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1 Introduction

The Parallel Object-Oriented Methods and Applications (POOMA) FrameWork
is a C++-class library designed to provide a flexible environment for data-parallel
programming of scientific applications. The FrameWork defines an interface in
which the users, who need not be familiar with object-oriented programming,
express the fundamental scientific content and/or numerical methods of their
problem (optionally with hints as to how to best decompose it across proces-
sors). Objects within the POOMA FrameWork perform the necessary data
decomposition and communications.

The POOMA FrameWork is constructed in a layered fashion, in order to
exploit the efficient implementations in the lower levels of the FrameWork,
while preserving an interface germane to the application problem domain at
the highest level. Thus, it is possible to alter underlying implementations
with no changes to the high-level interface. This is our approach to the
encapsulation of parallelism within an object-oriented programming system.
For current information on the status of the POOMA FrameWork, we have
provided a POOMA Home Page on the World Wide Web. Our URL is
http://www.acl.lanl.gov/PoomaFramework.

This work has been supported primarily by the Department of Energy, Office
of Scientific Computing. Results were obtained by utilizing resources at the
Advanced Computing Laboratory in Los Alamos, the National Energy Research
Supercomputer Center, and the Maui High-Performance Computer Center. We
would like to thank David Forslund, Dan Quinlan, Jeff Saltzman, and David
Kilman for many helpful discussions during the development of the POOMA
FrameWork.



2 History and Philosophy

The POOMA FrameWork was inspired by the Numerical Tokamak community’s
need to resolve the Parallel Platform Paradox, which states:

The average time required to implement a moderate-sized applica-
tion on a parallel computer architecture is equivalent to the half-life
of the latest parallel supercomputer.

Although a strict definition of “half-life” could be argued, no computational
physicist in the fusion community would dispute the fact that most of the time
spent in implementing parallel simulations was focused on code maintenance,
rather than on exploring new physics. Architectures, software environments,
and parallel languages came and went, leaving the investment in a new physics
code buried with the demise of the latest supercomputer. There had to be a
way to preserve that investment.

The POOMA FrameWork grew out of the Object-Oriented Particle
Simulation (OOPS) class library [Reynders et al. 1994, Reynders et al. 1995]
developed at Los Alamos specifically for particle-in-cell (PIC) simula-
tions [Birdsall & Langdon 1985] of fusion plasmas using gyrokinetic methods
[Lee 1987]. Performing efficient PIC simulations is notoriously difficult on par-
allel architectures [Decyk 1995]. PIC codes written with objects from the OOPS
class libraries, however, allowed PIC simulations to move between parallel ar-
chitectures with no change to the source code. Furthermore, the high-level,
data-parallel representation of particle aggregates with OOPS objects provided
several performance enhancements over previous object-oriented PIC simula-
tions [Forslund et al. 1990].

The POOMA FrameWork extended the ideas of the OOPS classes to include
a variety of high-level, parallel data types and greater functionality. The main
goals of the POOMA FrameWork include:

1. Code portability across serial, distributed, and parallel architectures with
no change to source code

2. Development of reusable, cross-problem-domain components to enable
rapid application development

3. Code efficiency for kernels and components relevant to scientific simulation

4. FrameWork design and development driven by applications from a diverse
set of scientific problem domains

5. Shorter time from problem inception to working parallel simulations



2.1 Why Data Parallel?

When using explicit message passing, programmers must manage both the de-
tails of data layout across processor memories and the movement of data between
them. In a data-parallel programming system [Hillis & Steele 1986], responsi-
bility is delegated to a run-time system or a layer of objects responsible for
parallel abstractions. Data-parallel systems encourage programmers to develop
algorithms appropriate for the large data sets, which are the usual target of
parallel scientific applications. Attempting to parallelize a serial code is much
easier if the programmer considers a large number of processors at the outset.

Another strong argument for data-parallel programming is that encapsula-
tion at the data level is typically equivalent to encapsulation at the mathematical
level. Our experience is that data parallelism exposes the natural mathemat-
ical structure of a code, extracting it from layers of do loops. Operations on
data-parallel objects can be encapsulated as parallel operators. Structuring
a code in terms of data-parallel objects and operators dramatically increases
code readability and correspondence with the original equations. It also facili-
tates identification of computational primitives suitable for optimization. The
overhead incurred by use of an object-oriented framework to provide data par-
allelism can be offset by the efficiency gained in its ability to chain together
mathematical operations.

2.2 Why a Framework?

A framework provides an integrated, layered system of objects. Each object
in the framework is composed of or utilizes objects from lower layers. In the
POOMA FrameWork, the upper layers contain global data objects that are ab-
stractions of scientific problem domains (i.e., particles, fields, and matrices) and
typical methods performed on these objects, such as binary operations, Fourier
transforms, or Krylov solvers. Objects lower in the FrameWork capture the ab-
stractions relevant to parallelism and efficient node-level simulation, including
communication, domain decomposition, chained-expression optimization, and
load balancing. The higher-level objects in the FrameWork are principally book-
keepers that delegate computational tasks to these lower layers.

This layered approach to object-oriented analysis and design provides a natu-
ral breakdown of responsibility in application development. Computer scientists
and algorithm specialists can focus on the lower realms of the FrameWork, op-
timizing computational kernels and message-passing techniques without having
to consider the application being constructed. Meanwhile, application scientists
can construct numerical models with objects in the upper levels of the Frame-
Work, without knowing their implementation details. This clear separation
of duties is made possible by the encapsulation of parallelism and application
science in POOMA, which helps the programmer avoid interspersing message-
passing commands and computational algorithms in the application code.



3 Implementation

3.1 Framework Layer Description

The POOMA FrameWork is composed of classes written in C++. POOMA
does not utilize language extensions; rather, parallelism is captured through a
hierarchical layering of classes. Furthermore, no preprocessors or interpreters
are invoked, thus enabling source-level debugging. The FrameWork consists of
the following five layers of classes:

e Application Layer

e Component Layer

Global Layer
e Parallel Abstraction Layer

e Local Layer

As described earlier, the classes higher in the FrameWork represent ab-
stractions directly relevant to application domains, whereas classes lower in
the FrameWork represent the abstractions of parallelism and efficient compu-
tational kernels. The Global and Local Layers work together to define Global
Data Types (GDTs) that perform matrix, field, and particle operations. The
interactions between the Global and Local classes are mediated by objects from
the Parallel Abstraction Layer (PAL), which is responsible for capturing the
key abstractions of parallelism, such as interprocessor communication, domain
decomposition, and load balancing. The Component Layer, which is built upon
the Global Layer, contains a rich set of objects directly relevant to scientific sim-
ulation (such as interpolaters, FFTs, and Krylov solvers). Objects in the Com-
ponent Layer are generic and reusable across problem domains, whereas objects
in the Application Layer represent a configuration of Component and Global
objects interspersed with application-specific objects. These highest-level ob-
jects are complete physics simulations that serve as archetypes for the process
of constructing applications with the POOMA FrameWork. Applications cur-
rently under investigation include Numerical Tokamak, Molecular Dynamics,
high-speed multimaterial CFD, and rheological flow simulations.

Code written with objects from within or above the Global Layer are capa-
ble of running with no source code changes on serial, distributed, and parallel
architectures. We currently support most Unix-based workstations, Cray vector
architectures, and MPI/PVM clusters of workstations (COWSs). The supported
parallel architectures include the IBM SP2, the Cray T3D, the SGI Power Chal-
lenge, and the Meiko CS2. As discussed in Section 3.6, we are also researching
the extension of our Parallel Abstraction Layer to enable portability to hetero-
geneous MPP clusters.



A principal feature of this layered framework approach is its extensibility.
The Parallel Abstraction Layer is designed for easy addition of new user-defined
GDTs. If classes within the POOMA FrameWork contain functionality relevant
to the target problem domain, a user may also exploit polymorphism to obtain
the requisite behavior. The FrameWork provides further functionality by al-
lowing penetration to any level. Thus, one may access and modify lower-level
objects, including overloading their member functions with user-defined behav-
ior. The FrameWork layers and their interaction are described in the sections
that follow.

3.2 Global Data Types

The GDTs within the FrameWork provide the user with a data-parallel repre-
sentation for a variety of data types, including fields, matrices, and particles.
The design of these high-level objects has been driven by applications, and
hence they have matured with a rich set of member functions directly relevant
to high-performance science and engineering simulation.

Because many scientific programmers are new to object-oriented program-
ming, the interfaces to the FrameWork’s GDT objects have been designed, where
possible, to seem similar to a familiar procedural, data-parallel language syntax,
such as that of Fortran-90. However, this does not preclude the use of inher-
itance and polymorphism to create new classes that map directly to problem
domains of interest. With this in mind, the FrameWork has been designed and
implemented with a very shallow inheritance structure.

Each Global Data Type object is comprised of several Local Data Type ob-
jects that, as an aggregate, constitute the Global Data Type object. These
Global and Local classes interact to provide simple I/O and data visualiza-
tion capabilities. At compile time, architecture-dependent I/O libraries may be
linked in, as well as the Advanced Computing Laboratory’s portable Generic
Display Library (GDL), to extend these capabilities.

Although a lot of ground can be covered by using the GDTs that are al-
ready in place and specializing their behavior through inheritance, there are
hooks within the FrameWork to enable further extensibility through the ex-
plicit installation of other user-defined GDTs. The process of taking a serial
class library and making it parallel is made easier through the reuse of objects
from the FrameWork that encapsulate key parallel abstractions such as domain
decomposition, load balancing, and communication.

