
The Matrix Template Library:
A Generic Programming Approach

to High Performance Numerical Linear Algebra
�

Jeremy G. Siek Andrew Lumsdaine

Laboratory for Scientific Computing
Department of Computer Science and Engineering

University of Notre Dame

Abstract. We present a unified approach for expressing high performance nu-
merical linear algebra routines for large classes of dense and sparse matrices. As
with the Standard Template Library [10], we explicitly separate algorithms from
data structures through the use of generic programming techniques. We conclude
that such an approach does not hinder high performance. On the contrary, writing
portable high performance codes is actually enabled with such an approach be-
cause the performance critical code sections can be isolated from the algorithms
and the data structures. We also tackle the performance portability problem for
particular architecture dependent algorithms such as matrix-matrix multiply. Re-
cently, code generation systems (PHiPAC [3] and ATLAS [15]) have been created
to customize the algorithms according to architecture. A more elegant approach
is to use template metaprograms [18] to allow for variation. In this paper we in-
troduce the Basic Linear Algebra Instruction Set (BLAIS), a collection of high
performance kernels for basic linear algebra.

1 Introduction

The traditional approach to writing basic linear algebra routines is a combinatorial af-
fair. There are typically four precision types that need to be handled (single and dou-
ble precision real, single and double precision complex), several dense storage types
(general, banded, packed), a multitude of sparse storage types (13 in the Sparse BLAS
Standard Proposal [1]), as well as row and column orientations for each matrix type.
To provide a full implementation one might need to code literally hundreds of versions
of the same routine! It is no wonder the NIST implementation of the Sparse BLAS
contains over 10,000 routines and an automatic code generation system [16].

To make matters worse, the performance of codes such as matrix-matrix multiply
is highly sensitive to the memory hierarchy characteristics, so writing portable high-
performance codes is even more difficult. It is typically necessary to use a code gen-
eration system on top of C or Fortran in order to get the flexibility needed for register
blocking according to computer architecture.

In this paper we apply the fundamental generic programming approaches used by
the Standard Template Library (STL) to the domain of numerical linear algebra. The
resulting library, which we call the Matrix Template Library (MTL) provides compre-
hensive functionality with a small number of of fundamental algorithms, while at the

�

This work was supported by NSF grants ASC94-22380 and CCR95-02710.

same time achieving high performance. We also explore the use of template metapro-
grams in the construction of the BLAIS kernels, which provide an elegant solution to
portable high performance for matrix-matrix multiply and other blocked codes.

The Matrix Template Library [11] is in its second generation, and has been com-
pletely rewritten using generic programming techniques.

2 Generic Programming

The principal idea behind the STL is that many algorithms can be abstracted away
from the particular data structures on which they operate. Algorithms typically need the
abstract functionality of being able to traverse through a data structure and access its
elements. If data structures provide a standard interface for traversal and access, generic
algorithms can be mixed and matched with data structures (called containers in STL).
This interface is realized through the iterator (sometimes called a generalized pointer).

Abstractly, linear algebra operations also consist of traversing through vectors and
matrices. Vector operations fit neatly into the generic programming approach. The STL
already defines several generic algorithms for vectors, such as inner product().
Extending these generic algorithms to encompass the rest of the common Level-1 BLAS
[9] is a trivial matter.

template <class Row2DIter, class IterX, class IterY> void
matvec::mult(Row2DIter i, Row2DIter iend, IterX x, IterY y) {
typename Row2DIter::value_type::const_iterator j;
while (not_at(i, iend)) {
j = (*i).begin();
typename IterY::value_type tmp(0);
while (not_at(j, (*i).end())) {
tmp += *j * x[j.index()];
++j;

}
y[i.index()] = tmp;
++i;

}
}

Fig. 1. Simplified example of a generic matrix-vector product.

Matrix operations are slightly more complex, since the elements are arranged in a 2-
dimensional format. The MTL processes matrices as if they are containers of containers
(note that the matrix implementations are typically not actual containers of containers).
The matrix algorithms are coded in terms of iterators and two-dimensional iterators.
A Row2DIter can traverse the rows of a matrix, and produces a row vector when
dereferenced. The iterator for the row vector can then be used to access the individual

matrix elements. The example in Fig. 1 shows how one can write a generic matrix-
vector product.

