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Abstract

Thispaper discussesthe design and i mplementation of apolymorphiccollectionlibrary for distributed
address-space parallel computers. The library provides a data-parallel programming model for C++ by
providing three main components: asingle generic collection class, generic algorithmsover collections,
and generic agebraic combining functions. Collection elements are the fourth component of a program
written using the library and may be either of the built-intypesof Cor of user-defined types. Many ideas
are borrowed from the Standard Template Library (STL) of C++, athough a restricted programming
model is proposed because of the distributed address-space memory model assumed. Whereas the
STL provides standard collections and implementations of agorithms for uniprocessors, this paper
advocates standardizing interfaces that may be customized for different parallel computers. Just as the
STL attempts to increase programmer productivity through code reuse, a similar standard for parallel
computers could provide programmers with a standard set of a gorithms portable across many different
architectures. The efficacy of thisapproach isverified by examining performance data collected from an
initial implementation of the library running on an IBM SP-2 and an Intel Paragon.

1 Introduction

The data-parallel programming paradigm has proven to be popular because of its power and simplicity.
While it is not entirely suitable for all parallel applications, a large number of applications are easily
expressed in this paradigm. The acceptance of High Performance Fortran (HPF), with its large core of
data-parallel array operations, shows that many computer and compiler vendors are committed to providing
support for thismodel in the future [7].

The concept of collections lies at the center of all data-paralel programming languages. In these
languages, there are two types of paralelism that can be understood in terms of collections. Simple
elementwise parallelism is expressed by applying an operation to al of the members of a collection in
parallel. Aggregate paralelism is expressed as a paralel agorithm defined over an entire collection.
Typicaly, the collections are arrays or vectors, but other collections are possible.

There is alink between collection-oriented programming and object-oriented systemsthat is often not
recognized. Most object-oriented systems provide polymorphic collection classes that manage heteroge-
neous sets of objects [4]. Traditionally, polymorphism is implemented through a class hierarchy using
inheritance (although other mechanisms are possible). Common functionality is provided for a group of

*Research Institute for Advanced Computer Science, Mail Stop T27A-1, NASA Ames Research Center, Moffett Field, CA
94035-1000 (shef fl er @i acs. edu) Thework of this author was supported by the NAS Systems Division via Contract NAS
2-13721 between NASA and the Universities Space Research Association (USRA).



types by “inheriting” the functionality from a base class. All classes derived from this base class then have
aminimal set of member functionsthat a collection class can use to manage its elements.

The Standard Template Library (STL) uses ad-hoc polymorphism and generic classes and functions
to provide polymorphic collections. Along with the definition of a small number of collection classes,
the STL also provides algorithms on those collections whose implementations run as fast as hand-coded
C for many applications [11]. Instead of using classes to inherit common functionality, generic functions
define operations that the compiler can instantiate for any type. There are two advantages to using generic
functions to describe polymorphism instead of inheritance. First, generic functions (if carefully written)
may avoid the overhead of callsto member functions, leading to improved performance. Secondly, generic
functions can provide new functionality for the built-in types of C, which are not classesin C++ [12]. Itis
because of these two points that template functions can provide high-level operations on collections of the
built-in types and obtain the same performance achieved by hand-coded C.

This paper discusses the design and implementation of the Amelia Vector Template Library (AVTL),
a polymorphic collection library for distributed address-space parallel computers. Like the STL, it is
template based rather than inheritance based. However, because a distributed address-space memory model
is assumed, significant restrictions must be placed on the programming model provided by thelibrary. For
example, thefull generality of theiterators of the STL are not permitted. Instead, arestricted form of access
to elements, through el ermrent wi se functions, provides the necessary safety.

Many collectiontypesexist in data-parallel programming languages. Thisinitial experiment targetsonly
thesimplest distributed datatype: thevector. Evenwith only onecollectiontype, thereisasignificant amount
of complexity to be considered. For example, agorithms on vectors often employ algebraic combining
functions (e.g., addition in a paralld-prefix algorithm). The library has been carefully designed so that
algorithms are generic with respect to al element types and agebraic combining functions. A framework
for describing algebraic combining functions is presented that links algebraic combining functions with
their identity values, and readily extends to new data types.

Theremainder of this paper begins by discussing generic classes and functions, and then introduces the
components of the library. Its design emphasizesthe orthogonality of element types, collection types, algo-
rithms, and algebraic combining functions, and presents a mechanism for the customization of agorithms
through function objects. These modify the actions of the algorithms (for both primitive and user-defined
types) but do not incur the overhead of afunction call, as normal functions do. Examples are used to show
the ways in which the components of the library combine, and how they may be extended for user-defined
datatypes. Finaly, performance data collected on an IBM SP-2 and an Intel Paragon verify that theinitial
implementation yields performance comparabl e to that of hand-coded C.

1.1 Algorithmic Templates

Templates are algorithms that may be parameterized by type and function. For example, an agorithm
to sort requires knowledge of an element type and comparison function. An algorithm to find transitive
closure requires specification of the element type as well as the addition and multiplication functions of the
mathematical ring over which to find closure.

A standardized set of algorithms enhances programmer productivity by raising the level of abstraction,
while simultaneously providing program portability. Instead of re-targeting an entire program for a new
architecture, a standard set of algorithms provided for many architectures ensures the portability of any
program written in terms of these algorithms.

Standard function libraries, such as the BLAS [8], are an effort in this direction, but often lack the



abilities of polymorphism and function specialization. These capabilities have been lacking in the past
because there has not been awidely available programming language that allowsthe specification of generic
algorithms. The C++ function template mechanism provides a good foundation for the encapsulation of the
specification of generic agorithms.