3.2.1 Field Classes

The Field classes are N-dimensional arrays of floats, doubles, or integers. Data-
parallel representation allows looped expressions, such as

for (int i=0; i<Nx; i++) {
for (int j=0; j<Ny; j++) {



for (int k=0; k<Nz; k++) {
ATi1[j10x] = BLil1[jI1[x] + c[i1[j1Ck] + DLil[j1[k]1;
}
}
}

to be replaced with the single line of code
A[II[II[XK] = BLII[JI1[K] + CLIICJIICK] + DLIILJILK];

Here I, J, and K are Index objects that describe how the data-parallel array is
traversed with ranges, strides, and offsets. In this simple case, with each Field
utilizing the entire index range and a stride of one with no offset, the index
notation is optional, since this is the default behavior. Both the Field and
Index classes have overloaded-operator member functions to enable expressions
such as

BLIJ[JI[K] = A[T+11[J1[K] + A[I-1]1[J1[K] +
ACTII[J+1][K] + A[II[J-11[K] - 4.0 * A[TI]I[J][K];

Here we assume that 4 and B are conforming Fields (their sizes in each di-
mension are identical) and the Index objects I, J, and K traverse each Field
entirely. Code written in this data-parallel fashion is compact, easy to debug,
and provides a close computational analog to the mathematical expression under
investigation.

A rich set of helper objects is available to the Field class. For example, a
Boundary class helps Field objects resolve behavior at computational bound-
aries. Consider the Laplacian stencil defined above: if the Index objects span
each Field entirely, what happens at a Field border when the Index has an
offset such as I+1? In this case, the Boundary object contained in the Field
object is invoked and determines the boundary condition at the border. The
default behavior for all Field classes is periodic; however, a Field can have
any combination of periodic, Dirichlet, Neumann, or mixed boundary condi-
tions. This provides a much cleaner representation of boundary behavior than
the elaborate combinations of cshift and eoshift operations required in other
data-parallel languages.

The Field class is enabled by a comprehensive set of mathematical and
data-parallel functions. These include both parallel versions of standard math-
ematical functions and data-parallel operations that reduce, spread, transpose,
scatter, and gather data. There are also functions that allow data-parallel re-
lational operators to select and de-select portions of the data within a Field
object that will be subject to manipulations within a specified scope. This func-
tionality is similar to the where construct or “masking” provided by HPF and
other data-parallel languages.

The Field class has functionality complementary to that of the A++/P++
serial and parallel array class libraries [Lemke & Quinlan 1992] developed at
Los Alamos. We are currently working to merge these two classes into a single,
highly-tuned array class library.



3.2.2 Banded Matrix and Vector Classes

The Vector class provides optimized vector operations, such as binary oper-
ations, dot products, and norms. The NDiagMatrix class utilizes a striped,
row-compressed data format to represent banded, structured matrices, and it
includes typical operations like transposing a matrix or multiplying two matri-
ces. These classes interact to provide useful matrix-vector operations.

No single data-decompostion strategy can simultaneously be optimal for
sparse, banded structured, and full matrices. Optimization of banded, struc-
tured matrix storage and operations was motivated by the current POOMA ap-
plications under investigation (Numerical Tokamak, CFD, and rheological flow),
which require banded-matrix operations for their elliptic and hyperbolic equa-
tion solvers. The necessary interoperability with other GDTs in the FrameWork
is enabled by member functions within the NDiagMatrix and Vector classes that
convert data to and from vector or banded, structured matrix format. Work
is now underway to develop separate full and sparse matrix classes for future
application areas.

The responsibilities of the Global and Local class member functions perform-
ing vector and matrix operations split clearly, with global operators handling
communications and storage management, and local operators performing the
actual computation. For example, element access, addition, and many other
operations can be performed on the data in place; hence, the global member
functions are simple. Furthermore, the global and local parts of an operator
vary widely in the algorithms they utilize. For example, matrix-vector mul-
tiplication, squaring a matrix, and matrix transpose use different algorithms
for the optimized global communication patterns and for the optimized local
computations.

3.2.3 Particle Classes

In particle simulation programs, particles are free to move about a given domain
while interacting with a fixed grid. However, if each particle is not continually
repositioned upon the processor holding the cells of the grid nearest to the
particle position, then the simulation will become dominated by interprocessor
communication. The particle classes within the POOMA FrameWork provide
the message-passing capability needed to address this problem, while maintain-
ing an expressive data-parallel syntax for coding the numerical algorithms for
particle motion and interaction.

A DPField (Double-Precision Particle Field) object represents a particle
attribute such as a position, velocity, or electronic charge. A Particles object,
which represents a distribution of particles, contains a set of DPField objects
that describe the particles’ attributes. Both the Particles and DPField objects
point to the same data, but they provide the user with two different views.

A DPField object’s operators and member functions allow the user to operate



on separate attributes of the particles. For example, a particle position update
of the DPField objects x0 (old position), x1 (new position), and v (velocity)
with the double delta_t (time step) would be performed as shown below:

x1 = x0 + deltat * v;

The Particles class has a member function called swap that is responsible
for load balancing the particles as they move throughout the simulation domain.
Given particle coordinate DPFields and drawing upon data layout information
provided by objects in the Parallel Abstraction Layer of the FrameWork, the
swap function determines which particles need to move to other processors and
performs the particle swapping and memory management. Due to the expense
and complexity of particle swapping, this operation has been made a high-level
member function available to the user. This will aid in the understanding of
program algorithms and will improve code performance.

Other member functions are provided in the Particles class to facilitate
the calculation of forces on particles in a simulation. If one is computing forces
or potentials on a grid (i.e., a particle-in-cell method), Gather and Scatter
member functions are available to interpolate a field quantity to particle posi-
tions or accumulate a particle quantity onto the grid. These functions invoke an
Interpolate class that is equipped with several common interpolation meth-
ods, and this class can query the Field involved for critical information, such
as whether the Field is cell-centered or vertex-centered. For particle-particle
interaction forces, POOMA provides a member function called Interact to ac-
cumulate forces due to particles within a given radius of each particle. This
function circulates particles amongst the neighboring nodes in a pre-defined
pattern, performing interprocessor communication as required and accumulat-
ing interparticle forces at each stop using a force defined in the POOMA library
or a user-defined force function. By choosing the dimensions of the subdo-
main on each virtual node (see Section 3.3.1) to be slightly larger than the
cutoff radius for the interaction, the communications pattern can be restricted
to nearest-neighbor nodes only, without any loss of generality. The data struc-
tures and communication pattern that Interact implements correspond to the
Cell Method[Beazley et al. 1994].

3.3 Parallel Abstraction Layer

Objects within the Parallel Abstraction Layer are responsible for capturing key
features of parallel programming, such as interprocessor communication and
domain decomposition, in the context of supporting GDTs composed of local
(node-level) data objects. The global/local programming paradigm extends
the data-parallel programming model by allowing a user to drop down to the
message-passing level from within an active data-parallel program. This is ac-
complished through access to run-time system information on GDT object data
layouts and geometries. Once the details of a data layout are known, it is



possible to establish the correspondence between individual pieces of data and
the processors in a run-time partition and to manipulate that data manually,
whether on-node or as arguments of explicit sends and receives. A data-parallel
array descriptor provides the essential link between local and global array con-
tents. A GDT object can thus be modified by manipulating its individual pieces
at the local level.

This global/local paradigm precisely describes how POOMA implements
its data-parallel interface. Using stored array-descriptor geometry information,
POOMA performs an explicit conversion of data-parallel code to nodal C++
with message passing. The key abstractions of global/local parallelism are en-
capsulated into three groups of classes within the PAL: Global-Local Interaction
classes (those managing the interactions of GDT objects with their local con-
stituents), DataLayout classes (those responsible for data layout and processor
geometry), and Communication classes (those responsible for moving data be-
tween nodes).

3.3.1 Global/Local Interaction classes

Every GDT within the FrameWork consists of a mirrored pair of global and local
classes. For each instantiation of a GDT object, the Global/Local Interaction
classes help to instantiate an appropriate number of type-corresponding local
objects on each of the available processors. In an application code, the user
calculates only with GDT objects. In turn, each member function of a global
object works with PAL objects to locate the constituent local objects and invoke
the corresponding local member function. Thus, the primary role of the GDT
object is to act as a bookkeeper, while the calculations actually are performed
by the constituent local objects.

Every Global and Local class employs a letter/envelope paradigm
[Coplien 1992] and inherits from an abstract base class, which is responsible
for registering and interacting with objects in the Parallel Abstraction Layer.
Furthermore, a virtual constructor technique [Gamma et al. 1995] is employed
to enable other objects within the FrameWork (such as the Chained-Expression
Object described in Section 3.4) to perform high-level operations on GDT ob-
jects without having to distinguish their types.

A key abstraction within the FrameWork is that of the “virtual” node. There
can be several virtual nodes on a physical processor, and a map of the virtual
node IDs and corresponding physical node IDs is maintained by a PAL object
called the VnodeManager. When a global object is instantiated, it actually
spreads its constituent local objects across virtual nodes rather than physical
nodes. Thus, the global and local objects know nothing about the actual number
of physical processors available.

This abstraction allows us to move entire virtual nodes between physical
nodes without changing properties of the global or local objects contained in
a virtual node. The data configuration is made consistent by simply updating
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the virtual-to-physical node map. Thus, we exploit two levels of load balancing:
balancing local data between virtual nodes and balancing virtual nodes between
physical nodes. Modification of the virtual-to-physical node ratio also enables
the user to choose data sizes that complement machine-specific cache sizes. Code
efficiency on many of the architectures on which the FrameWork runs is a highly
sensitive function of data alignment in the cache.