Function Name Operation Function Name Operation
Vector Algorithms Vector Vector
set(x,alpha) ������� copy(x,y) � ���
scale(x,alpha) �	���
� swap(x,y) ��� �
s = sum(x) ��� � � � ele mult(x,y,z) � � ��� �
s = one norm(x) ��� ��� � � � ele div(x,y,z) � � ��� �
s = two norm(x) ����� � ��������� add(x,y) � ��� � �
s = inf norm(x) � max � � � � s = dot(x,y) ����!#" �
i = find max abs(x) $ � index of max � ��� � s = dot conj(x,y) ��� ! "&%�
s = max(x) � max �'� � �
s = min(x) � min �'� � �
Matrix Algorithms Matrix Vector
set(A, alpha) (��� mult(A,x,y) � � (*) �
scale(A,alpha) (��� (mult(A,x,y,z) � � (*) �+� �
set diag(A,alpha) (�,����� tri solve(T,x,y) � ��-+.0/) �
s = one norm(A) ��1324� � �5�76 � 2 � 6 � � rank one(x,A) (���)	� !	� (
s = inf norm(A) ��1324� 6 �5� � � 24� 6 � � rank two(x,y,A) (���)3� ! �
transpose(A) (� (! �3) � ! � (
Matrix Matrix
copy(A,B) 8 � (swap(A,B) 89�:(
add(A,C) ; � (� ; ele mult(A,B,C) ; � 8<�=(
mult(A,B,C) ; � (*)#8 mult(A,B,C,E) > � (*)#8 � ;
tri solve(T,B,C) ; �?- .�/)38

Table 1. MTL linear algebra operations.

3 MTL Algorithms

Table 1 lists the principal algorithms covered by MTL. This list seems sparse, but a
large number of functions are indeed provided through the combination of the above al-
gorithms with the strided(), scaled(), and trans() adapter functions. Fig. 2
shows how this is done with a matrix-vector multiply and with a scaled vector assign-
ment.

The unique feature of the Matrix Template Library is that, for the most part, each
of the algorithms is implemented with just one template function. Just one algorithm
is used whether the matrix is sparse, dense, banded, single precision, double, complex,
etc. From a software maintenance standpoint, the reuse of code gives MTL a significant
advantage over the BLAS [4, 5] or even other object-oriented libraries like TNT [14]
(which has different algorithms for different matrix formats).

The generic algorithm code reuse results in the MTL having 10 times fewer lines of
code than the netlib Fortran BLAS while providing greater functionality and achieving

// y <- A * alpha x
matvec::mult(trans(A), scaled(x, alpha), strided(y,incy));
// y <- alpha x
vecvec::copy(scaled(x, alpha), y);

Fig. 2. Transpose, Scaled, and Strided Adapters

generally better performance, especially for level 2 and 3 operations. The MTL has
8,284 lines of code for the algorithms and 6,900 lines of code for dense containers, for
a total of 15,184 lines of code. The Fortran BLAS total 154,495 lines of code, an order
of magnitude more.

4 MTL Components

The Matrix Template Library defines a set of data structures and other components for
representing linear algebra objects. An MTL matrix is constructed with layers of com-
ponents. Each layer is a collection of classes that are templated on the lower layer. The
bottom most layer consists of the numerical types (float, double, etc). The next
layers consist of 1-D containers followed by 2-D containers. The 2-D containers are
wrapped up with an orientation, which in turn is wrapped with a shape. A complete
MTL matrix type typically consists of a templated expression in the form shape <
orientation < twod < oned < num type > > > >. For example, an up-
per triangular matrix would be defined as triangle< column< dense2D< double
> >, upper>. Some 2-D containers also subsume the 1-D type, such as the contigu-
ous dense2D container.

Matrix Orientation The row and column adapters map the major and minor aspects
of a matrix to the corresponding row or column. This technique allows the same code for
data structures to provide both row and column orientations of the matrix. 2-D contain-
ers must be wrapped up with one of these adapters to be used in the MTL algorithms.

Matrix Shape Matrices can be categorized into several shapes: general, upper trian-
gular, lower triangular, symmetric, Hermitian, etc. The traditional approach to handling
the algorithmic differences due to shape is to have a separate function for each type. For
instance, in the BLAS we have a GEMV, SYMV, TRMV, etc. The MTL instead uses
different data structures for each shape, with the banded, triangle, symmetric,
and hermitianmatrix adapters. It is the responsibility of these adapters to make sure
that they work with all of the MTL generic algorithms. The MTL philosophy is to use
smarter data structures to allow for fewer and simpler algorithms.