1.2 A Casefor Standard Parallel Collections

This paper advocates standardi zing aset of generic collectionsand algorithms suitablefor distributed address-
space paralel computers. To a limited extent, such a library would replace some of the functionality of
current data-parallel compilers. Compilersfor data-parallel languages, such asthosefor HPF, areresponsible
for theinstantiation of parallel algorithmson collections. A simpleexampleisther educe function of HPF
on arrays. C++ templates provide a way to move this functionality out of the compiler and into a library
without sacrificing performance in the way that subroutine libraries often do. By establishing standards for
interfaces to paralel collections, it should be possible to experiment with and add new collection typesin
the future without modification to the underlying compiler.

Of course, many low-level optimizationsare beyond the scope of atemplatelibrary. Such optimizations
asloop fusion and array blocking must be handled at alower level. While many Ccompilersdo not currently
implement these opti mi zati ons, a growing number are beginning to perform thesetypes of optimizationsthat
havetypically been the domain of Fortran compilers[3, 6]. It isreasonableto expect that these optimizations
will be commonplace in the C compilers of the next few years. In much the same way the programmers of
vector computers write vectorizable code, algorithmsin the template library could be written in a scalable
style so that compilers can recognize the appropriate optimizations.

Whereas the STL standardizes both interfaces and agorithms, this is not in genera possible for dis-
tributed address-space parallel computers. Instead, the interfaces may be standardized, but separate im-
plementations may have to be provided for different classes of machine. Thisinitial implementation uses
standard C++, and MPI for communication [9], and thusis portable to awide variety of current distributed
address-space parallel computers. However, shared memory multiprocessors and vector multiprocessors
present architectures for which an entirely different implementation would be necessary. By standardizing
interfaces to functions that have efficient implementations on many architectures, a template library can
provide a substrate for the development of portable parallel programs.

1.3 AnInitial Implementation

The initial implementation of the library uses MPI (Message Passing Interface) [9] for interprocessor
communication, ensuring portability to a wide variety of architectures. C++ templates are used to provide
a single generic vector class and many generic algorithms on vectors. Algorithms are parameterized by
element types and function objects.

The use of function objectswith template al gorithms ensures high performance by allowing user defined
functionsto be compiled in-line, avoiding the overhead of afunction call for the application of the function.
The compiled code resulting from the instantiation of the template algorithms provide the performance of
hand-written C. In addition to simplifying the library design, this capability emphasizes the orthogonality
of element types, collection types, agorithms, and algebraic combining functions, and allows them to be
combinined in many ways.

Function objectsare used uniformly inthelibrary to specify a gebraic combining operationsfor arbitrary
data types. For instance, the vector library provides parallel prefix (scan) algorithms for vectors of any



homogenoustype. For any binary associative operator, ¢, with an identity element O, and avector «, a scan
computesaresult b that is defined as

bop = O
by = bi—1Da;-1.

Inthe AVTL, thereisasinglescan algorithmic template and the binary operator and identity element are
parameters of the algorithm. Other paralel vector libraries have offered one of two approachesto providing
scan functions. To ensure high performance, some provide specialized scan algorithmsfor alimited number
of data types and operators [1]. This approach does not generalize to user defined types. More genera
libraries have accepted function pointersto alow the user to define any binary associative operator [9]. This
approach suffers a performance loss because the repeated invocation of the function may be unacceptably
expensive.

Function objects are like function pointers except that the compiler may have complete information
about the function so that it can beinlined at compiletime. The template-based approach offers the benefits
of genericity, efficiency and extensibility. Generic agorithms may be instantiated for any type and function
object. Furthermore, users may freely add new element types and combining function objectsto extend the
vector library with added functionality.

The AVTL comprises four main components that are carefully designed to work together.

1. A memory manager. The memory manager isimplemented as a class and has member functions that
allocate memory over the available processorsin equal sized chunks.

2. A generic distributed collection class: the vector. It isimplemented as a template class.

3. Generic agorithms on vectors. These are implemented as template functions. Standard algorithms
are elementwise operations, vector permutations, scan and segmented scan operations, reductions,
segmented reductions, and combining sends and fetch-and-add communication functions.

4. Generic function objects. These parameterize the vector algorithmsto vary the way in which vector
elements are combined or fetched.

Thelibrary handles homogenous vectors of any fixed-size type. A large number of predefined function
objects and algorithms provide standard vector operations on the built-in types of C, but users may easily
introduce new el ement types and function objects.

1.4 An Example

Before delving into the details of the AVTL, a short example will demonstrate some of the features of
the library. The vector collection template class is caled the pvect (for Paralel Vector). The vector
constructor accepts a length argument, and an optional value with which to initialize the elements of the
vector. By default, the elements are distributed in equal sized blocks over the available processors.

pvect <i nt > ones(10, 1); /1 length 10, elenents set to 1
pvect <doubl e> twos(10, 2.0); /'l vector of doubles



A vector that enumeratesitssitesfrom O iscalled an “index vector.” Anindex vector may be computed
from the ones vector by using the scan agorithm with addition as the binary associative operator. The
AVTL provides a generic algorithm for scans and a set of standard generic binary associative operatorsin
the form of function objects. These function objects are parameterized by type. An index vector could be
created by the following application of the scan algorithm with the addition function object for integers.
(Do not be alarmed by the syntax — it becomes familiar quickly.)

pvect <i nt > i ndex = op_scan(add_op<int>(), ones);

A user-defined data type may be used with the AVTL as easily as a builtin type. The following class
defines a type that represents a point on the plane in polar coordinates. The class aso defines the addition
operator for objects of type pol ar .

cl ass pol ar {
doubl e theta, mag;
public:
pol ar (double init) { theta = 0.0; mag = init; }

pol ar oper at or +( pol ar a)

{
pol ar b;
double bx = a.mag * cos(a.theta) + this->mag * cos(this->theta);
double by = a.mag * sin(a.theta) + this->nag * sin(this->theta);
b. mag = sqrt (bx*bx + by*by);
b.theta = arctan(by/bx);
return b;