Another advantage to storing data in a virtual node form is the simplified
approach to parallel I/O. Most parallel computer vendors do not have tools for
saving data from a given system partition and then reading the same data back
into a system partition of a different size. By maintaining data in a virtual node
form (where a number of virtual nodes greater than the maximum partition size
is used), the FrameWork need only update the virtual-to-physical node map as
the data is read back in.

3.3.2 DataLayout classes

The DataLayout classes are responsible for defining the geometry of the GDTs
and the interconnection of their constituent local objects. An abstract base
class provides the necessary hooks into the PAL, while inherited classes provide
information and functionality pertinent to each GDT in the FrameWork (i.e.,
there is a FieldLayout for Field objects, a NDiaglLayout for NDiagMatrix
objects, etc.). Thus, each GDT has a layout object tuned to its needs.

DataLayout objects are composed of smaller objects such as Neighbors,
Offsets, and Sizes. This encapsulation of DataLayout abstractions enables
code reuse when DataLayouts for other data types are required for new GDTs
integrated into the FrameWork.

The DataLayouts accompanying the Field, NDiagMatrix, and Particles
classes provide a variety of archetypal layout strategies, as well as default be-
havior when no data layout is specified. For example, given an N-dimensional
Field object, one is able to specify which of its dimensions are to be distributed
in parallel and which are to remain on-node. Once the subset of parallel axes are
known, one is then able to choose from several parallel domain decomposition
archetypes (hypercubes, hyperplanes, pencils, etc.) to complete the formation
of the DataLayout.

Over the course of a simulation, DataLayout objects are constructed during
the construction of GDT objects. The DataLayouts mediate object operations
that require interprocessor communication, and they are used to determine when
two GDT objects can be used together in an expression. In the cases where the
DataLayouts are the same, the objects are considered fully conforming. In cases
where the global sizes of the objects are similar, but the layout across the virtual
nodes is different, the objects are considered partially conforming. In this case,
the DataLayout object interacts with PAL objects to generate a temporary GDT
object that is fully conforming, and the data is moved to this layout before the
operation is performed. When the global sizes are not the same, the objects do
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not conform, and the operation cannot be performed.

3.3.3 Communication classes

A wide variety of parallel computer architectures are available today, as well as
several different communication libraries for interprocessor communication and
process control. To provide a portable, transparent mechanism for supporting
message-passing communications on distributed, parallel, and clustered parallel
architectures (discussed in Section 3.6), two classes have been implemented and
used throughout the Framework: Communicate and Message.

The Message class is used to encapsulate data in a format that allows for
easy construction and data retrieval. Each Message consists of N items, where
each item is a scalar or vector of any defined data type. Routines are provided
by the Message class to query for information on the number, size, type, and
contents of the items in a Message. In essence, the Message class provides an
arbitrary run-time structure that is used to hold data to be sent to or received
from another node. Message objects can be concatenated together, copied,
forwarded to other nodes, and written to or read from a file.

The Communicate class is a generic interface to the specific parallel com-
munication library to be used. It is responsible for making sure the necessary
processes are running on the parallel processors, and it contains the code to send
and receive data between these processes. Each process is assigned a unique in-
teger ID, from 0 to N-1 (where N is the total number of parallel processes), and
there may be any number of processes on each physical processor. To use the
Communicate class to send data to another process, first a Message object is
created and filled with the data to be sent, and then this Message object is
given to the Communicate object for delivery. Communicate provides routines
for sending Message objects to a destination process, and for receiving Message
objects from a sending process. Each Message is sent with a user-specified
identification code (tag). Message objects may be received in any order, and
options are provided to search for pending data from a specific process or pend-
ing data with a specific tag. Message objects that have the same source and
destination node are passed to a message queue and are never introduced to
the network. This approach also makes it possible to simulate some aspects of
message-passing algorithms on serial architectures through reads and writes to
local memory.

Through the use of this parallel communication abstraction, the work re-
quired to port an application to a new parallel communication library is greatly
reduced. Development of a new version of the Communicate class (for a new
base communications library or a new architecture-specific system) requires only
four routines to be rewritten: initialization and termination of the parallel com-
munication environment, and sending and receiving routines for the Message
objects. At present, versions of Communicate have been developed for use with
PVM and MPI clusters of Unix-based workstations, SMP architectures, and the
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Cray T3D, IBM SP2, and Meiko CS2 parallel supercomputers.

3.4 Chained-Expression Object

One of the most powerful features of the C++ language is the ability to overload
operators for user-defined types. Unfortunately, this feature is also one of the
major reasons that the performance of C++ code does not compare well to that
of C or Fortran.

A simple statement that demonstrates the problem is:

D=A4+B+C;

Here A, B, C, and D are user-defined classes that have a large amount of data
associated with them (such as vectors or arrays). The act of performing the
binary operation + or = on two objects involves a call to an overloaded, binary-
operator function. Thus, the above expression involves three separate calls that
are “chained” together. In our example, 4 + B is evaluated, and the result
is added to C. The result of that is then assigned to D. The POOMA Frame-
Work views expressions like these as “chained expressions”, in which a series of
overloaded function calls are chained together to arrive at the answer.

In the case of elemental types (int, float, double, etc.), it has become
possible for compilers to optimize chained expressions. C+-+ overloaded bi-
nary operations inhibit such optimizations by breaking chained expressions into
their binary elements. For large data sets, this can can severely reduce overall
performance.

Another source of performance degradation comes from the creation of tem-
porary variables during expression evaluation. If users do not take steps to
optimize default usage of copy constructors through reference counting meth-
ods and shallow copies [Coplien 1992], a temporary object is created for each
binary operation performed. This is not only time-consuming, but, for large
user-defined types, can cause the code to run out of physical memory (due to
the temporary creation) and can lead to virtual memory swapping.

These performance penalties prompted the creation of the Chained-
Expression Object (CEO) in the POOMA FrameWork. The main goal of the CEQ
is to recognize complex expressions and bypass multiple function calls normally
required in the implementation of overloaded operators. This is accomplished
by modifying the way overloaded operators are used. Instead of performing
the operation specified by a given function, the code updates the CEO with in-
formation concerning objects involved in the operation, and the CEO builds an
expression stack for the statement at run time. When the assignment statement
is finally encountered, the CEO matches the expression stack with a library of
tuned expression kernels. If a match is found, the expression can be evaluated
directly. If not, the CEO “deconstructs” the expression stack into the largest
possible registered kernels to complete the evaluation.

For example, consider the following code:
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Vector A(100); // constructs a vector with 100 items
Vector B(100);
Vector C(100);
Vector D(100);

A =1.0; // assigns every element of the vector to
B =2.0; // the double on the rhs

C = 3.0;

D=A4A+B + C; // perform two + ops and the = op

A naive implementation would perform the following operations:

Vector: :Vector:Constructing vector ’A’ with length of 100
Vector::Vector:Constructing vector ’B’ with length of 100
Vector::Vector:Constructing vector ’C’ with length of 100
Vector::Vector:Constructing vector ’D’ with length of 100
Performing A = 1.000000

Performing B = 2.000000

Performing ¢ = 3.000000

Vector::Vector:Constructing vector TMP1’ with length of 100
Performing TMP1 = A + B

Vector: :Vector:Constructing vector TMP2’ with length of 100
Performing TMP2 = TMP1 + C

Performing D = TMP2

Destructing TMP2

Destructing TMP1

Destructing D

Destructing C

Destructing B

Destructing A

In contrast, by using the CEO, the POOMA FrameWork would execute the same
code in a more efficient manner:

Vector::Vector:Constructing vector A’ with length of 100
CEQ: :registering expression kernel FLDFLDadd

CEQ: :registering expression kernel FLDFLDaddFLDadd
Vector::Vector:Constructing vector ’B’ with length of 100
Vector::Vector:Constructing vector ’C’ with length of 100
Vector::Vector:Constructing vector ’D’ with length of 100
Performing A = 1.000000

Performing B = 2.000000

Performing C = 3.000000

Placing token FLD on expression stack

Placing token FLD on expression stack

Placing token add on expression stack

Placing token FLD on expression stack

Placing token add on expression stack

Performing D = FLDFLDaddFLDadd

Destructing D
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Destructing C
Destructing B
Destructing A

Each operation registers itself with the CE0. When FLDFLDaddFLDadd is found
during execution of the assignment, the Vector pointers are passed in, and all
the operations occur inside a single function call. This allows the registered
functions to place several operations on a single line in a for loop and reap the
added performance over repeated binary operations. Furthermore, no tempo-
raries are constructed, and no extra copies are performed. If an object on the
right-hand side of the expression also were to appear on the left-hand side, a
temporary would be created to store the intermediate value before assignment.

3.4.1 CEO in Parallel Scientific Simulation

The CEO provides a powerful expression-by-expression optimization capabil-
ity. The speedups gained in cache performance, CPU speedup, and re-
duced memory utilization are significant, while the expressive features of the
GDTs are preserved. We have extended previous work on expression group-
ing [Parson & Quinlan 1994] to explore parallelism and chained-expression op-
erations between heterogeneous data types. The FrameWork’s use of virtual
constructor techniques for its Global Data Types (described in Section 3.3.1)
enables optimization of inter-type operations, providing efficient implementa-
tions of expressions such as particle gather/scatter operations on fields and
stencil/field interactions.

The CEO plays a further role in parallel architectures by coordinating inter-
processor communications and managing temporary border information, as is
shown in a two-dimensional diffusion example in Section 4.1. The CEO defers
all message passing to the = operator, where it then determines which Field
objects in the expression stack require updated border information. Current re-
search is exploring inter-expression border reuse techniques to reduce the overall
message-passing requirement.