5 The High Performance Layer

We have presented many levels of abstraction, and a set of unified algorithms for a
variety of matrices, but this matters little if high performance can not be achieved. Tem-

plate based programming coupled with modern compilers such as Kuck and Associates
(KAI) C++ [7] provide several mechanisms for high-performance.

Static Polymorphism The template facilities in C++ allow functions to be selected at
compile-time based on data type. This provides a mechanism for abstraction which
preserves high performance. Dynamic (run-time) dispatch is avoided, and the template
functions can be inlined just as regular functions. This ensures that the numerous small
function calls in the MTL (such as iterator increment operators) introduce no extra
overhead.

Lightweight Object Optimization The generic programming style introduces a large
number of small objects into the code. This incurs a performance penalty because the
presence of a structure can interfere with other optimizations, including the mapping
of the individual data items to registers. This problem is solved with small object op-
timization, also know as scalar replacement of aggregates [12], which is performed by
the KAI C++ compiler.

Automatic Unrolling Modern compilers can do a great job of unrolling loops and
scheduling instructions, but typically only for specific (recognizable) cases. There are
many ways, especially in C and C++ to interfere with the optimization process. The
abstractions of the MTL are designed to result in code that is easy for the compiler to
optimize. Furthermore, the iterator abstraction makes inter-compiler portability possi-
ble, since it encapsulates how looping is performed.

Algorithmic Blocking The bane of portable high performance numerical linear algebra
is the need to tailor key routines to specific execution environments. For example, to ob-
tain high performance on a modern microprocessor, an algorithm must properly exploit
the associated memory hierarchy and pipeline architecture (typically through careful
loop blocking and structuring). Ideally, one would like to express high performance
algorithms in a portable fashion, but there is not enough expressiveness in languages
such as C or Fortran to do so. Recent efforts (PHiPAC [3], ATLAS [15]) have resorted
to going outside the language, i.e., to code generation systems, in order to gain this kind
of flexibility. In the following sections we present the Basic Linear Algebra Instruction
Set (BLAIS), a library specification that takes advantage of certain features of the C++
language to express high-performance loop structures at a high level.

5.1 The Basic Linear Algebra Instruction Set (BLAIS)

The BLAIS specification contains fixed size algorithms with functionality equivalent
to that of the Level-1, Level-2, and Level-3 BLAS [4, 5, 9]. The BLAIS routines them-
selves are implemented using the Fixed Algorithm Size Template (FAST) library, which
contains general purpose fixed-size algorithms equivalent in functionality to the generic
algorithms in the STL. The thin BLAIS routines merely map the generic FAST algo-
rithms into fixed-size mathematical operations. There is no added overhead in the layer-
ing because all the function calls are inlined. Using the FAST library allows the BLAIS
routines to be expressed in a simple and elegant fashion. Note that the intended use of

the BLAIS routines is to carry out the register blocking within a larger algorithm. This
means the BLAIS routines handle only small matrices, and therefore avoid the problem
of excessive code bloat.

In the following sections, we describe the implementation of the FAST algorithms
and then show how the BLAIS are constructed from them. Next, we demonstrate how
the BLAIS can be used as high-level instructions (kernels) to handle the register level
blocking in a matrix-matrix product. Finally, experimental results show that the per-
formance obtained by our approach can equal and even exceed that of vendor-tuned
libraries.

Fixed Algorithm Size Template (FAST) Library The FAST Library includes generic al-
gorithms such as transform(), for each(), inner product(), and accum-
ulate() that are found in the STL. The interface closely follows that of the STL.
All input is in the form of iterators. The only difference is that the loop-end iterator
is replaced by a count template object. The example shown in Fig. 3 demonstrates the
use of both the STL and FAST versions of transform() to realize an AXPY-like
operation (���������). The first1 and last1 parameters are iterators for the first
input container (indicating the beginning and end of the container, respectively). The
first2 parameter is an iterator indicating the beginning of the second input container.
The result parameter is an iterator indicating the start of the output container. The
binary op parameter is a function object that combines the elements from the first
and second input containers into the result containers.