}

s

Withthisnew datatype and an addition operator, it makes senseto speak of performinganadd _scan on
vectors of pol ar elements. Because the addition operator is an inlined member function of class pol ar,
it will beinlinedin theinstantiation of the op_scan agorithm produced for thistype, and the performance
of the add _scan function on pol ar typeswill be as good as a function hand-written expressly for that
purpose. The following call to op_scan will produce the prefix sum of avector of polar coordinates. The
generic combining function, add _op may be applied because addition is defined for the pol ar type.

pvect <pol ar > a(100, polar(21.0)); // intialized to 1.0
pvect <pol ar > prefixsum = op_scan(add_op<pol ar>(), a);

This is a smal example of the extensibility of the library. More interesting examples require an
understanding of function objects. In summary, the combination of template algorithms and function
objects provide an extensible library with the efficiency of hand written code for any vector element type.
15 Organization
The rest of the paper discusses the components of the vector library. Two brief sections introduce the
memory manager and the vector template class. The vector class section a so describes segment descriptors
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and how they are internally managed. Section 4 describes function objects and why they are important
to the library both for expanding its functionality and to ensure high performance. The large number of
predefined generic function objects provided by the library make it useful for all of the built-in data types
of C++, but it isthe extensibility of the library through function objects that makes it interesting.

Section 5 is devoted to describing the element-wise application of functions to conforming collections.
Because el ement-wise operations are often the core of adata-parallel program, itisimportant that thelibrary
provide a convenient way to express them. This section also describes how the library can identify scalar
data types in mixed-mode (vector/scalar) calculations.

Section 6 describes the generic al gorithms and function objects provided by thelibrary. Section 7 briefly
discusses some of the difficulties encountered in interfacing with MPI. This section touches on both the
implementation of the messaging passing using MPI, and the problems encountered with interfacing the
AVTL template algorithmsto the MPI subroutine interface.

Section 8 presents the results of performance tests collected on the Intel Paragon and the IBM SP-2.
Theseresultsillustrate that the templ ate-based approach yields performance on par with that of hand-coded
C. Finally, a concluding section summarizes some of the points made in the paper and suggest directionsfor
future work.

2 Memory Management

The AmeliaVector Template Library AVTL provides astandard integrated memory manager defined by the
classammemngnt . A brief description of the function of this class follows.

A request for avector of agiven size is broken into equal sized chunks across the available processors.
Each chunk maintains an opague descriptor that records its size, starting index in the allocated vector,
beginning addressin memory, and ending addressin memory (by convention, thisistheaddressimmediately
following the last element of the chunk). The memory manager returns a pointer to the beginning of the
chunk and provides access to the information of the chunk descriptor through access functions.

The memory manager class provides very few member functions. There are methods for allocating
and freeing vector memory on the heap, and functions for allocating vector memory on a stack. The stack
functions, push and pop must be nested properly inacorrect program. The memory manager also provides
methods for printing statistics about the memory use of the program.

Because memory management of distributed vectors is often linked to initialization of the parallel ma-
chine, the memory manager assumesthe responsibilty of initializing the underlying parallel communication
library.

3 TheParalle Vector Collection Class

A parallel vectorisaninstanceof thepvect templateclass, parameterized by an element type. Theprimary
responsibility of the vector classis coordinating the alocation and freeing of vector memory. Each instance
of aparalld vector is actually a pointer to a hidden vector descriptor that maintains information about the
vector’s type, length and location in vector memory. Two or more vectors may share the same descriptor,
and thusrefer to the samelocation in vector memory. The constructors and destructors of the class maintain
reference counts on vector descriptors to determine when vector memory may be released by the memory
manager.



The reference counting scheme minimizes the copying of vector data. When passing vectors as argu-
ments to functions, the only thing that is copied in as an argument or out as a result is a pointer to the
descriptor. Vector assignment islikewise defined through the sharing of descriptors. Most vector operations
return a new vector so that application of one function does not cause a side effect in another shared vector
elsewhere. If atrue copy in anew vector isrequired, the copy member function may be used.

There are four constructors for pvect vectors. The default constructor does not allocate any vector
memory. With a single integer argument, vector memory is alocated for the given number of arguments;
an optiona second argument specifies an intial value for each element of the vector. The copy constructor
for apvect sharesthe descriptor of the argument and increments the reference count.

Thefollowing exampleillustratesthe four different constructors. The destructor for avector decrements
the reference count of the descriptor and frees the alocated vector memory when the count reaches zero.

pvect <i nt > a; /1 no vector nenory allocated

pvect <i nt > b(100); /1 allocated

pvect <i nt > c(100, 5); // allocated, initialized

pvect <i nt > d = c; // c and d share the sane vector nenory

The other member functions of thepvect classarelisted below. Some implementationsof thepvect
interface may include other member functions, but these may not necessarily be supported in future rel eases.

templ ate <class T>
cl ass pvect {

pvect <T> copy(); /'l produce a copy of the vector

T get (i nt pos); /'l retrieve a value froma position

int len(); /'l get the length of the vector

int slen(); /1 if this vector is a segnment descriptor,

/1 return the length of the
/'l segmented vector

/'l These nmenbers MODI FY the contents of the vector
voi d replace(int pos, const T val)
/'l replace the value at a position

voi d dist(const T val) // distribute a value across the vector

voi d send( pvect <T> val s, pvect<int> positions)

/1 send values into the positions given

s

3.1 Segment Descriptors

Many vector operations accept an additional argument that designates segmentswithinthevector. A segment
is a contiguous range of sites. Each segment isitself a vector, and segmented vector functions perform a
parallel function over al of the segments of a vector simultaneously [2]. For example, a segmented scan
computes a recurrence in which the running sumisreset to 0 at the beginning of each segment.