An important insight gained from parallel application development efforts
is the recurrence of stencil patterns (e.g., elliptic and hyperbolic stencil opera-
tions) in a variety of problem domains. This eases the effort in maintaining a
comprehensive, tuned kernel library targeted to the application domain. If exact
stencil matches are not found, the expression is deconstructed into the largest
possible sub-expressions contained in the expression kernel library. Even in the
pathological case where the largest pattern match reduces to a set of binary
operations, a substantial savings is still gained through the avoidance of unnec-
essary temporary creation.

This structure allows developers to “freeze” a working, high-level descrip-
tion of the numerical algorithms they are using, and then extensively tune the
performance by writing optimized kernels for critical sections of the code. The
process of adding new kernels is simple, due to the straightforward structure of
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the expression kernels and their interaction with the FrameWork. The CEO and
its supporting cast of optimized kernels are the key to how POOMA efficiently
evaluates general, data-parallel statements.

Currently, we are exploiting the design of the CEO to implement a run-time,
code-generation capability for the POOMA FrameWork. In this manner, a
simulation can be run in a “debug, code-generation” mode, in which expression
stubs for non-matching kernels are interpreted into code modules. Thus, after
a recompilation of the target class, the code can run in an optimized mode with
no expression deconstructions or intermediate temporaries.

3.5 Component Layer

One of the most time-consuming aspects of scientific code development on par-
allel architectures is the process of rewriting code to match native scientific
libraries as one moves to a new parallel architecture. The changes can be small:
a different ordering of parameters; medium: communications are required to
fit the requisite parallel data layout; or large: the routine your code depended
upon on architecture A does not exist on architecture B, thus requiring you to
write your own.

Objects from the Component Layer encapsulate many useful routines typi-
cally found in scientific libraries and some that provide functionality unique to
the FrameWork. The objects are built upon GDT objects; thus, they run with
no changes on serial, distributed, and parallel architectures.

3.5.1 FFT

POOMA provides a Fast Fourier Transform (FFT) class for Fourier analysis of
a Field of any dimension. The library currently includes Radix-2 Complex-to-
Complex, Real-to-Complex, and Complex-to-Real FFT components. An object
of this class accepts Field data, moves the data into “pencils” (1-dimensional
arrays of data contained on a single processor) aligned along the Field dimen-
sion that is to be Fourier transformed, performs the FFT, and returns the data
to its original layout. The data layout is altered prior to the FFT in order to
minimize the interprocessor communication and increase efficiency. In order to
perform an FFT on a Field object, an FFT object must be instantiated for that
Field. This FFT object will know the lengths of the Field in each dimension
and its data layout across the parallel processors, and it will pre-allocate pencils
of memory for FFTs in each dimension of the Field. Any Field object that
fully conforms with this Field (has the same dimensions, sizes, and data layout)
can be Fourier transformed with the same FFT object.

When an FFT is requested, the user provides Field objects with real and
imaginary components of the data, asks for a forward or inverse Fourier trans-
form along a particular dimension of the field, and can provide a factor by
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which to scale the result (in order to renormalize the resulting field data). Af-
ter the data is transposed into a layout of pencils, each processor will perform
1-dimensional FFTs on all its pencils. A subroutine written in C is provided to
perform these FFTs, but one may substitute other optimized routines if desired.

The code below instantiates two Field objects and constructs an FFT object.
Note that we need a Field object to construct the FFT object (this construction
sets up work arrays for use in FFTs).

Index I(64), J(64);

Field real(I,J);

Field imag(I,J);

FFT fftObject(real); // instantiate with a Field

fftObject .FFT_CC(real, imag, 1, 1, 1.0/sqrt(64)); // FFT in X-dir
fftO0bject .FFT_CC(real, imag, 2, 1, 1.0/sqrt(64)); // FFT in Y-dir

Table 1 shows performance results for 25 iterations of a 2D Complex-to-Complex
FFT and inverse FFT on a 256 x 256 grid running on the Cray T3D.

Nodes | Seconds | MFlops | MFlops/Node
2 41.40 12.66 6.33
4 21.43 24.46 6.12
8 14.62 35.86 4.48
16 6.51 80.54 5.03

Table 1: FFT performance

3.5.2 Krylov Solvers

POOMA has a collection of scalable, preconditioned conjugate-gradient (PCG)
solvers, and provides user-friendly facilities for selection of solution methods
and algorithms. The iterative Krylov Solver object is based on a conceptual
decomposition of the general task sequence that needs to be performed in PCG
algorithms. The basic idea is to separate the initialization phase from the main-
loop phase. The initialization phase includes the preconditioned factorization, if
there is one. In the main-loop phase, the optional preconditioner solve is isolated
from the rest of the computations. The FrameWork allows us to plug in different
preconditioners with a conjugate-gradient algorithm without repeating any CG
code.

POOMA provides a collection of CG algorithms (CG, BiCG, CGS, and
BiCGStab) with a collection of preconditioners (Diagonal, Incomplete Cholesky,
and Incomplete LU). A CG algorithm or a combination of a CG algorithm with
a preconditioner is considered a specific solver “strategy” [Gamma et al. 1995].
All these strategies share a common structure for the Solver member function
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Solve (initialization followed by solve), and this is defined in an abstract class
called LSStrategy. In a PCG solve, a strategy subclass is responsible for the
factorization, as well as the initialization. Efficiency is gained since various fac-
torization schemes are kernel operators of the NDiagMatrix and Vector classes.
We employ a certain class of PCGs [Gupta et al. 1995, Kumar et al. 1993] that
substitute the preconditioner solve within a PCG loop by a sequence of matrix-
vector multiplications, thereby enhancing scalability. After the initialization
(and factorization), the strategy class interacts with the specific CG class to
perform the solve.

The Solver class provides a user-friendly interface for setting up a solver
context (e.g., selection of CG solve and preconditioner). Once a context is set
up, it interacts with the specific strategy class for the chosen CG solve. The
following code shows an example of using the Solver class for an ICCG solve.

int vnodes=16;
int rank=256;
// Fill up the matriz A using the discretizer object (see nezt subsection)

// Fill up the source vector b with appropriate values
Vector b(rank, vnodes);

// Allocate solution vector z
Vector x(rank, vnodes);

Solver L;
L.SetPrecond(IC); // Choose preconditioner
L.SetCG(CG); // Choose CG solver

x = L.Solve(4, b); // Get solution vector z

3.5.3 Elliptic Discretization

Finite-difference solution of elliptic, partial differential equations involves two
steps: first, the continuous system is discretized over a finite-difference grid,
resulting in a linear matrix system, and then this linear system is solved us-
ing matrix computations. The POOMA Discretizer class discretizes general,
second-order, elliptic, partial differential equations on a finite-difference grid
in 1D, 2D, and 3D. It can handle equations with constant coefficients (e.g.,
the Poisson equation on a physically rectangular grid in Cartesian coordinates)
or variable coefficients (e.g., the Poisson equation in a non-Cartesian coordi-
nate system, and other general, second-order equations). Both cell-centered
and vertex-centered grid discretizations are provided. Using a Boundary ob-
ject, various boundary conditions (Dirichlet, Neumann, periodic, etc.) can be
specified at different edges or faces.

A Discretizer object has both global and local components. The global
component is used to specify the grid (dimension, number of points in each di-
mension, and the geometry of the grid), discretization stencil (e.g., 5 points, 7
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points, etc.), and coeflicients of the equation (e.g., constant coefficients and/or
variable coefficients). Once the grid, the stencil, and the coefficients are speci-
fied, the global component delegates the computing job to the local components.
Local components are responsible for computing the stencil weights at each grid
point. The Discretizer generates a block N-diagonal matrix as the output.
Generating the matrix requires transformation of data from one DataLayout
(FieldLayout) to another (MatrixLayout). This transformation of data from
one layout to another is done utilizing the PAL Communicate object. Such pat-
terns of communication to transform objects from one data layout to another
are very useful during a simulation (e.g., to transform a field object to a vector
object and vice-versa, for an elliptic field solver).

The code below is an example of using the Discretizer class to discretize
the Poisson equation on a square grid in 2D. The Discretizer generates a
block N-diagonal matrix. Note that after this is done, the Solver described in
Section 3.5.2 might then be used to solve this system.

int vnodes = 64;

int stencilPoints = 5;

FIndex I(256), J(256);

ArchType gridGeometry = Squares2D;

Discretizer D(I, J, gridGeometry, vnodes, stencilPoints);
Boundary *BC;

// Set proper boundary conditions on each side here
D.set_boundary(BC) ;

// Give coefficients of terms in partial differential equation here
D.set_coefficients(1.0, 1.0);

NDiagMatrix A(D.discretize());

3.5.4 Stencil Objects

The Stencil class provides the user with a shorthand for long expressions with
a fixed set of index offsets into an array. For example, in our Field and Index
notation, a three-dimensional Laplacian operation may be represented as shown
below:

BLIJ[JI[K] = A[T+11[J1[K] + A[I-11[J1[K] +
A[TI[J+11[K] + A[T][J-11[K] +
ACTI[II[R+1] + ACTII[JI[K-1] - 6.0 * A[II[J][KI;

If this operation occurs several times throughout a simulation, however,
the application code becomes obscured by the long expression and there is an
increased chance of coding error. Furthermore, in an N-dimensional simulation
on a non-orthogonal mesh, the number of stencil points required for a second-
order expression is 3V — a potentially huge expression. The Stencil class
alleviates these concerns by storing the coefficient and offset information in a
single object.

Thus, expressions such as the one above may be written in the following
compact notation:
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B[I1[J][X] = Laplacian ( A[II[JI[K] ) ;

where Laplacianis our 3D Laplacian Stencil object. This object can be reused
throughout the simulation on any Field and is integrated with the CEO to op-
timize the inner-loop calculation and determine the appropriate interprocessor
communications based on the Stencil offsets.