int x[4] = {1,1,1,1}, y[4] = {2,2,2,2};

// STL
template <class InIter1, InIter2, OutIter, BinaryOp>
OutIter transform(InIter1 first1,InIter1 last1,InIter2 first2,

OutIter result,BinaryOp binary_op);

transform(x, x + 4, y, y, plus<int>());

// FAST
template <int N, class InIter1, class InIter2,

class OutIter, class BinOp>
OutIter fast::transform(InIter1 first1, cnt<N>,InIter2 first2,

OutIter result, BinOp binary_op);

fast::transform(x, cnt<4>(), y, y, plus<int>());

Fig. 3. Example usage of STL and FAST versions of transform().

The difference between the STL and FAST algorithms is that STL accommodates
containers of arbitrary size, with the size being specified at run-time. FAST also works
with containers of arbitrary size, but the size is fixed at compile time. In Fig. 4, we

show how the FAST transform() routine is implemented. We use a tail-recursive
algorithm to achieve complete unrolling — there is no actual loop in the FAST trans-
form(). The template-recursive calls are inlined, resulting in a sequence of N copies
of the inner loop statement. This technique (sometimes called template metaprograms)
has been used to a large degree in the Blitz++ Library [19].

// The general case
template <int N, class InIter1, class InIter2,

class OutIter, class BinOp>
inline OutIter
fast::transform (InIter1 first1, cnt<N>, InIter2 first2,

OutIter result, BinOp binary_op) {
*result = binary_op (*first1, *first2);
return transform(++first1, cnt<N-1>(), ++first2,

++result, binary_op);
}
// The N = 0 case to stop template recursion
template<class InItr1,class InItr2,class OutItr,class BinOp>
inline OutItr
fast::transform (InItr1 first1, cnt<0>, InItr2 first2,

OutItr result, BinOp binary_op) {
return result; }

Fig. 4. Definition of FAST transform().

BLAIS Vector-Vector Operations Fig. 5 gives the implementation for the BLAIS vector
add() routine, and shows an example of its use. The FAST transform() algorithm
is used to carry out the vector-vector addition as it was in the example above.

The comments on the right show the resulting code after the call to add() is
inlined. The scl() function used above demonstrates the purpose of the scale -
iterator. The scale iterator multiplies the value from x by a when the itera-
tor is dereferenced within the add() routine. This adds no extra time or space overhead
due to inlining and lightweight object optimizations. The scl(x, a) call automati-
cally creates the proper scale iterator out of x and a.

BLAIS Matrix-Vector Operations The BLAIS matrix-vector multiply implementation
is depicted in Fig. 6. The algorithm simply carries out the vector add operation for the
columns of the matrix. Again a fixed depth recursize algorithm is used, which becomes
inlined by the compiler.

BLAIS Matrix-Matrix Operations The BLAIS matrix-matrix multiply is implemented
using the BLAIS matrix-vector operation. The code looks very similar to the matrix vec-
tor multiply, except that there are three integer template arguments (M, N, and K), and
the inner “loop” contains a call to matvec::mult() instead of vecvec::add().

// Definition
template <int N> struct vecvec::add {

template <class Iter1, class Iter2> inline
vecvec::add(Iter1 x, Iter2 y) {
typedef typename iterator_traits<Iter1>::value_type T;
fast::transform(x, cnt<N>(), y, y, plus<T>());

}};
// Example use
double x[4], y[4]; // y[0] += a * x[0];
fill(x, x+4, 1); fill(y, y+4, 5); // y[1] += a * x[1];
double a = 2; // y[2] += a * x[2];
vecvec::add<4>(scl(x, a), y); // y[3] += a * x[3];

Fig. 5. Definition an Use of BLAIS add().

5.2 A Configurable Recursive Matrix-Matrix Multiply

A high performance matrix-matrix multiply code is highly sensitive to the memory
hierarchy of a machine, from the number of registers to the levels and sizes of cache.
To obtain the highest performance, algorithmic blocking must be done at each level of
the memory hierarchy. A natural way to formulate this is to write the matrix-matrix
multiply in a recursive fashion, where each level of recursion performs blocking for a
particular level of the memory hierarchy.