There are many ways to represent segment descriptors. One representation is called the startbits
descriptor. For a vector of length /, the startbits descriptor is a boolean vector of length [ with a1 at the
beginning of each segment, and with O everywhere else. An aternate representation isthe segment-lengths



descriptor. Thisisavector of integers whose sumis!; each element of the segment-lengths descriptor gives
the length of a segment.

The AV TL usesthe segment-lengthsdescriptor variety, whosetypeissimply pvect <i nt > (thereisno
special segment descriptor type). Internally, thelibrary may compute an alternate representation (such asthe
startbitsform) for use within the algorithm. Thelibrary caches any such representation, so that reusing the
same vector as a segment descriptor will avoid recomputing theinternal form. The cached representationis
flushed however if the segment vector is modified in any way.

Users of the library need not concern themselves with the internal caching of segment descriptors,
except when evaluating the performance of programs. The first time a vector of integers is used as a
segment descriptor additional time may be required to compile and cache the internal segment descriptor.
After that, the internal form isused directly.

4 Function Objects

A function object is an object with an oper at or () () defined. In the contextsin which C programmers
would expect to pass a pointer to a function in a library subroutine, a C++ function object is used in a
template library. Algorithmic templates expecting function objects may also be used with regular function
pointers too. However, function objects offer the advantage that inlined member functions do not incur the
overhead of afunction call.

4.1 Binary Associative Operatorsand Identity Values

In the paralel agorithm literature, efficient paralel algorithms are well known for scans and reductions
using arbitrary binary associative operators (a “binop”, for short) [2, 13]. Most of these algorithmsrequire
the specification of theidentity element associated with thebinary operator. The AVTL adoptsthefollowing
convention: a binary associative operator is an object with two required member functions.

1. operator () () isamember function of two arguments performing the binary associ ative operation.

2. identity() isamember function of no arguments that returns the identity element of the appro-
priate type for the binary associative operator.

A suitable binary associative operator for the addition of integersis shown below.

class add_op_int {
public:
int operator()(int a, int b) { return a + b; }
int identity() { return 0O; }

s

Binary associative operators are used uniformly throughout the library to parameterize the following
algorithmic templ ates.

1. exclusive scans (segmented, unsegmented)

2. inclusive scans (segmented, unsegmented)



3. reductions (segmented, unsegmented)
4. combining-sends (liketheadd_scat t er of HPF)

A large number of binary associative operators (binops) are predefined as generic template classes.
These merely give names to standard elementwise algebraic operations: add, rmul , max, m n, and, or
and xor , f st (return thefirst arg) and scd (return the second). For example, the addition binop is defined
as follows. Because it invokes oper at or +, this binop is defined for any type for which the addition
operator is defined.

template <class T> class add_op {

public:
T operator()(T a, T b) { return a + b; }
T identity() { return zero_val <T>(); }

s

The preceding template class introduced yet another template class: theidentity values. The predefined
binopsrequire knowledgeof four specia valuesof each type. Thesearethe zero value (identity for addition),
the one vaue (identity for multiplicaiton), the minimum value of the type (identity for maximum) and the
maximum val ue of thetype (identity for minimum). Thetemplate class definition for the zero value follows.

template <class T> class zero_val {
public:
operator T { return 0; }

s

Whenever any object of typezer o_val <T> isused in a context where a vaue of type T isrequired,
the appropriate value is returned. For most builtin types, an appropriate conversion exists from 0 to the
builtin type (integer, character, long double, etc.).

The identity classes for al of the builtin types use template specialization and the values from the
standard Cinclude file <l i mi t s. h> to pre-define the four identity values for each of the builtin types.
Thus, for all of the builtintypesof C, appropriate identity values are predefined based on the storage formats
of the target architecture.

The structure of the binops and identity classes gives users flexibility about how new types and binops
areintegrated into thelibrary. For anew type, the user may explicitly create binop function objectswith the
required members. These may specialize some of the predefined binops (e.g. add_op) for the new type,
or may have completely new names. Alternatively, the user may simply provide definitions of the standard
C arithmetic operators for the new type, aswell as specidizationsfor theidentity classes. Then, the generic
binop classes may be instantiated for all of the predefined binops. Note that if the binop does not have a
standard name, the former approach is required.

4.2 Pseudo Binops

Most combining functions can be described merely by defining an appropriate function object. However,
there is one combining operation used in conjuction with a combining send that does not fit thismold: itis
the “append” operator, indicated by an app_op<T> function object. Thisbinop may only be used with the
combining-send function and causes element values sent to the same site to be placed in contigous sitesin
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the result vector. The implementation of a send-with-append function actually requires an agorithm quite
different from that of the other combining sends. A specialized template algorithm is defined for the case
when the combining operator is of type app_op<T> Thistype does not have any member functions, but
serves merely as a placeholder. In thisway, theillusion of “append” as abinop is preserved, even though a
different algorithm isinvoked.

5 Elementwise Operatorsand Scalar Extension

All of the standard C arithmetic operators (+, -, *, /, % <<, >>, |, & ") are extended to mean the
elementwise application of the operator to the elements of the vectorsin paralel. For instance, if a and b
are vectors, a+b istheir elementwise sum. If the elements of a and b are of differing type, the resulting
vector will have the type of the left argument. Thisis not as general as the standard C type coercion rules,
but is aworkable solution.

The AVTL does not provide automatic scalar extension, because it is difficult to recognize scalar values
with template arguments. Scalar extension is the ability to add a constant to all elements of a vector, for
example, without explicitly distributing the constant across anew vector. The user of the AVTL can specify
such scalar extension, but only by identifying scalar variables explicitly.