The construction of the Stencil is generalized to enable persistence of source
code when changing the dimensionality of a simulation. Thus, a scientist is able
to simulate one-dimensional behavior on a workstation, and then move the code
to a parallel architecture to explore three-dimensional behavior with no changes
to the structure of the source code.

The Stencil class includes overloaded operations that enable the construc-
tion of complex Stencil objects from simpler constituent Stencil objects.
Given the differentiation Stencil objects DX, DY, and DZ, and the identity
Stencil I, one can construct a Stencil for the Helmholtz operator and perform
the operation on a Field with the following two lines of code:

Helmholtz = (DX*DX + DY*DY + DZ*DZ) + I;
Result[I]J[JJ[K] = Helmholtz( Sourcel[I][J][K] );

As these examples show, the Stencil class provides a powerful mechanism for
direct representation of mathematical abstraction in source code.

3.6 POOMA Simulations on Clustered Parallel Architec-
tures

The POOMA team has been investigating the possibility of developing a dis-
tributed, parallel-programming environment that would enable spreading com-
putation over many parallel resources at the same time and integrating parallel
applications written using different tools or platforms. It is our hope that such
an environment also would enable more reuse of parallel code and facilitate the
implementation of distributed parallel code. Similar systems, such as the Com-
mon Object Request Broker Architecture (CORBA) [OMG 1993], have already
been proposed and developed in the distributed-systems community. Unfortu-
nately, these systems do not provide a sufficient means of describing and imple-
menting parallel objects or data sharing between different objects, and they do
not address issues important to parallel processing, such as load balancing. Our
first experiment leading to the development of a system adequate for clustered
parallel architectures was undertaken in the summer of 1995. This initial de-
sign is meant to be a preliminary “proof of principle” of the feasibility of such
systems.

In order to enable communication between many massively parallel process-
ing computers (MPPs), the POOMA FrameWork has been extended to include
a hierarchical communication model. The Communicate class has been replaced
with a virtual communicate class that determines the location of the receiving
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virtual node with respect to the sending virtual node, and then invokes either
the communication services provided by the architecture or a combination of
these services and network transport to deliver the message to its destination.
The virtual nodes themselves are not aware of each other’s location; the assign-
ment of virtual nodes to particular machines has been left to the programmer,
who configures the virtual machine over which computation is spread. A virtual
machine is composed of clusters of virtual nodes, where every physical machine
corresponds to the notion of a cluster of virtual nodes.

The system interfaces with CORBA in such a way that, given servers real-
izing any particular application, the clients can spread their computation over
the chosen set of machines, specify what resources of any particular machine
they want to use (e.g., the partition size), how they want to balance their load
(e.g., how many virtual nodes they want to put on that particular machine),
and other initialization information. The client then uses CORBA IDL one-way
functions to initiate the computation on all of these servers simultaneously. It
is also possible to initialize computation without using CORBA — through an
initialization object that reads in the necessary data from a file or obtains it in
some other, previously agreed upon way.

Reliance on CORBA services to implement communication between clusters
makes this initial system inefficient and limits the set of platforms program-
mers can use. The network transport will soon be replaced by a more efficient
method, which will enable us to gather performance data, help identify useful
scenarios, highlight problems, and offer a better understanding of the condi-
tions and mechanisms necessary to couple distributed and parallel computing
effectively. In additon to the current reliance on CORBA, the initial design
rests on the assumption that all its pieces are implemented using the POOMA
library. Providing full interoperability means designing an interface through
which other libraries and parallel language compilers could become parts of a
distributed system. Therefore, our further plans include formulating a Parallel
Interface Definition Language, which would make integrating objects written in
parallel languages into the system feasible. We also intend to address the is-
sues of reliable security mechanisms and efficient parallel processing in the final
version of the system.
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4 POOMA Appearance

In this section, we provide the flavor of codes written with objects from the
POOMA FrameWork by discussing two codes in detail. The first is a simple
two-dimensional diffusion simulation, while the second is a 2D electrostatic gy-
rokinetic particle simulation.

4.1 Simple 2D Diffusion

The diffusion code in Program 1.1 demonstrates some of the capabilities of
the Field, CEQ, and Timer classes provided in the POOMA FrameWork. The
command-line input is assumed to contain the system size and the number of
iterations to be performed. The problem the code solves is quite simple: starting
with a two-dimensional field of double-precision values, deposit a non-zero value
near the center of this field (simulating an initial density), and then for a number
of iterations, have each element update its value with the average of itself and
its eight neighbors. This operation (depicted in Figure 1) is referred to as a
nine-point stencil.

1 // Simple two-dimensional diffusion simulation

2 #include <stream.h>

3 #include <unistd.h>

4 #include "POOMA.h" // collection of header files for POOMA
5

6 #define MILLION 1000000.0

7

8 int main(int argc, char *argv[])

s {

10 double mFlops, startVal, endVal, seconds, relativeError;
11 int i, n, iter;

12 PoomaInfo* myinfo = new Poomalnfo(argc,argv);

13 Timer cpuTime;

14

15 sscanf (argv[1], "%d", &n);

16 sscanf (argv[2], "%d", &iter);

17

18

19 int centern = n/2;

20 long ops = 9 * n * n * iter;

21 Index I(n), J(n);

22 Field a(I,J);

23

24 startVal = 1000.0;

25 cpuTime.clear();

26 cpuTime.start(); // start timer
27 a.atom_set(startVal, centern, centern); // put value in center
28 // loop on stencil operation
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Figure 1: Two-dimensional 9-point diffusion stencil

for (i=0; i<iter; i++)
a = (a[I-1]1[J-1] + a[I-11[J] + al[I-1]1[J+1] +
alI1[J-1] + al[I1[J] + al[I1[J+1] +
al[I+1]1[J-1]1 + a[I+11[J] + alI+1]1[J+1]1) / 9.0;

cpuTime.stop(); // stop timer
seconds = cpuTime.cpu_time(); // get time
endVal = a.sum(); // get sum of elements

// compare final sum to original
relativeError = ABS(startVal - endVal) / ABS(startVal);

if ((myinfo->get_comm()->this_node())==0)

{
mFlops = ops / (seconds * MILLION);
cout << "Total floating point operations = " << ops << endl;
cout << "Total cpu time to solution = " << seconds << endl;
cout << "Performance in mFlops = " << mFlops << endl;
cout << "Relative Error = " << relativeError<<endl;
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a7 }
48 return 1;
49 }

Program 1.1: 2D diffusion code written with POOMA

Lines 1-11 are straightforward inclusions and declarations. Line 12 con-
structs a PoomaInfo object, which in turn constructs a Communicate object and
a VnodeManager object. The Communicate object is responsible for interproces-
sor communication, whereas the VnodeManager is responsible for determining
upon which physical node each virtual node resides. The PoomaInfo object has
pointers to these two important objects, giving the user the capability to obtain
information about the virtual node setup within the application code.

Line 13 constructs a Timer object to measure CPU time used by the code.
This Timer object is an extension of a utility developed at the University of
Illinois to perform on a variety of serial, distributed, and parallel architectures.
Lines 15-16 initialize the size of the field and the number of iterations using
command-line arguments. Line 19 approximates the center of the field and
assigns this value to centern, while Line 20 calculates the number of operations
that will be performed by the diffusion code.

Line 21 constructs two Index objects of length n. The Index objects control
the pattern by which data is accessed within a Field object. Length, offset,
and stride are all configurable. Line 22 constructs a two-dimensional Field of
doubles. The default layout assumes a domain decomposition that minimizes
the surface-to-area ratio of the rectilinear sub-domains on each virtual node,
although other layouts can be specified. Since this is the first Field object in-
stantiated in this simulation, the Field also registers itself and all its expression
kernels with a CEO.

Line 24 assigns the initial value to be deposited near the center of the field.
Lines 25-26 clear and start the Timer object. Line 27 assigns the value startVal
to the element in Field a at coordinates (centern, centern). The main loop
begins at line 29; lines 30-32 perform the 9-point diffusion stencil. Once the
loop is completed, lines 34-35 stop the timer and get the amount of CPU time
spent executing the loop.

Line 36 uses the Field::sum() member function to do a global sum on
the elements of the field to verify the conservation of mass. Line 38 calculates
the relative error between the starting and ending values. Line 40 uses the
PoomaInfo object (via Communicate) to obtain the physical node number. Node
0 then prints out the results in lines 42—46. Finally, in lines 47-49, destructors
for the Field, Timer, Index, and PoomaInfo objects are called, since they are
now out of scope. This also causes the call of destructors for Communicate, CEQ,
and VnodeManager.

A brief explanation of how CEQ manipulates Field objects is in order at
this point. The Field class is actually a pair of letter/envelope [Coplien 1992]
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classes. The letter class contains all of the field data, while the envelope class
contains lightweight objects that maintain a pointer to the letter object and
the indices and offsets gathered by the Field: :operator[] during the traver-
sal of a Field in an expression. Thus, different offsets can apply to the same
object. Each Field on the right-hand side of an expression is accessed with a
set of Index objects. This instantiates an envelope object that places the ID for
the contained letter object onto the expression stack (represented by the token
“FLD”) in the CEOD, with the appropriate offset information garnered from the
Index objects. Constants are placed on the stack as tokens labeled “CON”. Op-
erators such as + are overloaded in a non-standard way. Instead of performing
the addition of two terms, the Field: :operator+(Field&) function describes
the requested operation to the CEQ. In the case of a(I-1,J-1) + a(I-1,7J), the
operator token “add” is placed on the expression stack in the CEQ; no additions
are performed. This process of placing tokens onto the CED expression stack con-
tinues until the assignment operator is reached (Field::operator=(Field&)).
At this point, the CEO is instructed to evaluate the entire expression stack, which
by this time has become

FLDFLDaddFLDaddFLDaddFLDaddFLDaddFLDaddFLDaddFLDaddCONdiv

For the diffusion example, a kernel performing a 9-point stencil operation
is registered with the CEO. Thus, the CEO makes a single function call that
performs the entire 9-point stencil. Before the kernel is called, however, the
CEO checks to see if any of the Field references are “off-node”. Field objects
are constructed either with or without “guard” cells (sometimes also called
“boundary” or “ghost” cells). If a Field has guard cells and the expression
references an off-node element of that Field, then the CEO updates these guard
cells by using the Communicate object (see Figure 2).

