 100 ele-
ments of type double. Since the default distribution is used
(no ContainerRatio object is specified in the constructor),

33 elements are stored in the first two contexts and 34 are
stored in the last. Each element is initialized to 5.0.

The STL algorithm accumulate is declared as:

template <class Iterator. class T>
T accumulata(Iterator first, Itarator last, T initial)

The algorithm sums the elements in the iteration space (first,

last) using initial as the initial value.
The first call to accumulate is a non-collective operation

and results in the invocation of the STL version of occumu-
late in the calling context. While it does not need to be
invoked in each context, it is in this case. Each invocation
is, however, completely independent of the other contexts.
In contexts 0 and 1, the value of sum1 is 165.0 (5 * 33).
In context 2, the value is 170.0 because there is one extra
element.

The second accumulate call is differentiated from the first
by the use of parallel iterators. It is a collective operation
and must be called in all contexts. The local elements are
summed in each context and then a global sum is computed
using a reduction operation. In all contexts, sum2 is 500.0.

Because it is invoked with local iterators, the first call
to par-accumulate is a non-collective operation. Unlike oc-

cumulate, however, par-accumulate with local iterators uses
single-context parallelism, if available, to compute the local
sum. Lightweight threads are used in a context to accumu-
late partial sums of the local elements; these are summed
to get the total for the local context. The value of sum3 in
each context corresponds to the value of suml; they differ
only in the processing involved. Finally, the second call to
par-accumulate is equivalent to the second call to accumu-
late since behavior of the algorithms is the same when they
are called with parallel iterators.

The third group of algorithms consists of special par- al-
gorithms such as par-apply, par-scan, and pnr-reduce. These
are collective operations with parallel semantics. The follow-
ing have been defined thus far:

par-apply: Applies a function object pointwise to the
elements of a set of containers.

par-reduction: Applies a function object pointwise to
the elements of a set of containers and then does a
reduction on an associative binary operator.

par-scan: Applies a function object pointwise to the
elements of a set of containers and then does a parallel
prefix operation using an associative binary operation.

As is the case for all PSTL algorithms, the main arguments
to these algorithms are iterators which access container el-
ements. When invoked with local iterators, the algorithms
are non-collective and use single-context parallelism. When
invoked with parallel iterators, the operations are collective
and have parallel semantics across contexts. The function
object may change only the value of the elements in the
space defined by the first two iterators in the argument list.
Changes made to elements accessed via any other parallel
iterator argument are lost since the function is applied to a
temporary local copy of those elements.

For example! the declaration of par-apply for a binary
function object IS:

template <class ForuardIteratorl.
class ForvardIterator2,
class BinaryOperation>

void par-apply(ForvardItarator1 baginl,
ForwardIteratorl endl,
ForvardItarator2 beginl.
BinaryOperation binop) ;

127

Context 0

x.parbegln()

I

I
Context 1

I x.prrbegln() + 10 x.parend()

y.parbagln() + 7 y.pawW

par-apply(x.parbegin), x.parbe in()+lO,
y.parbegln), add-too ; I s

Figure 1: Example of par-apply usage

Here, the first iteration space is defined by peginl, endl).
If this iteration space contains k elements, then the second
iteration space consists of pegin2, begin2 + k). In apply-
ing the binary function, each element in the first iteration
space is paired with the corresponding element in the second
iteration space.

Consider the following example.

class add-to {
public :

void operatorO(intt m, int n) { m += n; }
1;

// create vectors
distributed-vactor<innt) x(16);
distributed-vector<int> ~(10);

// initialize alament values
do-initialization(x.parbsginO.x.parendO);
do~more~initialization(y.parb~ginO.y.parsnd());

// add tha first 10 rlements of y to the
I/ corresponding alamanta in x
par~apply(x.parbaginO.x.parbaginO+lO.y.parbaginO,

add-too) ;

Figure 1 shows the two vectors, with the elements from
the iteration spaces shaded in gay. The processing within
par-apply in each context is as follows:

1. The iteration space [z.parbegin(),z.parbegin()+lO) is
restricted to its local elements. As shown, in context
0, seven elements are local and in context 1, three el-
ements are local.