Thescal ar templateclassisused to indicate scalar extension for el ementwise operators. A shorthand
function, called make _scal ar, may also be used. It attempts to deduce the type of the scalar from its
argument.

The following illustrates two equivalent ways of adding 5.0 to each of the elements of a vector. The
first method explicitly creates ascalar of typedoubl e, the second usesmake _scal ar to deduce thetype
from its argument, 5.0.

pvect <doubl e> a(100, 4.0);
pvect <doubl e> b = a + scal ar<doubl e>(5);
pvect <doubl e> c = a + make_scal ar (5.0);

5.1 Comparison Operators
The standard C comparison operators (==, ! =, <, >, <=, >=) are similarly extended. A scal ar may bethe
either argument in such acomparison. The result of all comparisons of vectorsis of type pvect <i nt >.

5.2 Assignment Operators

The assignment operators of C have not been redefined to be meaningful for vectors. Most operationsin the
AVTL produce a new vector as aresult. An assignment operator would modify the value of a (potentially
shared) vector. While these operators would be useful, at this point the ramifications of their inclusion are
not fully understood.

5.3 Elementwise application of arbitrary functions

Theel ement wi se template function appliesan arbitrary function object to each of the elements of one or
more vectors. Because the type of the value returned by afunction object cannot be matched by atemplate
argument, the user must give an argument that is of the type of the result desired.
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Fivevariantsof the elementwisefunction are provided. They apply functionsof 1, 2, 3, 4 or 5 arguments
to the elements of the corresponding vectors.

pvect<T> result = elenmentw se(fn, pvect<T>(), a)

pvect<T> result = elenmentw se(fn, pvect<T>(), a, b)

pvect<T> result = elenmentw se(fn, pvect<T>(), a, b, ¢)
pvect<T> result = elenmentw se(fn, pvect<T>(), a, b, c, d)
pvect<T> result = elenmentw se(fn, pvect<T>(), a, b, c, d, e)

The function argument to an el enent wi se function may be either a function object or a function
pointer. For example, the Unix cosinefunction may be applied to each of the elements of avector, producing
avector of the cosines.

pvect <doubl e> cosi nes = el ementw se(cos, pvect<double>(), argvector)

Function objects used with el enment wi se functions are useful for their inlining capabilities. Assume
that a, b and ¢ are three vectorsin the following example.

pvect <doubl e> result = a * b + c;

This expression calculates the elementwise product of a and b, places it in a temporary vector, adds
the elements of ¢ and places the result in anew vector. Besides the overhead of alocating and freeing the
temporary vectors, thisoperation suffers from writing the temporary values out to memory. A more efficient
solution isto use afunction object and the el enment wi se function.

class nul tadd {
public:
doubl e operator()(double x, double, y, double z)
{ return x *y + z; }

b
pvect <doubl e> result = el ementwi se(rmultadd(), pvect<double>(), a, b,

The resulting code is certainly less readable, because the multiply-add operation must be written as a
separate function. However, when absolute high performance is a necessity, this technique can be used
in critical regions of a program. The construct ensures that the layout of the vectors in memory remains
hidden, but the use of the function object ensures that the performance meets that of a hand-coded loop.
Elementwise functions are al so useful when operating on members of vectors of user-defined structures.

54 Zipping Vectors

The AVTL borrowsthepai r templatetypefromtheSTL. A pai r isparameterized by two types and may
hold two values of any type.

template <class T1, class T2>
class pair {
public:

11

c);



T1 first;
T2 second;
pair(const T1 &, const T2 &) : first(x), second(y) { }

s

Pairs are useful in many contexts. When using the AVTL, pairs can help to speed some communication
operations. For example, if permuting two vectors by the same permutation vector, it may be more efficient
to pack them into a single vector of pairs and then to perform the permutation. Of course, a user could
define an appropriate structure to hold the pair, and could then load the values into a vector of pairs using
theel ement wi se function with a new function object. After the permutation, the pairswould have to be
unpacked using another new function object.

This sequence of stepsis so frequent that helper functions are included inthe AVTL. The function zi p
accepts two vectors of any type as arguments and produces a vector of pairst.

pvect <doubl e> a;
pvect <conpl ex> b;

pvect <pai r <doubl e, conplex> > ¢ = zip(a, b);

A vector of pairs may be separated by using the unzi p functions. There are two: one returns the first
el ements, the other returns the second el ements.

pvect <doubl e> new_a = unzi pl(c);
pvect <conpl ex> new_b unzi p2(c);

Toreturnto the original problem that motivated including the pair type, assumethat there aretwo vectors
which are to be permuted the same way. The naive way to accomplish the permutation is to use two calls
to the per mut e function.

pvect <i nt > p; /'l The pernutation vector
pvect <doubl e> perma = permute(a, p);
pvect <conpl ex> permb pernmute(b, p);

Using the zip functions, a single per mut e will suffice, but additional data movement will have to be
peformed locally. The tradeoff may be beneficia if communication is very expensive (and it usualy is).
Theresulting code is only slightly more ugly than the original.

pvect <pai r <doubl e, conplex> > tenp = pernute(zip(a, b), p);
pvect <doubl e> perm a unzi pl(tenp);
pvect <conpl ex> perm b unzi p2(tenp);

'Guy Blelloch first named this operation “zip.”
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6 Algorithmson Vectors

The AVTL provides a large number of standard algorithms for vectors. Most of these are provided in
both segmented and unsegmented variants with function overloading used to differentiate between the two.
Rather than list al of the algorithms and their arguments, this section only lists the algorithm names and
gives a brief description of their function. The following two tables list the generic permutation and scan
algorithms provided by the library.