If the Field was constructed without guard cells, then a temporary Field
is constructed with the appropriate number of guard cells, and those guard
cells are updated using Communicate. The CEO maintains a list of the tem-
poraries created during an expression and deletes them at the conclusion of
the Field: :operator= call. Thus, if one knows that such off-node references
will occur often in an application, one should construct Field objects with the
necessary borders at the outset.

Table 2 and Table 3 present breakdowns of time spent in two slightly different
versions of the diffusion code. In the first case, the result of the stencil operation
is put into a second Field object called b and then explicitly copied back to a
on a separate line of code. The second case is that shown in Program 1.1, where
the CEO handles the data dependency as explained in Section 3.4. All cases were
run on a single processor.

As can be seen in both tables, there is very little overhead incurred by em-
ploying the CEO. Most of the time is spent in the inner for loops of the 9-point
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Figure 2: Communication pattern for border update during two-dimensional,
9-point diffusion stencil

stencil kernel operator. Furthermore, allowing the CEO to handle data depen-
dency, rather than performing an explicit copy, avoids an expensive memcpy call
and makes the computation even more efficient.

Registered kernels can be highly tuned assembly, Fortran, C or C++ code
that performs a specific task. When the kernel is called, it is passed all the
information required to describe the objects and operations involved in the ex-
pression. This includes getting pointers to the actual field data, and getting
offset and axis length information. Once this information is obtained, the ex-
pression is evaluated as a whole. Program 1.2 shows an example of such a
kernel.

double *out, *f[8];
out = A.data_address();
for (int i=0; i<8; i++)
f[i] = F[i].data_address();
for (int y=0; y<ay; y++)
for (int x=0; x<ax; x++)
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sout++ = (*Ff[0]++ + *f[1]++ + *f[2]++ +
*f[3]++ + *f[4]++ + *f[5]++ +
*f[6]++ + *f[7]++ + *f[8]++) / constant;

Program 1.2: Kernel for nine-point stencil operation

Routines SGI Crimson | Sun HyperSPARC | IBM RS6000
stencil 74.0 72.2 83.5
memcpy 23.7 25.6 13.7

allocate memory || 0.9 0.7 1.2

get_data 0.4 0.3 0.2

set_data 0.4 0.3 0.6

sum 0.2 0.2 0.3

other 0.4 0.7 0.5

Table 2: Breakdown of the percentage of time spent in each routine on various
architectures (with explicit copying)

Routines SGI Crimson | Sun HyperSPARC | IBM RS6000
stencil 97.1 97.2 96.4

allocate memory || 1.1 0.9 1.4

get_data 0.6 0.4 0.3

set_data 0.4 0.3 0.5

sum 0.3 0.3 0.2

other 0.5 0.9 0.3

Table 3: Breakdown of the percentage of time spent in each routine on various
architectures (without explicit copying)

Performance results for the 2D diffusion code running on the Cray T3D and
the IBM SP2 are presented in Table 4 and Table 5.

4.2 Gyrokinetic Simulation

Our gyrokinetic (GK) code performs a simple 2D, electrostatic, gyrokinetic par-
ticle simulation of a fusion plasma. It is comprised of a single source file and
header files that declare the constants and subroutines used in the main code.
The program reads an input file to obtain basic parameters describing the de-
sired simulation, such as the number of particles, number of grid cells along
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Nodes | Problem Size | MFlops | MFlops/Node
2 1024x1024 26.71 13.36

4 1024x1024 48.87 12.22

8 1024x1024 101.44 | 12.68

16 1024x1024 178.83 | 11.18

32 2048x2048 396.58 | 12.39

64 2048x2048 633.03 | 9.89

64 4096x4096 758.14 | 11.85

Table 4: Performance of 2D diffusion code on Cray T3D (with readahead on)

Nodes | Problem Size | MFlops | MFlops/Node
1 1024x1024 27.35 27.35
2 1024x1024 47.24 23.62
4 1024x1024 83.97 20.99
8 1024x1024 136.65 | 17.08
16 1024x1024 176.28 | 11.02
16 2048x2048 209.10 | 13.07
16 4096x4096 262.82 | 16.43

Table 5: Performance of 2D diffusion code on IBM SP2

each axis of the simulation domain, number and size of timesteps, mass and
charge of the plasma constituents, and the scale lengths of the equilibrium den-
sity and temperature profiles of the plasma. This code can be used to examine
low-frequency, long-wavelength plasma instabilities, such as electron drift waves
and ion-temperature-gradient (ITG) modes [Connor 1986], in a simplified ge-
ometry. To begin this particle simulation, a Particles object is set up for each
different particle species in the plasma, as shown in Program 1.3.

// construct particle coordinate and data field objects

// Maz = mazimum # of particles per virtual node

DPField xel(Max), xe2(Max); // old, new z position
DPField yel(Max), ye2(Max); // old, new y position
DPField vel(Max), ve2(Max); // old, new v parallel
DPField wel(Max), we2(Max); // old, new particle weights
DPField pex1(Max), pex2(Max); // old, new particle E 'z
DPField peyl(Max), pey2(Max); // old, new particle E'y
DPField w(Max); // normalized weight

Program 1.3: Code for construction of particle attributes
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A DPField is constructed for each particle coordinate and for the other
desired particle attributes, which in this case include a velocity, electric field
values at the particle’s position, and a “weight” to represent this particle’s
contribution to the deviation from plasma equilibrium. The weight is needed
because a “6f” scheme [Parker & Lee 1992] is being employed in this code for
improved signal-to-noise properties. POOMA offers the user various easy-to-
use tools for initializing DPField data, including setting all DPField values to a
constant, inserting random values, using pseudo-random, bit-reversed numbers
[Halton 1960], and fitting a probability distribution (e.g., a Maxwellian distribu-
tion). Other initialization techniques can be added to the DPField class easily.
Once the Particles object is instantiated, the DPFields are hooked into the
Particles object (see Program 1.4) and initialized. After the Particles ob-
ject is initialized and Field objects have been constructed to hold the charge
density, the electrostatic potential, the electric field components, etc., we can
begin the timestep loop.

// construct electron distribution object
// ncz and ncy are the input system boz-size
int TimeLevels = 2; // predictor-corrector needs two copies of position
int nDPFields = 9; // number of dbl prec.fields

// attached to each particle
// construct Particles object
Particles electrons(TimeLevels, ncx, ncy, nDPFields);
// Now attach the DPField objects to the Particles object
electrons.set_coord(xel, 0, 0).set_coord(xe2, 0, 1);
electrons.set_coord(yel, 1, 0).set_coord(ye2, 1, 1);
electrons.set_dpfield(vel, 0).set_dpfield(ve2, 1);
electrons.set_dpfield(wel, 2).set_dpfield(we2, 3);
electrons.set_dpfield(pexl, 4).set_dpfield(pex2, 5);
electrons.set_dpfield(peyl, 6).set_dpfield(pey2, 7);
electrons.set_dpfield(w, 8);

Program 1.4: Code for attachment of particle attributes to Particles
object

We use a two-step, predictor—corrector scheme to advance in time. In each
timestep, we start with “old” (from the last timestep) and “current” (from this
timestep) values for the particle positions and velocities. In the predictor step,
we use the current velocities and electric field to advance the old positions and
velocities to the “new” time level. Then, in the corrector step, we average the
current and new values of the velocities and electric field, and use these averages
to advance the current positions and velocities to the new time level. Both steps
are performed in a time-centered manner.

Each step requires us to “scatter” the particles’ charge density to the simu-
lation grid, solve Poisson’s equation to get the electrostatic potential, take finite
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differences to get the components of the electric field, “gather” this electric field
to the particles’ positions, and advance the particle positions, velocities, and
weights. An example of these portions of the code is shown in Program 1.5.