2. The portion of [y.parbegin(), y.parbegin()+lO) which
corresponds to these local elements is identified. In
context 0, this begins at y.parbegin(), while in context
1 it begins at y.parbegin()+7.

3. The opemtor() method of addto is applied to each pair
of elements in the iteration spaces identified in steps
1 and 2. Paired elements are connected by arrows
in the figure. Note that all of the elements in the
first iteration space are local, while in the second space
elements may be local or remote. In the case of remote
elements, a remote fetch is done to get a local copy
for the operation. Step 3 is done in parallel if single-
context parallelism is supported.

5 Examples

The next two sections describe several examples using the
PSTL. First, we show experiments with implementing a par-
tial differential equation (PDE) solver. Second, we describe
use of the PSTL to implement an algorithm which finds ana-
grams in a dictionary. In both examples, note that the pax-
allelism is provided via standard algorithms from the PSTL.
The applications programmer must write the code in terms
of container iterators in order to use these algorithms, but
no extra effort is required in order to add parallelization it-
self. In addition, the location of elements is transparent to
the programmer in terms of writing the code since remote
elements are fetched as necessary when the parallel iterator
is dereferenced.

5.1 A Fast Poisson Solver

An example of a data-parallel computation that is easy to
program with the HPC++ PSTL is a simple Fast Poisson
Solver which computes the solution to an elliptic partial dif-
ferential equation on a two-dimensional grid of size n by
n. The computation is very simple in structure. The dif-
ferential operator is converted to a 5-point finite difference
operator and the problem is reduced to solving an algebraic
system A*U=F, where F is a matrix of input data and U is
another matrix of the same size representing the solution.

The algorithm works as follows:

1. Compute the fast sine transform of each row of F, stor-
ing the result in U. The sine transform is computed by
means of a complex FFT of size n/2.

2. Transpose the matrix U. Each column defines the co-
efficients in a tridiagonal matrix equation. In parallel,
for each column, solve the tridiagonal system of equa-
tions and put the solution into the F matrix. Trans-
pose F.

3. Apply the fast sine transform again to each row of F
and store the results in U. U now contains the solution
to the PDE.

4. To check the result, compute F-A*U. This is done in
parallel because A is a simple 5-point finite difference
operator.

5. Compute the sum of the squares of the components of
F-A*U.

One possible data structure for F and U is a distributed
vector of Row objects. The class Row consists of an array
of double precision numbers which can be accessed with the
standard array ([O operator, a function which returns the

1 array size, and a unction that returns the Row position in
the vector.

class Row{
public :

float LoprratorO tint) ;
int size0 ;
int indaxo; // position in the vector

1;

We use the par-apply function to compute the sine trans-
forms in parallel to each Row object in the vector. The
par-reduction function is used to compute the sum of the
squares of the residual vector components.

128

double FastPoissionSolver(int II.
distributed-vector< Row> L U,
distributed-vector< Row> L F) {

//apply the sine transforms to each row in F
I/ and put result in U
par-apply(U.parbegin(),U.parandO,F.parbeginO,

rov,tftsO) ;

//transpose U. aolva the tri-diagonal systrma
// of equations, put solution in F, transpose F
SolveTridiagonalSystema(n, F, U);

//apply the sine transforms to each rev in F
// again and put rrault in U
par-apply(U.parbsgin(),U.parend(),F.parbeginO,

rov_fftaO);

I/ check for errora. apply the differential operator.
/I F - A*U
par-apply(F.parbegin(),F.parendO, DiffOper(U));

// compute the auma of squares of the differences to
// get the residual
double reaid = par-raduction(F.parbeginO,F.parendO,

plua<doubls>O. squareso.
(double) 0.0) ;

return rssid;

)

The row-@s function object computes the transform on
Row x (of matrix F here) and puts the result in Raw y (of
U matrix here). We do not show the details of the sine
transform function.

