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Abstract

The dimension exchange method is a distributed load balancing method for point-to-point net-
works. We add a parameter, called the ezchange parameler, to the method to control the splitting
of load between a pair of directly connected processors, and call this parameterized version the
generalized dimension exchange (GDE) method. The rationale for the introduction of this pa-
rameter is that splitting the workload into equal halves does not necessarily lead to an optimal
result (in terms of the convergence rate) for certain structures. We carry out an analysis of this

new method, emphasizing on its termination aspects and potential efficiency.

Given a specific structure, one needs to determine a value to use for the exchange parameter
that would lead to an optimal result. To this end, we first derive a sufficient and necessary con-
dition for the termination of the method. We then show that equal splitting, proposed originally
by others as a heuristic strategy, indeed yields optimal efficiency in hypercube structures. For
chains, rings, meshes, and tori, however, optimal choices of the exchange parameter are found to

be closely related to the scale of these structures.

Finally, to further investigate the potential of the GDE method, we extend it to allow exchange
parameters of different values to be used over the set of edges, and based on this extension, we

compare the GDE method with the diffusion method.
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1 Introduction

In distributed systems, load balancing is an essential technique for spreading out the total work-
load evenly across the available processors to achieve better performance of distributed compu-
tations. Load balancing schemes can be categorized into static and dynamic. In this study, we
restrict our attention to dynamic load balancing as it appears to have a greater potential than
its static counterpart for producing better results. With dynamic load balancing, workload may
migrate from one processor to another during runtime. Detailed discussions and surveys of load

balancing in distributed systems can be found in [11, 3].

In the past, numerous dynamic load balancing schemes with different characteristics have been
proposed, such as the bidding algorithm [9, 21, 23], the drafting algorithm [18], and the gradient-
model algorithm [16, 17]. Most of them were evaluated using simulation in which the performance
of the proposed algorithm is dependent upon a number of parameters that characterize the un-
derlying system and computational model. To thoroughly evaluate and compare these algorithms
requires a careful selection of a number of combinations of values for these parameters, which
could turn out to be a non-trivial task [5, 15, 8]. Therefore, simulation alone is not sufficient for a
thorough understanding of a load balancing policy, especially of its more fundamental properties.
In fact, the fundamental properties, such as termination, potential efficiency and stability, of a
load balancing policy can be studied more effectively using a purely theoretical approach. Some
important theoretical works have surfaced in recent years. Cybenko, and later on Bertsekas and
Tsitsiklis, analyzed two methods for dynamic load balancing, the diffusion method and the di-
mension exchange method, using matrix iterative approach, and derived a sufficient and necessary
condition for their termination [6, 2]. Kimura and Ichiyoshi investigated the optimal efficiency
of a multi-level schemes for OR-parallel programs using probablity theory [14]. Casavant devel-
oped a tool, called communicating finite automata, which is a combination of finite automata and
directed graphs, to formally model the general behavior of distributed scheduling [4]. Stankovic
addressed the issue of stability of distributed scheduling [22]. Among them, Cybenko’s matrix
iterative approach stands out as being most suited for analyzing the efficiency and termination
properties of a load balancing policy, which are the properties we are most interested in. In this

study, we concentrate on the dimension exchange method and its analysis in a fashion similar to
that of [6, 13].

In the dimension exchange method [20, 6, 13], load balancing happens in one dimension at a
time, where a dimension corresponds to some subset of all pairs of directly connected processors,
and the result is an equal distribution of workload between every pair of processors in this sub-
set. Every dimension would take its turn, and the whole process repeats until some satisfactory
balanced state is reached. Application of this method in hypercubes was studied empirically by
Ranka et al. [20] and analyzed by Cybenko [6]. Later on, Hosseini et al. extended it for arbitrary
structures using the technique of edge-coloring of graphs [13]. Unfortunately, none of these works
addressed the fact that equal splitting of the workload between two directly connected processors
at each step does not necessarily lead to an optimal efficiency (the time needed to converge to
a balanced state) for certain structures. For some structures, non-equal splitting of workload

between a pair of processors would yield better results. Section 4 of this paper shows that this is



the case for the chain, the ring, the mesh, and the torus. In the sequel, we refer to the splitting

of workload between a pair of processors as the exchange pattern.

In view of the possibility that non-equal splitting of workload might lead to better efficiency in
certain structures, we examine in detail in this paper the relationship between the efficiency of the
exchange method and the exchange pattern. We introduce an exchange parameter to characterize
the exchange pattern. As the value of this parameter can be quite varied (instead of always 1/2 for
equal splitting in past cases), we call our dimension exchange method the generalized dimension
exchange (GDE) method. We analyze the termination condition and the effect of the exchange
parameter on the potential efficiency of GDE. The analysis would not only help us understand
more deeply the dimension exchange policy itself, but also aid in the design of more efflicient

policies for various structures.

The model of the underlying system and computation in this study is similar to that in [6, 13].
Specifically, the system we consider is composed of a finite set of autonomous, homogeneous
processors connected by a point-to-point communication network. Each processor has a number
of bidirectional communication links through which the processor interacts synchronously with
its neighbors. The system can be depicted as a simple connected graph G = (V, E), where V' is a
set of vertices labeled from 0 ton — 1 and £ C V X V is a set of edges. Each vertex represents a
processor and each edge (¢,7) € F represents a communication link between processor ¢ and j. The
underlying computation is assumed to comprise a large number of independent processes. The
basic unit of workload is a process, and one or more processes may be running in a processor at
any time. The total workload in an instance of load balancing is assumed fixed—i.e., no processes
are created or killed during the period. This model of fixed total workload is the same as the one

used in [13], which should be a reasonably close representative of the dynamic situation.