We take this approach in the MTL algorithm. The size and shapes of the blocks at
each level are determined by the blocking adapter. Each adapter contains the informa-
tion for the next level of blocking. In this way the recursive algorithm is determined by
a recursive template data-structure (which is set up at compile time). The setup code
for the matrix-matrix multiply is show in Fig. 7. This example blocks for just one level
of cache, with 64 x 64 sized blocks. The small 4 x 2 blocks fit into registers. Note that
these numbers would normally be constants that are set in a header file.

The recursive algorithm is listed in Fig. 8. The bottom most level of recursion is
implemented with a separate function that uses the BLAIS matrix-matrix multiply, and
“cleans up” the leftover edge pieces.

5.3 Optimizing Cache Conflict Misses

Besides blocking, another important optimization that can be done with matrix-matrix
multiply code is to perform block copies. Typically utilization of the level-1 cache is
much lower than one might expect due to cache conflict misses. This is especially ap-
parent in direct mapped and low associativity caches. The way to minimize this problem
is to copy the current block of matrix

�
into a contiguous section of memory [8]. This

allows the code to use blocking sizes closer to the size of the L-1 cache without inducing
as many cache conflict misses.

It turns out that this optimization is straightforward to implement in our recursive
matrix-matrix multiply. We already have block objects (submatrices A block, *B j,

// General Case
template <int M, int N>
struct mult {

template <class AColIter, class IterX, class IterY> inline
mult(AColIter A_2Diter, IterX x, IterY y) {
vecvec::add<M>(scl((*A_2Diter).begin(), *x), y);
mult<M, N-1>(++A_2Diter, ++x, y);

}
};
// N = 0 Case
template <int M>
struct mult<M, 0> {

template <class AColIter, class IterX, class IterY> inline
mult(AColIter A_2Diter, IterX x, IterY y) {
// do nothing

}
};

Fig. 6. BLAIS matrix-vector multiplication.

template <class MatA, class MatB, class MatC>
void matmat::mult(MatA& A, MatB& B, MatC& C) {

MatA::RegisterBlock<4,1> A_L0; MatA::Block<64,64> A_L1;
MatB::RegisterBlock<1,2> B_L0; MatB::Block<64,64> B_L1;
MatC::CopyBlock<4,2> C_L0; MatC::Block<64,64> C_L1;
matmat::__mult(block(block(A, A_LO), A_L1),

block(block(B, B_L0), B_L1),
block(block(C, C_L0), C_L1));

}

Fig. 7. Setup for the recursive matrix-matrix product.

and *C j) in Fig. 8. We modify the constructors for these objects to make a copy to a
contiguous part of memory, and the destructors to copy the block back to the original
matrix. This is especially nice since the optimization does not clutter the algorithm
code, but instead the change is encapsulated in the copy block matrix class.

6 Performance Experiments

The compilers used were Kuck and Associates C++ [7] (for C++ to C translation), and
the Sun Solaris C compiler with maximum available optimizations. The experiments
were run on a Sun UltraSPARC 170E. Fig. 9 shows the sparse matrix vector perfor-
mance for MTL, SPARSKIT [17] (Fortran), NIST [16](C), and TNT (C++). The sparse
matrices used are from the MatrixMarket [13] collection. The matrix-matrix multiply

template <class MatA, class MatB, class MatC>
void matmat::__mult(MatA& A, MatB& B, MatC& C) {
A_k = A.begin_columns(); B_k = B.begin_rows();
while (not_at(A_k, A.end_columns())) {
C_i = C.begin_rows(); A_ki = (*A_k).begin();
while (not_at(C_i, C.end_rows())) {

B_kj = (*B_k).begin(); C_ij = (*C_i).begin();
MatA::Block A_block = *A_ki;
while (not_at(B_kj, (*B_k).end())) {

__mult(A_block, *B_kj, *C_ij);
++B_kj; ++C_ij;

} ++C_i; ++A_ki;
} ++A_k; ++B_k;

}
}

Fig. 8. A recursive matrix-matrix product algorithm.

performance for MTL, the Sun Performance Library, TNT, and the Netlib Fortran BLAS
is shown in Fig. 10.