The most difficult part is the solution of the system of
tridiagonal equations. As was described above, the individ-
ual tridiagonal equations are associated with the columns
of the matrix. Hence, one solution is to first transpose the
matrix so that columns become rows. Then we apply a
standard sequential tridiagonal system solver to each row in
parallel across the distributed vector of Row ob’ects.

The transpose function object has a copy o / the appro-
priate Row from the source vector. For each element of the
destination row, we must access the corresponding (column)
element of the source vector Row.

claaa transpoaa{
public :

Row R;
tranrpoae(diatributed_vrctorcRov> &X, int il{

distributed-vector<Row>::paritarator r;
R = X[i] ; // R = ith Row of X

1
void operator()(Rov ty){

int i = R.indoxO;
int j = y.indrx() ;
yCi1 = RCjl;

1
1;

The tridiagonal solver takes the following simple form.

void SolveTridiagonalSyatema(int n,
diatributad-vactor<Rou) tF.
diatributad-vectorcRow> tU I{

for lint i-0; i < n ; i++)
par_apply(F.parbeginO.F.parend(),tranaposa(U,i));

par,apply(U.parbegin(),U.parendO. F.parbaginO,
aolve_tridiagO);

// each itaration fills jth column of F vith
// jth Rov of U
for (int j-0; j < n ; j+*)

par-apply(F.parbaginO,F.parendO,transpoae(U,j));

1

This Fast Poisson Solver was instrumented and run on the
SGI Power Challenge and the IBM SP/2. Although the SGI
Power Challenge is a shared memory machine, the Tulip run-
time system provides a mechanism to run in SPMD mode.
The remote fetches and stores, however, do take advantage
of the shared memory configuration. Tulip on the IBM
SP/2 utilizes the Message Passing Interface (MPI) for re-
mote fetches and stores.

The results, in terms of execution times in seconds for
each of the rnmn functions for various numbers of processors
and grid size 1024 by 1024 are shown below.

For lo-node SC1 Challanga:
FFTs Transpose Tridiagonal b*U rum-of-sq total

P=i 14.94 2.01 1.76 1.77 1.07 21.55
P=2 7.50 1.41 0.88 0.90 0.54 11.23
P-4 3.81 1.32 0.46 0.45 0.27 6.31
P=a 1.96 1.58 0.24 0.24 0.15 4.17

For 24-nods IBI4 SP/2:
FFTa Transpose Tridiagonal A*U sum-of-aq total

P=l 13.26 3.66 1.81 1.73 1.27 21.73
P=2 6.63 5.89 0.92 0.90 0.63 14.97
P=4 3.36 6.02 0.46 0.47 0.32 10.63
P=a 1.68 9.26 0.23 0.29 0.16 11.62
P=l6 1.42 71.91 0.24 0.31 0.23 74.11

The degradation of performance apparent in the SP/2
16-node case probably results because only 8 nodes may be
reserved for exclusive use on our machine. Jobs using greater
than 8 nodes compete for system resources with other prc-
cesses. In the other cases, all components except the trans-
pose operation scale down very well as the number of pro
cessors increases. There are two factors which may explain
the timings for the transpose operation. First, all processors
iterate through the loop over the rows of the distributed vec-
tor in the same order. So all try to fetch a row from processor
0 first, then all try to fetch the next row, and so on. This
results in loss of parallelism as one processor tries to accom-
modate all of the requests. This problem worsens as more
processors are added. Providing some means to stagger the
row requests may help this problem.

Second, during creation of the transpose function object,
an entire row is fetched by each processor for each column.
Only the portion of the row matching the locally stored col-
umn elements is actually needed. We are working on a ver-
sion of the program which uses the remote function call in-
frastructure to fetch partial rows.