// accumulate electron charge density

// onto grid using positions (ze2,ye2)

gphi2 = 0.0; // clear grid

// scatter weights w onto gphi2
electrons.ScatterNGP(gphi2, w, xe2, ye2);

// FFT-based field solver

// Fourier transform charge density
fftob.FFT_CC(gphi, gphi_im, 1, 1, 1.0/sqrt(ancx));
fftob.FFT_CC(gphi, gphi_im, 2, 1, 1.0/sqrt(ancy));
// apply form factors

// CEO recognizes these operations and optimizes

gphi = gphi*fmpo;
gphi_im = gphi_im*fmpo;
gphi = gphi*fmax;

gphi_im = gphi_im*fmax;

// inverse transform on potential with scale factor for normalization
fftob.FFT_CC(gphi, gphi_im, 2, -1, 1.0/sqrt(ancy));
fftob.FFT_CC(gphi, gphi_im, 1, -1, 1.0/sqrt(ancx));

// compute finite-difference Exz and Ey electric field components
// CEO recognizes these operations, updates border

// information and optimizes

ex2 = 0.5 * rhos * (gphi2[I+1,J] - gphi2[I-1,J]);

ey2 = 0.5 * rhos * (gphi2[I,J+1] - gphi2[I,J-1]1);

// gather electric fields onto particle positions (ze2,ye2)
electrons.GatherNGP (ex2, pex2, xe2, ye2);
electrons.GatherNGP (ey2, pey2, xe2, ye2);

// advance particle positions, velocities, and weights using velocity
// and E field. CEO recognizes these operations and optimizes.
xel = xel - 2.0 * dt * rhos * pey2;

yel = yel + 2.0 * dt * rhos * (theta*ve2 + pex2);

wel = wel - 2.0 * dt * rhos * swh * theta * pey2 * ve2 / (vtxe*vtxe);
vel = vel - 2.0 * dt * rhos * swh * theta * pey2 / vtxe;
// swap particles to be on same processor as local grid data

// swap using predicted coordinates

electrons.swap(xel, yel);

Program 1.5: Timestep of gyrokinetic particle code

The GatherNGP and ScatterNGP procedures are gather and scatter functions
that utilize a nearest-grid-point (NGP) Interpolate object to perform the in-
terpolation between particle positions and grid points. Border-cell information
is automatically updated on each LocalField object, so that particles have ac-
cess to the grid cells they need. The GK code has a 2-dimensional domain that
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is periodic in both directions, so the Poisson equation solve is handled using
Fast Fourier Transforms and the application of form factors in Fourier space.
The finite differencing of the electrostatic potential to obtain the electric field
is done by applying an optimized stencil operation to the Field containing the
potential. Overloaded operators in the DPField objects allow the advance of
particle positions, velocities, and weights to proceed with data-parallel array
syntax. The Particles member function swap is passed a set of particle coor-
dinates to use in checking which particles have moved out of the local subdomain
and need to be passed to a neighboring processor.

The GK code includes a simple diagnostic routine to compute the total
kinetic energy of the particles and the field energy of the potential, in order to
check energy conservation and monitor instabilities. In addition, GK has been
equipped with calls to the Generic Display Library (GDL), a portable graphics
package written at the Advanced Computing Laboratory. GDL provides simple
function calls that take a 2-dimensional array of data and convert it into a
pixel map, which graphically represents a color contour of the data set. The
color contour plot is displayed on the terminal screen in real time during the
simulation, and it can be updated at any time. This allows one to monitor
the electrostatic potential, for example, as a plasma instability develops and is
nonlinearly saturated. It is a powerful tool for both debugging and analysis
of production runs. Program 1.6 illustrates just how easy it is to utilize GDL
within the POOMA FrameWork.

// construct serial version of Field containing

// electrostatic field potential for graphical display

// all data resides in contiguous memory on Node 0

SField iophi(gphi2);

// initialize X display for GDL.

// Node 0 controls graphics display.

if (myNode==0) {
int dummy = GDL_OpenDisplay(X11FB); // open display in X11 mode
GDL_SetColormap (RAINBOW_BLUE, NULL); // choose standard color map

}

// later... during time-stepping loop

// output values of electrostatic potential

iophi.update(); // update values in Serial Field from parallel Field

// X display of SField using GDL

// display data in SField

if (myNode==0) GDL_Display_double(iophi.get_data(),
iophi.get_length(0), iophi.get_length(1));

Program 1.6: Utilizing GDL in the gyrokinetic code

The code shown in Program 1.6 is designed for debugging moderate-sized,
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two-dimensional simulations. Current research is focused on embedding GDL
into a Graphical User Interface with Tcl and the Tk Toolkit [Ousterhout 1994]
and merging objects in the POOMA FrameWork with parallel rendering tech-
niques.
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5 The Polygon Overlay Problem

The POOMA implementation of the polygon overlay problem is almost identical
to the ANSI C base code, for a couple of reasons. First, one of the central
themes in the design of the POOMA FrameWork is to ease migration from
known programming environments (e.g., ANSI C) to the new programming
environment of the FrameWork. In addition, it is more meaningful to compare
performance numbers between the Framework implementation and the ANSI
implementation if the methods used are the same.

Two different versions of each of the sequential methods of polygon overlay
were implemented and benchmarked on a Cray YMP, a Cray T3D, a PVM
cluster of RS6K workstations, an SGI Crimson, an IBM SP2, and the Meiko
Cs2.

5.1 POOMA Framework Implementation Details

In the first implementation of the polygon overlay code (see Program 5.1), al-
most no change to the ANSI source code was required. The I/O routines were
modified so that the entire left vector was read into each processor, while the
right vector was divided between the processors.

#include "defs.h"
#include "Index.h"
#include "IField.h"
#include "Poomalnfo.h"

static int Nodes, MyNodes;

int
main(
int argc, /* argument count */
char_p argv[] /# argument vector */
H
- - -definitions from sequential code-- -
PoomaInfo MyInfo(argc, argv);

Nodes = MyInfo.get_comm()->nodes();
MyNode = MyInfo.get_comm()->this_node();

---handle arguments- - -
---read inputs- - -
- - -perform overlay-- -

// Gather results from pnodes to pnode 0

Index I(Nodes);
IField Polys(I);
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int OutSecSize, TotalPolys, i, nodes;
poly_p pp;

Polys.local_set(outVec->len, 0);
OutSecSize = Polys.max();
TotalPolys = Polys.sum();

Index OP(OutSecSize * 4 * Nodes);
IField OutVec(OP);

pp = outVec->vec;
for (i = 0 ; i < outVec->len * 4 ; i += 4){

OutVec.local_set(pp->x1, i )
OutVec.local_set(pp->yl, i + 1);
OutVec.local_set(pp->zh, i + 2);
OutVec.local_set(pp->yh, i + 3);

PP++;

}

free(leftVec->vec);

free(rightVec->vec);

free(outVec->vec);

ALLOC(outVec->vec, Polys.sum(), poly_t);

pp = outVec->vec;
for (nodes = 0 ; nodes < Nodes ; nodes++){
for (1 = 0 ; i < Polys.atom_get(nodes) * 4 ; i += 4){

pp->x1 = OutVec.atom_get (nodes # OutSecSize + i );
pp->yl = OutVec.atom_get(nodes * OutSecSize + i + 1);
pp->xh = OutVec.atom_get(nodes * OutSecSize + i + 2);
pp->yh = OutVec.atom_get (nodes * OutSecSize + i + 3);
PPH+;

}
}

outVec->len = TotalPolys;

// Only Pnode 0 will do the sorting and output
if (!MyNode){

---sort using qsort---

. -output---

}
// finish

return 0;

Program 1.7: POOMA polygon overlay code
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Two static, global, integer variables were added to hold the number of pro-
cessors and the current physical node (pnode). A PoomaInfo object was instan-
tiated in the main declaration area, since data concerning the number of physical
nodes present was required before the instantiation of a Global Data Type ob-
ject. The PoomaInfo object checks to see if there is currently a Communicate
object running. If not, it will create one. The Communicate object’s tasks are
to obtain the number of physical nodes and to start running a copy of the ex-
ecutable on each physical node that is discovered. Next, the PoomaInfo object
checks to see if there is a VnodeManager running. Once again, if not, it will
create one. VnodeManager is responsible for keeping track of the virtual nodes
on each physical node. The default behavior is to provide only one virtual node
per physical node, but a larger number may be requested. Once the PoomaInfo
object is constructed, the variables Nodes and MyNode can be initialized.

Execution continues with the command-line processing being handled as
usual. The I/O source code (not shown) reads the first polygon file in serially.
The second file is read by dividing the size of the file by the number of physical
nodes present in the current machine. Each copy of the executable running then
reads in only that portion of the second polygon file that it is responsible for.

When the input files have been read, each processor generates the polygon
list for its input sets. Although an integer Field is employed during the simu-
lation, the embarrassingly parallel nature of the polygon overlay problem does
not exploit any of the communication-hiding features of the Field class (like
indexing operations). However, it does take advantage of the data-parallel max
and sum operations.

When the output routines are called, the reverse of the input procedure takes
place. The total number of polygons created is discovered by each processor
setting its Field variable to the number of polygons generated for its subset.
The Field is summed to get the overall total. When the output routine is called,
aField variable large enough to hold the entire polygon list is constructed. Each
processor fills its portion of this Field with generated polygons, and then pnode
0 writes out the entire solution set.

As seen in Table 6 and Table 7, the naive implemention of the code per-
forms much as expected, since once the data is read in, there is no interpro-
cessor communication. (Note: the RS6K optimizations included -qarch=pwr2
-qtune=pwr2 flags and the Crimson optimizations included the -mips2 flag.)
The speedup is nearly linear as the number of processors increases. The sur-
prising results appear in the parallel versions of the more sophisticated methods,
as seen in Table 8 and Table 9. The List-Ordered and List versions run more
slowly when more processors are added. This is due to the way these methods
are implemented. The entire left vector is loaded onto each processor, but the
right vector is divided between all available physical processors. When a poly-
gon is culled from the list of active polygons, it is culled from the right vector.
This implies that some processors may end up culling their entire right vector
while others do not cull any polygons at all. The additional checks involved in
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Arch Opt | Nodes || Naive | Ordered | Area-Ord

Cray YMP -03 |1 0.722 | 0.521 0.331
Cray T3D -02 |1 0.500 | 0.250 0.270
Cray T3D -02 | 2 0.380 | 0.210 0.220
Cray T3D -02 | 4 0.260 | 0.200 0.210
SGI Crimson | -02 | 1 0.390 | 0.260 0.110
SGI Crimson | -O2 | 2 0.210 | 0.270 0.070
RS6K -03 |1 0.270 | 0.200 0.110
RS6K -03 | 2 0.130 | 0.150 0.080
RS6K -03 | 4 0.090 | 0.100 0.090
RS6K -03 | 8 0.170 | 0.210 0.080

Table 6: Polygon overlay code timings (in seconds) on map.00 and map.01 data
sets for the Naive, Ordered, and Area-Ordered methods

the List-Ordered and List methods are executed for all elements in both the left
vector and right sub-vectors, causing the performance to decrease as seen.