Generic Permutation Algorithms
Algorithm Unsegmented | Segmented | Comment
per mut e X X One-to-one permutation within a
vector or segment.
send X X Scatter
cond_send X X Conditional scatter
unper nut e X X Backwards permutation
get X X Gather
cond_get X X Conditional gather

Generic Scans and Reduction Algorithms

Algorithm Unsegmented | Segmented | Comment
op_scan X X Exclusive scan
op.i scan X X Inclusive scan
op_reduce X X Reduction

The pre-defined generic binops give names to the arithmetic operators of C. As described earlier, the
binops have an associated identity value, as listed in the table below. When one wishes to use a new type
with the vector template, it is sufficient to define the appropriate operator and to specialize theidentity value
if the default is not appropriate.

Pre-defined Generic Binop Classes

Name | Uses | dentity Comment
add_op | operator+ | zero_val | Addition
mul _op | operator* | one_val Multiplication
max_op | operator> | m n_val Maximum
nm n_op | operator< | max_val Minimum
and_op | operator & | one_val Boolean AND

or op | operator| | zero_val | Boolean OR
Xxor _op | operator”™ | zero_val | Exclusive-Or

fst_op zero_val | First (left) argument

scd_op zero_val | Second (right) argument

app_op Append arguments (a pseudo
binop)
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Thelibrary provides shorthand names for common variants of the scan and reduction functions. These
are merely pre-defined functionsthat make use of the generic algorithm and a particular generic binop. This
table reveds that some of the basic scan functions (such asi ndex) are in fact derived from the generic
scan algorithm.

Pre-defined Scan Functions
Algorithm | Unsegmented | Segmented | Comment
add_scan X X
mul _scan X X
max._scan X X
m n_scan X X
and_scan X X
or _scan X X
X0r _scan X X
copy_scan X X Copy a value across a vector or
segment.
i ndex X X Create a vector that enumerates
itssites.
rshl X X Right shift a vector by one
position.
Pre-defined Reductions
Algorithm | Unsegmented | Segmented | Comment
add_r educe X X
mul _r educe X X
max_r educe X X
m n_r educe X X
and_r educe X X
or _reduce X X
xor _reduce X X
max| oc X X Findthelocation of themaximum
valuein avector or segment.
m nl oc X X Findthelocation of themaximum
valuein avector or segment.

Thelibrary al so providestwo-phase communication operatorsthat separate the specification of acommu-
nication pattern from using that pattern to send data. Thefirst phaseis called communication “ compilation.”
When dataisrepeatedly sent in the same pattern, the total bandwidth achieved can often be greatly improved
by re-using a communication schedule.
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Pattern Compilation Functions
Algorithm Unsegmented | Segmented | Comment
per mut e_conp X X One-to-one permutation within a
vector or segment.
send_conp X X Scatter
cond_send_conp X X Conditional scatter
unper nut e_conp X X Backwards permutation
get conp X X Gather
cond_get _conp X X Conditional gather

The result of communication compilation is a data-object called a “schedule.” A schedule is used
with ther un function to actually movedata. Ther un function may aso be parameterized with combining
functionsto specialize how collisionsare handled at destination sites. Thisisthe mechanism used to provide
combining sendsin thelibrary.

Lastly, the library will provide a number of utility algorithms. These may be implemented on-top of
the base algorithms, but direct implementations often run faster. Most of the algorithms below are already
implemented, and the others will be soon.

Generic High-Level Functions
Algorithm Unsegmented | Segmented | Comment
rank X Rank the contents of a vector.
hash_i nsert X Insert elementsinto ahash vector.
hash_fi nd X Find elementsin a hash vector.
append X X Append vectors or segments.
di st X X Distribute a vector.
subseq X X Extract asubsequenceof avector.
shift X X
cshift X X
pack X Compress avector using a mask.
unpack X Decompress a vector using a

mask.

7 Interfacing with MPI

For the most part, implementing the vector operations using MPl was straightforward. MPI provides a
facility for describing messages of varying data types. The implementation of AVTL packs all messages
into buffers and simply sends them as bytes. For example, al per mut e functions are implemented by
gathering up data destined for each other processor and then sending it there in a single large message as a
stream of bytes.

Onedifficulty was encountered in the implementation of the scan and reduction algorithms. First of all,
MPI only defines inclusive scans because these do not require identity elements. To provide the necessary
exclusive scans, the AVTL implementsinter-processor scans that provide both the inclusive and exclusive
scan values.

The most difficult part of implementing the scans and reductions is in the interface to the combining
operations. MPI is a compiled library with generalized scans that are parameterized by a pointer to a
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combining function. The arguments handed to the combining function are specified by MPI. The AVTL
is built on function objects that have different argument lists from the MPI combining functions. Wrapper
functions were needed that applied the function object and arranged the arguments in the proper order
for MPI. Because these had to generalize to various types and function objects, they had to be template
functions.

The interface to the wrapper functions are dictated by MPI. The first two arguments are pointers to the
values to be combined, the third argument is alength, and the fourth is an MPI datatype. The uses of the
third and fourth arguments could not be modified, while thefirst two are for user data and must be the same
type. As mentioned earlier, the wrapper functions had to be parameterized by both value type and function
object. Thus, thistwo-way parameterization had to be accomplished in the type of a single argument.

Thefinal version of thewrapper functions(al overload thenameam scan_f unct i on inthelibrary)
parameterize the first two arguments (the value arguments) by anested template class that includes both the
value type and function object type. Thisimpliesthat the function object is included in the messages sent
between processors - even though it carries no datal Fortunately, an object with no data members occupies
only one byte. However, to maintain alignment, typically 4 or 8 bytes are wasted. These extra bytes are
sent by MPI and are never used. Thisoverhead isnegligible.

Requesting a pointer to the wrapper function causes the compiler to instantiate it. The use of nested
templates in this context confuses many compilers. In particular, the GNU C++ compiler (versions 2.5.8
through 2.6.2) cannot handlethiscorrectly. Other compilers(such asIBM’s xIC) handlethe nested templates
with no problem. With the increased use of templates and the growing desire for acceptance of the STL, |
expect most compilersto handle these constructsin the near future.