Another approach to this problem is to avoid the trans-
pose operation by rewriting the tridiagonal system solver so
that it uses a parallel tridiagonal algorithm which operates
on Rows of tridiagonal systems in sequence.

The algorithm used is called cyclic t-educlion. It is a form
of Gaussian elimination with log(n) stages. At stage i, all
variables in rows 2**(i-1) are eliminated from the equations
for row 8**i. The al
and a log(n) f

orithm requires a lo
back-so ue sweep. The basic orm of the parallel P

(n) forward sweep

computation is shown below. (The details of the elimination
process and the back-solve are not included here).

void
SolveTridiagonalSyatema2(int n,

distributed-vectorcRov> tF,
distributed-vector<Rov> WI{

int i,k, a;
double c;
CyclicReductionInito;
for(a = 1; a < n/2; a = Z*a)

129

par,apply(U.parbrginO, U.parendO ,
factor(s. U));

for(s = n/2; s >= 1; * = s/2)
par,apply(U.parbeginO, U.parendO ,

backsolvofs, U));
F = U;

The important property of this method is that each Bow ob-
ject need only access two other Bow objects to complete the
factorization and backsolve step. The detailed performance
numbers for this version of the program are given below.

For l&nods SC1 Challenge:
FFTs CyclicReduct A*U sum-of-squares total

F-1 16.31 6.89 2.41 1.09 26.71

P=2 7.81 4.31 1.22 0.65 13.89

P=4 3.97 3.17 0.62 0.29 8.04

P=8 1.99 2.63 0.32 0.16 4.98

For 24-node IBH SP/2:
FFTs CyclicReduct A+U sum-of-squares total

PO1 13.76 6.37 2.49 1.26 23.88

P=2 6.91 3.96 1.28 0.63 12.78

P=4 3.46 2.69 0.67 0.32 7.14

P=8 1.81 2.17 0.36 0.17 4.61

P=16 1.66 4.06 0.46 0.22 6.37

Except for the cyclic reduction operation, the operations
scale down well (with the same problems on 16 nodes as
in the other formulation). The cyclic reduction operation
involves fetching entire Row objects, so communication la-
tency may play a part here. Also, it should be noted that
while the cyclic reduction algorithm is, for the problem size
and processor numbers cited here, somewhat faster than the
transpose plus parallel apply tridiagonal solver, cyclic reduc-
tion is a more complex parallel algorithm that does not scale
as well. Consequently, with a large number of processors
(P=n), the transpose method may be superior. F’urther-
more, with an efficient remote member function call, the
transpose method will be superior for much smaller values
of P.

5.2 An Anagram Group Finder

Our second example uses the dihbuted-vector class and a
parallel version of the STL sort algorithm. The basic prob-
lem is to determine the anagram groups (groups of words
which are permutations of each other) in a dictionary. This
problem is described in [15] as an example of STL use.

The algorithm is as follows:

1. Bead in words from dictionary. For each word, store it
along with a key consisting of the word’s letters sorted
in alphabetical order.

2. Sort words in dictionary by their keys. Anagram groups
are now stored consecutively.

3. Find the first two words with matching keys. These
words form the beginning of an anagram group.

4. Compare the key with keys of subsequent words until
a non-matching key is found.

5. Save the anagram group to a list containing other ana-
gram groups of the same size.

6. If there are more words remaining, repeat steps 3, 4
and 5, beginning with the non-matching word found
in step 4.

We store the initial word list from step 1 in a distributed
vector. The vector elements are of type PS:

class PS {
public:

char ordered-vord[Nl ;
char vord CN] ;

where N is an upper limit of the word length. The strings
are fixed-size arrays because the current implementation of
PSTL does not allow pointers as data members since there is
no mechanism for remote stores and fetches to copy the data
referenced by the local pointer. Comparison for ordering
during the sort uses the following function object:

stnrct FirstLass : public binary-function<PS, PS, bool>{
boo1 operator()(const PSL p, const PSL q) const