5.2 Improved Polygon Overlay Implementation

The polygon overlay problem appears to be embarassingly parallel in nature,
but due to uneven loading caused by the way the data files are produced, adding
processors can reduce performance in many cases. A second, improved imple-
mentation (given in Program 5.2) remedies this imbalance by dividing the left
and right vectors between all the processors. Local versions of the left sub-
vectors and right sub-vectors are compared, and a partial output list is created.
The code iterates by shifting the right sub-vector to the neighboring proces-
sor and repeating the comparison. This continues until each right sub-vector
has visited each physical node. By doing this, a crude form of load balancing
is achieved, as is evident in the performance numbers given in Table 10 and
Table 11.

#include "defs.h"
#include "Index.h"
#include "IField.h"
#include "PoomalInfo.h"

static int Nodes, MyNodes;
int
main(

int argc, /* argument count */
char_p argv[] /* argument vector */
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Arch Opt | Nodes || Area | List-Ord | List

Cray YMP -03 |1 0.241 | 0.082 0.081
Cray T3D -02 |1 0.110 | 0.050 0.050
Cray T3D -02 | 2 0.190 | 0.180 0.180
Cray T3D -02 | 4 0.190 | 0.200 0.210
SGI Crimson | -02 | 1 0.070 | 0.030 0.020
SGI Crimson | -O2 | 2 0.150 | 0.030 0.170
RS6K -03 |1 0.090 | 0.020 0.030
RS6K -03 | 2 0.200 | 0.050 0.190
RS6K -03 | 4 0.140 | 0.070 0.040
RS6K -03 | 8 0.120 | 0.070 0.120

Table 7: Polygon overlay code timings (in seconds) on map.00 and map.01 data
sets for the Area, List-Ordered, and List methods

Arch Opt | Nodes || Naive Ordered | Area-Ord
Cray YMP | -03 | 1 2287.267 | 1590.815 | 959.756
Cray T3D | -02 |1 1402.280 | 822.140 | 783.520
Cray T3D | -02 | 2 787.070 | 607.520 | 600.210
RS6K -03 |1 844.28 659.37 335.36
RS6K -03 | 2 429.50 491.86 249.36
RS6K -03 | 4 276.63 279.51 141.43
RS6K -03 | 8 173.28 162.86 144.01

Table 8: Polygon overlay code timings (in seconds) on K100.00 and K100.01
data sets for the Naive, Ordered, and Area-Ordered methods

)
- - -definitions from sequential code-- -
PoomaInfo MyInfo(argc, argv);

Nodes = MyInfo.get_comm()->nodes();
MyNode = MyInfo.get_comm()->this_node();

---handle arguments- - -

// Load Left Vector into shift buffer

Index I(Nodes);

IField Polys(I);

int PolysPerNode, OutSecSize, TotalPolys, i, eachnode, node, GlobalTotal=0;
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Arch Opt | Nodes || Area List-Ord | List

Cray YMP | -O03 | 1 662.867 | 34.652 34.669
Cray T3D | -02 | 1 288.580 | 18.080 16.510
Cray T3D | -O2 | 2 345.190 | 21.100 30.250
RS6K -03 |1 226.58 9.11 8.09
RS6K -03 | 2 225.30 25.17 61.43
RS6K -03 | 4 234.60 | 42.90 111.59
RS6K -03 | 8 205.23 | 4.22 70.99

Table 9: Polygon overlay code timings (in seconds) on K100.00 and K100.01
data sets for the Area, List-Ordered, and List methods

Polys.local_set(leftVec->len, 0);
PolysPerNode = Polys.atom_get (0);
TotalPolys = PolysPerNode * Nodes;
Index SHIFTI(TotalPolys * 4);
IField ShiftBuf (SHIFTI);

poly_p pp;

pp = leftVec->vec;
for (i = 0 ; i < leftVec->len * 4 ; i+=4){

ShiftBuf.local_set(pp->x1, i )
ShiftBuf.local_set(pp->yl, i + 1);
ShiftBuf.local_set(pp->xh, i + 2);
ShiftBuf.local_set(pp->yh, i + 3);

PP++;

}

for (int eachnode = 0 ; eachnode < Nodes ; eachnode++){
- - -perform overlay- - -
ShiftBuf = ShiftBuf (SHIFTI + (PolysPerNode * 4));
//reload the left vector with the contents in Shift Buf

pp = leftVec->vec;

for (1 =0 ; i < leftVec->len * 4 ; i++)

{
pp->x1 = ShiftBuf.local_get(i );
pp->yl = ShiftBuf.local_get(i + 1);
pp->xh = ShiftBuf.local_get(i + 2);
pp—>yh = ShiftBuf.local_get(i + 3);
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PP++;

}

// Gather results from pnodes to pnode 0
Polys.local_set(outVec->len, 0);
OutSecSize = Polys.max();
TotalPolys = Polys.sum();
GlobalTotal += TotalPolys;

Index OP(OutSecSize * 4 * Nodes);
IField OutVec(OP);

pp = outVec->vec;

for (i = 0 ; i < outVec—>len * 4 ; i += 4){
OutVec.local_set (pp->x1, i );

OutVec.local_set(pp->yl, i + 1)
OutVec.local_set(pp->xh, i + 2)
OutVec.local_set(pp->yh, i + 3)
pptt;

}

free(outVec->vec);

3
3

3

ALLOC(outVec->vec, Polys.sum(), poly_t);

pp = outVec->vec;

for (node = 0 ; node < Nodes ; node++){
for (i = 0 ; i < Polys.atom_get(node) * 4 ; i +=

pp->x1 = OutVec.atom_get (node
pp->yl = OutVec.atom_get (node
pp->xh = OutVec.atom_get (node
pp->yh = OutVec.atom_get (node
pptt;

outVec->len = TotalPolys;

// Only Pnode 0 will do the sorting
if (!MyNode){

---sort using qsort---

. -output-- -

}
}

// finish

return 0;

}

* OutSecSize +
* QutSecSize +
* QutSecSize +
*

OutSecSize + i

and output
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Program 1.8: Improved POOMA polygon overlay code

Arch Opt | Nodes || Naive Ordered | Area-Ord
Cray T3D | -O2 | 8 187.070 | 28.820 28.970

Cray T3D | -O2 | 16 102.790 | 21.012 20.150

Cray T3D | -O2 | 32 59.920 | 18.020 17.960

RS6K -03 |1 844.28 | 659.37 335.36

RS6K -03 | 2 415.01 | 171.23 90.58

RS6K -03 | 4 212.83 | 58.65 37.78

RS6K -03 | 8 113.50 | 27.02 21.60

Table 10: Improved polygon overlay code timings (in seconds) on K100.00 and

K100.01 data sets for the Naive, Ordered, and Area-Ordered methods

Arch Opt | Nodes || Area List-Ord | List
Cray T3D | -O2 | 8 23.900 | 18.309 17.940
Cray T3D | -O2 | 16 18.570 | 17.270 13.810
Cray T3D | -O2 | 32 17.860 | 17.220 14.130
RS6K -03 |1 226.58 | 9.11 8.09
RS6K -03 | 2 62.67 | 10.67 9.64
RS6K -03 | 4 31.20 | 18.65 18.73
RS6K -03 | 8 19.21 | 17.02 17.24

Table 11: Improved polygon overlay code timings (in seconds) on K100.00 and
K100.01 data sets for the Area, List-Ordered, and List methods

In Table 10 and Table 11, an increase in code scalabilty is evident. When
higher numbers of processors are used, the performance begins to level off due to
the higher amount of data movement on the network. The added advantage of
this second implementation is its ability to handle much larger data sets, since
it is not necessary to load the entire left sub-vector onto each physical processor.

A further enhancement to this second scheme would be to retain the short-
ened right sub-vectors between iterations. As it stands, each new iteration
considers all the right sub-vector polygons active, regardless of whether or not
they were removed from the linked list in one of the previous iterations.
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6 Critique

Although there are many advantages to our approach to parallelism as described
above, there are some limitations. Even though codes can move with no changes
between parallel and serial environments, the motivation for this was to leverage
serial environments for development against parallel environments for produc-
tion. The POOMA FrameWork is tuned for solving large problems on parallel
supercomputers efficiently. The techniques utilized to provide these performance
gains on parallel architectures provide minimal gains on serial architectures.

The target users for the POOMA FrameWork are science and engineering
application developers who, as a community, prefer programming in Fortran and
other procedural languages. Although C++ is a powerful object-oriented lan-
guage with which the FrameWork mimics a procedural language, encapsulates
parallelism, and chains expression for efficiency, there is still a perceivable lag
in C++4 compiler technology. Thus, it will take some time before the scientific
and engineering communities accept C++ as being as efficient a language as
Fortran, and this will inhibit the transition to systems like POOMA.

In addition, because we have chosen to drive our system with scientific ap-
plications, the scope of POOMA is somewhat limited. This is not a general-
purpose programming system; rather, it is specifically focused on facilitating
the use of numerical tools common to scientific application codes on parallel
computer architectures. This design decision will undoubtedly exclude other
types of computer codes from utilizing tools in the POOMA FrameWork.

Finally, the FrameWork currently focuses on a SPMD approach to paral-
lelism. Although a data-parallel approach captures a majority of scientific ap-
plication domains and provides an intuitive casting of mathematical expressions
directly into objects, there are those who argue that some algorithms are better
cast in a task-parallel language. In the future, we hope to bridge this gap by
combining objects from the POOMA FrameWork with task-parallel, run-time
systems such as Chapter 77.
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