8 Performance Tests

This section presents some performance data collected from test programs implemented using the AVTL.
The two platforms examined are the IBM SP-2 and the Intel Paragon. Theintent is not to compare the two
machines (the POWER-2 processor of the SP-2 is much faster than the i860 of the Paragon), but to show
that the template based approach yields high performance.

Thisfirst implementation of the library uses very simple implementations for each of the vector ago-
rithms. Scans, for example, wereimplemented by using the inter-processor scan functions provided directly
by MPI. Permutationswere implemented so that each processor exchanges asinglelarge messagewith every
other processor. This approach was chosen simply to reduce development time. The intent of this library
was to experiment with the capabilities of template algorithms and to evaluate whether the compiler could
generate efficient code. | will point out the limitations of some of the implementations of the algorithms as
they are discussed by comparing the performance obtained to that of alibrary offering similar functionality:
the CVL library for MPI, implemented by Jonathon Hardwick at CMU [5].

The compilersused were xI C on the SP-2, and the GNU compiler (gcc, version 2.6.0) on the Paragon.
Full optimization was enabled for these tests. Sophisticated template usage is currently beyond the capa-
bilities of many C++ compilers, but the IBM compiler had no problem with any of the constructs of the
library. The GNU compiler, however, could not successfully instantiate functions with nested templates.
Thisisaknown problem that will be fixed in the future. To circumvent this problem, the few functions that
use nested templates (see “MPI Wrapper Functions” above) were flattened one level manually.

Elementwise addition and multiplication operations were timed first by measuring the performance
obtained when applying a binary operator to two vectors that are much longer than the avail able cache of
the machine. The rates reported in Table 1 were computed including the time to allocate the result vector,
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Table 1: Elementwise performance for a very long vector.

Machine | Addition | Multiplication
SP-2 16 Mflops 16 Mflops
Paragon | 2.5 Mflops 2.5 Mflops

and thus reflect rates that could be achieved in a program written using the AVTL. These figures reflect the
ability of the compiler to transform the generic el ementwise templates with template functionsinto efficient
loops. The rate achieved on the Paragon matches that reported by Hardwick. On the SP-2, | have observed
39 Mflops from the DAXPY mathematical library subroutine, and have been able to achieve 33 Mflops
by unrolling the loop four times by hand. | was surprised that the compiler could not achieve the same
performance, even with unrolling turned on.

The permutation functions were implemented so that each processor exchanges a single large message
with every other processor. Figure 1 shows the achieved bandwidth as a function of vector length on each
of the two machines. The SP-2 achievesits best bandwidth for vectors of 128K elements. At thislength, the
entire vector fitsin therather large cache of the processor. Figure 2 evaluates the scalability of the algorithm
and shows the achieved bandwidth as the number of processors increases. While the implementation is
straightforward, it suffers from alack of scalability, as the figure indicates.

At the beginning of the algorithm, each processor must sort the data elements by their destination
processor ID. Then, for each other processor, a message is assembled and sent to the other processor. The
problem with this approach is that the processors alternately spend long periods of time computing locally,
and then all attempt to send large messages at approximately the same time. The network is first unused,
and then saturated. Increased asynchrony can help to spread the data traffic out more evenly.

Hardwick noted this problem in his MPI implementation of the CVL library. He chose to send many
small messages asynchronously and achieves performance roughly double that of the AVTL for permute
operations on the Paragon. In the future, the AVTL may adopt such an agorithm.

The AVTL provides compiled communication algorithms. These separate the specification of a com-
munication pattern with the actual movement of the data. While actual times are not reported here, in the
current implementation the compilation phase generally takes as much time as a single per mut e. Thus,
if apattern isreused only twice, it pays to precompile the pattern. Figure 3 shows the bandwidth achieved
for both aregular send on the SP-2 and the r un function for a compiled pattern. Figure 4 compares the
performance of compiled communication to a permute as the number of processorsisincreased. Theinitia
spikeis probably dueto thefact that the data to permute and the compiled communication fit into the cache
for very small vector sizes.

Figures 5 and 6 compare a regular permute to the bandwidth achieved in a compiled communication
operation. In all cases the achieved bandwidth is approximately larger by afactor of two.

Figures 7 and 8 show the performance of the add_scan function on both the IBM SP-2 and the Intel
Paragon. | was able to verify that the implementations of MPI on both machines do not use alogarithmic
combining tree to implement their scan function, but instead use a linear chain! This fact helps to explain
why the performance degrades as severely as it does for large numbers of processors. Hopefully, a better
algorithm will be used in future versions of MPI.
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Table 2: Performance of the NAS Conjugate Gradient (CG) benchmark implemented using the AVTL.

Machine Procs | Normal (sec) | Compiled (sec)
SP-2 16 169.0 57.0
32 715 28.6
Paragon 16 7304 316.1
32 320.7 111.6

8.1 An Application

Using the AVTL | wrote a version of the NAS Conjugate Gradient benchmark test and ran it on the SP-2
and the Paragon. Having written the code to use aregular get function, it was not difficult to modify it to
use compiled communication instead. Table 2 presents the performance obtained by thisimplementation.

Quite honestly, the performance achieved is not on par with the best implementations provided by the
computer vendorsfor thisbenchmark. My simpleimplementation did not attempt to minmize the amount of
inter-processor communication in any way. In fact, the structure of the matrix is nearly uniformly random,
so that all processors send most of their data off processor. Performance could be improved by rearranging
the matrix using a heuristic such as recursive spectra bisection [10]. However, | should point out that the
the implementation using the AVTL is only about one page of code (excluding setting up the test matrix)
and was coded in about thirty minutes.