(
if (strcmp(p.ordered-vord,q.ordered-vord) < 0)

return true;
else

returu false;

1
} f irstless;

The dictionary is read in by one processor and inserted
into the distributed vector. In order to redistribute the
data evenly, a redistribute operation is then done on the
distributed vector. This moves elements from the single pro-
cessor context and distributes them to the other processor
contexts. The vector is then sorted using the PSTL sort
algorithm, which is a parallel bitonic sort [14].

The anagram group finding portion of the algorithm is
done in each context in a loop over the context’s local ele-
ments. Step 3 is accomplished using the STL adjacent-find
algorithm (which finds the first adjacent pair of equivalent
elements) along with one extra check which is invoked when
the current element is the last local element. In this case, the
next (remote) element is retrieved and a check for a match
of these keys on the boundary is done.

Step 4 uses the STL find-ifalgorithm to find the next key
which does not match the key found in step 3. Again, since
anagram groups can overlap more than one context, this
checking must continue into the next context’s elements if a
non-matching key has not yet been found.

In Step 5, an STL map is used to store the newly dis-
covered anagram group. A map consists of keys and their
associated values. The key in this case is the anagram group
size. The value is a list of parallel iterator pairs, with each
pair marking the beginning and end of an anagram group.
After processing is complete, a parallel reduction operation
is used to sum the list length for each group size over all
processors and the results are output.

This imnlementation was instrumented and run on the
SGI Challenge and the IBM SP/2 with the following results.
The dictionary consists of 403,200 words.

For lo-node SGI Challenge:

Input Redist Sort Group-Anagrams Output Total
P-l 8.07 0.00 23.22 1.11 0.00 32.41
P-2 8.19 1.24 20.75 0.69 0.50 30.82
P=4 8.18 0.76 14.84 0.30 0.10 24.21
P98 10.96 1.40 12.87 0.20 0.30 26.74

For 24-node IBM SP/2:
Input Redist Sort GroupJnagrams Output Total

P-1 8.75 0.00 14.47 3.63 0.01 26.87
P-2 8.71 1.84 16.06 1.84 0.37 27.82
P-4 8.73 1.33 11.38 0.94 0.70 23.09
P-8 8.81 1.08 8.16 0.47 1.03 19.57
P=l6 8.93 1.62 12.97 0.64 19.25 43.37

130

Again, we see degradation of performance in the runs with 8
(on the SGI) and 16 nodes (on the IBM SP/2), probably due
to competition with other processes. The input step is fairly
stable across all runs because words are read in by only one
processor and then the redistribute step balances the ele-
ments among the processors. We could achieve speed-up on
the input step by utilizing parallel I/O, but chose not to do
this in these experiments since we are primarily interested in
data structure performance. Redistribution does not occur
in the l-processor case, but there is some speed-up when
the 2-processor case is compared to 4 and 8. This speed-
up occurs because the primary operations are copying the
vector segments from the first context and inserting them
into the remote vector segment. As the number of proces-
sors increases, the size of the segment is reduced, resulting
in smaller messages and shorter insert operations. The sort
operation also shows speedup, but the major cost of this
operation (about 2/3 of the time) is the local sort at the
beginning and end of the bitonic sort. We used the HP STL
stable-sort without modification (HP STL sort had a bug
which inhibited its use in this program); we will look closely
at this implementation to see where improvement might be
made. As expected, the portion of the program which finds
the anagram groups has very good speed-up. This is be-
cause the elements are evenly divided among the contexts
and, except for the checks at the boundaries, all work for
the local elements can be done in the local context.