7 Supplemental Libraries

The Matrix Template Library provides a nice foundation for constructing portable high
performance libraries. We have created two such libraries, the ITL and the BLAS. The
Iterative Template Library (ITL) is a collection of sophisticated iterative solvers similar
to the Iterative Methods Library (IML)[6]. It calls the MTL for its basic linear algebra
operations. We have implemented the standard BLAS routines using the MTL data
structures and algorithms. Our initial tests show that the performance is comparable
(within

�����
) to the Fortran BLAS and vendor-tuned BLAS.

Additionally, we have provided an MTL interface to LAPACK [2], so that users of
MTL have a convenient way to access the LAPACK functionality.

8 Conclusion

Recent attempts to create portable high performance linear algebra routines have re-
lied upon specialized code generation scripts in order in provide enough flexibility in
C and Fortran codes. In this paper we have shown that C++ has enough expressiveness
to allow codes to be reconfigured for particular architectures by merely changing a few
constants. In addition, we have found that advanced C++ compilers can still aggres-
sively optimize in the presence of the powerful MTL abstractions, producing code that
matches or exceeds the performance of hand coded C and vendor-tuned libraries.

10
0

10
1

10
2

0

10

20

30

40

50

60

70

Average non zeroes per row

M
flo

ps

MTL
SPARSKIT
NIST
TNT

Fig. 9. Sparse matrix-vector multiply.

Acknowledgments

This work was supported by NSF grants ASC94-22380 and CCR95-02710. The au-
thors would like to express their appreciation to Tony Skjellum and Puri Bangalore for
numerous helpful discussions.

References

1. BLAS standard draft chapter 3: Sparse BLAS. Technical report, Basic Linear Algebra Sub-
programs Technical Forum, December 1997.

2. E. Anderson, Z. Bai, C. Bischoff, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A portable linear algebra pack-
age for high-performance computers. In Proceedings of Supercomputing '90, pages 1–10.
IEEE Press, 1990.

3. J. Bilmes, K. Asanovic, J. Demmel, D. Lam, and C.-W. Chin. Optimizing matrix multiply
using PHiPAC: A portable, high-performance, ANSI C coding methodology. Technical Re-
port CS-96-326, University of Tennessee, May 1996. Also available as LAPACK working
note 111.

4. J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A set of level 3 basic linear algebra
subprograms. ACM Transactions on Mathematical Software, 16(1):1–17, 1990.

5. J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. Algorithm 656: An extended
set of basic linear algebra subprograms: Model implementations and test programs. ACM
Transactions on Mathematical Software, 14(1):18–32, 1988.

6. Roldan Pozo Jack Dongarra, Andrew Lumsdaine and Karin A. Remington. Iterative Methods
Library Reference Guide, v. 1.2 edition, 1997.

10
1

10
2

10
3

0

50

100

150

200

250

Matrix Size

M
flo

ps

MTL
Sun Perf Lib
Fortran BLAS
TNT

Fig. 10. General matrix-matrix multiply.

7. Kuck and Associates. Kuck and Associates C++ User's Guide.
8. Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance and

optimizations of blocked algorithms. In ASPLOS IV, April 1991.
9. C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for

fortran usage. ACM Transactions on Mathematical Software, 5(3):308–323, 1979.
10. Meng Lee and Alexander Stepanov. The standard template library. Technical report, HP

Laboratories, February 1995.
11. Brian C. McCandless and Andrew Lumsdaine. The role of abstraction in high-performance

computing. In Scientific Computing in Object-Oriented Parallel Environments. ISCOPE,
December 1997.

12. Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

13. NIST. MatrixMarket. http://gams.nist.gov/MatrixMarket/.
14. Roldan Pozo. Template Numerical Toolkit (TNT) for Linear Algebra. National Insitute of

Standards and Technology.
15. Jack J. Dongarra R. Clint Whaley. Automatically tuned linear algebra software (ATLAS).

Technical report, University of Tennessee and Oak Ridge National Laboratory, 1997.
16. Karen A. Remington and Roldan Pozo. NIST Sparse BLAS User's Guide. National Institute

of Standards and Technology.
17. Youcef Saad. SPARSKIT: a basic tool kit for sparse matrix computations. Technical report,

NASA Ames Research Center, 1990.
18. Todd Veldhuizen. Using C++ template metaprograms. C++ Report, May 1995.
19. Todd Veldhuizen and M. Ed Jernigan. Will C++ be faster than Fortran. In Scientific Com-

puting in Object-Oriented Parallel Environments. ISCOPE, December 1997.