9 Conclusions

This paper presented an experiment in the design of a template-based collection library for distributed
address space parallel computers. The design of the library stresses the orthogonality of element types,
collection types, algorithms, and algebraic combining functions. By carefully differentiating between the
roles of each of these the library achieves genericity, efficiency and extensibility to user-defined data types.

The development of quality C++ compilers has been fueled by the PC and workstation markets. So-
phisticated template usage is only now beginning to be supported, largely driven by the desire for the
acceptance of the STL. This technology can also be beneficially employed by high-performance parallel
computer programmers for the encapsulation of generic paralel agorithms. Just as most MPPs are now
using commodity microprocessors whose devel opment was driven by the workstation market (IBM SP-2,
Cray T3D, Convex Examplar, Intel Paragon, Thinking Machines CM-5), compiler technology driven by
those same large markets should be leveraged to enhance parallel programming productivity.
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A Code Examples

The examples in this appendix illustrate the simplicity and extensibility of the library. The first example
computes Pi by using a simple integration scheme and shows the entire program — including runtime
initialization. The second example illustrates the extensibility of the library. A single generic sparse
matrix-vector multiplication routine is extended to a blocked version simply by defining two new classes.

A.1 Computing Pi

The first example illustrates a simple program that computes 7 by integrating f(z) = z%)l from O to 1.
This code makes use of an instance of the classf _of _x as afunction object (sometimes called a functor)
with saved state. The constructor for the class produces an integrand function customized for a particular
value of h — the width of the rectangle. The function accepts an index value, computes its = coordinate,

and returns the area of the rectangle at that coordinate. The rest of the program is straightforward.

/|l Exanmple of a programto conpute Pl using the AVTL.
#i ncl ude <stdlib. h>

#i ncl ude <uni std. h> /1 for |BM SP2
#i ncl ude "pvect.h" /1 Anrelia Vector Tenplate Lib
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class f_of _x {
doubl e h;
public:

f_of _x(double height) : h(height) { }
doubl e operator()(int i) {

double x = (i + 0.5) * h;
return (4.0 * h) / (x * x + 1.0);

}
}
doubl e
conpute_pi (int n)
{
doubl e h=1.0/ n;
pvect <i nt > i = index(n);
pvect <doubl e> rect = elenentw se(f_of _x(h), pvect<double>(), i);
return add_reduce(rect);
}
int
mai n(i nt argc, char **argv)
{
_mem = new am nemngnt (argc, argv); // parallel runtine
doubl e pi = conpute_pi (100000);
printf("Pi is %\n", pi);
delete nmem // termnate runtine
}

A.2 Sparse matrix-vector multiplication

This second example showshow auser can writeageneric function and extend it to new types. Thefunction
mvul t performs a sparse matrix-vector multiply operation for a matrix stored in compressed sparse row
format. The elements of each row are stored contiguously along with an integer describing the column
of each element. A segment descriptor divides the elements and column labels into rows. The sparse
matrix-vector multiplication function follows, along with a code fragment showing an example of its usage
where the elements of the matrix and vector are simple floating point values.

templ ate <class A class V>

pvect <V> nmvnul t (pvect <A> a, pvect<int> cols, pvect<int> seg, pvect<V> v)
/'l (a,cols,seg) describe a sparse matrix in conpressed sparse row format.
/Il v is the vector.
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pvect<V> g = get(v, cols);

pvect<V> p = g * a;
pvect<V> r = add_reduce(p, seq);
return r;

}
/1 Code fragment of usage
pvect <doubl e> mata = ... omtted ...
pvect <doubl e> veca = ... omtted ...
pvect<int> cols = ... omtted ...
pvect<i nt > segs = ... omtted ...

pvect <doubl e> resa nm/mul t (mata, cols, segs, veca);

Many sparse codes can benefit by using blocked algorithms. It is possible to extend the above nvmul t
function to operate with a blocked sparse matrix merely by defining new element types. In this case, the
e ements of the matrix will be dense blocks, and the elements of the vector will be block vectors. The code
that follows shows the declarations of the block matrix and block vector classes, as well as the addition and
multiplication operators required. Function mvirul t isnot modified in any way, but automatically extends
to the new types.

cl ass bl ockmat {
public:
int val s[5][5];
bl ockmat () { }
bl ockmat (doubl e init)
/1 Initialize to scaled identity matrix

{
for (int r =0; r <5; r++)
for (int ¢ =0; ¢ < 5; c++4)
vals[r][c] =r ==c¢c ? init : 0.0;
}
b

cl ass bl ockvec {
public:

int val s[5];

bl ockvec() { }
bl ockvec(double init)

{
for (int i =0; i < 5; i++4)
val s[i] = init;
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bl ockvec operator*(bl ockvec v, blockmat a)
/1 Multiply a block vector by a block matrix.

{
bl ockvec x(0.0);
for (int ¢ =0; ¢c < 5; c++4)
for (int r =0; r <5; r++)
x.vals[c] += a.vals[r][c] * v.vals[r];
return x;
}

bl ockvec operator+(bl ockvec a, bl ockvec b)
/1 Add two bl ock vectors.

{
bl ockvec c;
for (int i =0; i <5; i++4)

c.vals[i] = a.vals[i] + b.vals[i];

return c;

}
/1 Code fragment of usage
pvect <bl ockmat> matb = ... omtted ...
pvect <bl ockvec> vecb = ... omtted ...
pvect<int> cols = ... omtted ...
pvect<i nt > segs = ... omtted ...

pvect <bl ockvec> resb nmvmul t (mat b, cols, segs, vech);

This call tomvnul t will be instantiated for a block matrix and a block vector. With the appropriate
model of matrix elements, this generic function applies to scalar elements or dense blocks. This short
example is a dramatic demonstration of the code reuse that is possible with generic libraries.
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