6 Conclusion

This paper describes initial experiments with implementing
the HPC++ Parallel Standard Template Library. While
much work remains to be done, these experiments show the
power of the HPC++ framework in terms of the expression
of parallelism in applications. The experiments have also
raised interesting questions about implementation details
and their relationship to performance bottlenecks. In par-
ticular, the inefficiencies of remote fetches and other global
pointer operations provide ripe ground for exploration. We
plan to continue work on the PSTL implementation in the
coming months.

References

111

PI

131

141

I51

G. Agha. Actors. MIT Press, 1986.

P. Beckman and D. Gannon. Tulip: A portable run-
time system for object-parallel systems. In Proceed-
ings of the 10th International Parallel Processing Sym-
posium, April 1996.

William W. Carlson and Jesse M. Draper. Distributed
data access in AC. In Fifth ACM Sigplan Symposium
on Principles and Practices of Pamllel Progmmming,
1995.

K. Mani Chandy and Carl Kesselman. CC++: A
declarative concurrent object-oriented programming
notation, 1993. In Research Directions in Concurrent
Object Oriented Programming, MIT Press.

C. Chang, A. Sussman, and J. S&z. Object-oriented
runtime support for complex distributed data struc-
tures. Technical Report UMIACS-TR-95-35, University
of Maryland Institute for Advanced Computer Studies
and Department of Computer Science, March 1995.

PI

I71

PI

IlO1

PI

WI

1131

PI

I151

P61

1171

I181

PI

WI

PI

PI

Andrew A. Chien. Concurrent Aggregates: Supporting
Modularity in Massively-Parallel Programs. MIT Press,
1993.

D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel
programming in Split-C. In Supercomputing ‘93, 1993.

Wayne Fenton, Balkrishan Ramkumar, Vikram Sale-
tore, Amitabh B. Sinha, and Laxmikant V. Kale. Sup-
porting machine-independent parallel programming on
diverse architectures. In Proceedings of the 1991 Inter-
national Conference on Parallel Processing, 1991.

Object Management Group. The Common Object
Request Broker: Architecture and specification, July
1995. Revision 2.0.

The HPC++ Working Group. HPC++ White Papers.
Technical Report TR 95633, Center for Research on
Parallel Computation, 1995.

Yutaka Ishikawa. Meta-level architecture for extend-
able C++ draft document. Technical Report TR-94024,
Real World Computing Partnership, February 1995.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bo-
brow. The Art of the Metaobject Protocol. MIT Press,
1992.

Scott Kohn and Scott Baden. Irregular coarse-grain
data parallelism under LPARX. Journal of Scientific

Programming, 5(3):185-202, Fall 1996.

A. Malony, B. Mohr, P. Beckman, and D. Gannon. Pro-
gram analysis and tuning tools for a parallel object ori-
ented language: An experiment with the Tau system.
In Proceedings 1994 Los Alamos Workshop on Parallel
Performance Tools, 1994.

David Musser and Atul Saini. STL Tutorial and Refer-
ence Guide. Addison-Wesley, 1996.

The EUROPA Working Group on Parallel C++ Archi-
tecture SIG. EC++ - EUROPA Parallel C++ Draft
Definition. Unpublished manuscript, 1995.

Andreas Paepcke. Object-Oriented Programming: The
CLOS Perspective. MIT Press, 1993.

Rebecca Parsons and Daniel Quinlan. Run-time recog-
nition of task parallelism within the P++ parallel array
class library. In Proceedings of the Workshop of Scalable
Parallel Libraries, 1993.

Alexander Stepanov and Meng Lee. The Standard Tem-
plate Library. Technical Report HPL-95-11, Hewlett-
Packard Laboratories, January 1995.

Bjarne Stroustrup. The C++ Programming Language,
Second Edition. Addison-Wesley, 1991.

Gregory Wilson and Paul Lu. Parallel Programming
Using C+i. MIT Press, 1996.

Gregory Wilson and William O’Farrell. An introduc-
tion to ABC++. Unpublished manuscript, 1995.

131