The rest of the paper is organized as follows. The GDE method and its iterative model are
presented in Section 2. Section 3 presents the convergence analysis of the iterative process with
emphasis on the effects of the exchange parameter. In Section 4, we extend the GDE method with
multiple parameters instead of a single parameter for the exchange patterns over the network,
and establish the relationship between the GDE method and the diffusion method. We conclude

in Section 5 with some remarks on the application of the GDE method.

2 The Generalized Dimension Exchange Method

Similar to the original dimension exchange method for arbitrary structures [13], the GDE method
operates on color graphs derived from edge-coloring of the given system graphs—the simple con-
nected graphs of the given structures. Consider a system graph G = (V, £). By edge-coloring, the
edges of GG are colored with some minimum number of colors (say, k) such that no two adjoining
edges are of the same color. A “dimension” is then defined to be the collection of all edges of the
same color. A k-color graph is therefore k-dimensional, and load balancing in the GDE method
happens in one dimension at a time. Let §(¢) denote the degree of a vertex ¢ in G and §(G') denote

the maximum of the degrees of GG’s vertices. It is known that the minimum number of colors k is

strictly bounded by 6(G), and 6(G) < k < 6(G)+ 1 [10].



We index the colors in a given k-color graph with integers from 1 to k. Consequently, the
k-color graph can be represented as Gy = (V, Eyi), of which Ej is a set of 3-tuples of the form
(i,75¢), (i,7;¢) € Ey if and only if ¢ is the color number of the edge (i,7) € E. Figure 1 shows
two examples of color graphs for a ring structure of scale 3 and a chain of scale 4 respectively.

The integers in parentheses are the assigned color numbers.

Figure 1: Examples of colored graphs

For a given Gy, let w denote the current local workload of a processor and A denote the
exchange parameter chosen. Then, the change of w in the processor using the GDE method
is governed by the algorithm as shown in Figure 2. By executing the operator Fzchange(c), a
processor sends its local workload to and receives workload from its neighbor along the channel
colored ¢. The variable InputLoad temporarily stores the neighboring workload received in the

current exchange operation.

Procedure for Processor ¢ (0 <7 < n)
while (not Terminate) {
for (c=1;e<kje++){
if there is an incident edge colored ¢ then {
InputLoad = FExchange(c);
w=(1-X)xw+ XX InputLoad,
}

Figure 2: The algorithm of the GDE method

This algorithm is to be run in each processor in a fully decentralized manner, and a processor
finishes a complete sweep (i.e., one iteration of the while-loop) after k consecutive exchange
operations. As such, the processor interacts with all of its neighbors one at a time in each sweep.
In order to guarantee w > 0, the domain of the exchange parameter A is restricted to [0,1]. By

choosing A = 1/2, the GDE method is equivalent to the original dimension exchange method.

Two issues need to be addressed. One is the termination condition under which the algorithm
would terminate after some finite period of time. The other is the issue of efficiency—that is,

how many iterative steps are needed for the algorithm to arrive at its termination state. In the



following, we provide the answers through analyzing this algorithm using the matrix iterative
approach. In discussing efficiency, however, instead of working out the actual number of steps for
a given structure, we are interested in the optimal value for the exchange parameter that would

lead to the fastest convergence.

With the matrix iterative approach, the workload distribution at some time instant is repre-
sented by a vector of variables each of which corresponds to the local workload maintained by a
processor; and the change to be applied to the distribution according to the balancing policy is
represented by a transformation matrix. The whole process of load balancing is then modeled as

an iterative process based on the matrix, which is the center of our analysis.

Let w! (1 <4 < n) denote the local workload of processor i at time ¢. Then, the workload
distribution at time ¢ is denoted by the vector W' = (wf, wi, .. .,w%_l)T, and W0 is the initial
workload distribution. Based on the above algorithm, the change of workload in processor ¢ at
step ¢ with ¢ = (¢ mod k) 4+ 1 can be modeled as

with = (1= Nw! 4+ Mt if 35 (i,5;¢) € By

witt = w! otherwise

(1)
where 0 < A < 1.
As a whole, the change of the workload distribution of the entire system at time ¢ with
¢ = (t mod k) + 1 can be modeled as
Wil = M. AO)W! 1<c<k (2)
where, for 0 < ¢, < n and 7 # 7,

(Mco(A))ii = (Me(N))j5 = (L= A), (Me(A))ij = (Mc(A))ji = A if (4,5;¢) € Gk
(Mo(X)is =1, (M:(X));; =0 otherwise

Consequently, the change of the workload distribution of the entire system at time ¢ can be
modeled as
Witk = M(\)W? (3)
which implies
Wik = MY{(MWO 1=0,1,2,... (4)
where M(A) = Mi(A) X Mp_1(X) X ... X Mq(A)is called the GDE matriz of the k-color graph Gj,.
Clearly, each element of M(A) is a polynomial in A, and by choosing A=1/2, M () reduces to the

dimension exchange matrix as shown in [13].

With the above formulation, the features of the GDE method are fully captured by the iterative
process governed by M(A). Correspondingly, the termination issue of the algorithm is reduced to
the convergence of the sequence {M*(A)}, and the efficiency of the algorithm is reflected by the

asymptotic convergence rate, R (M(X)).

3 Analysis of the GDE Method

The analysis of the sequence {M*(\)} is divided into two major components. One concerns the

condition for termination with respect to the exchange parameter. The other concerns the effects



of A on the convergence rate.

3.1 Convergence

We first consider some important properties of M(\), which are essential in the ensuing analysis.
Lemma 3.1 Let G}, be a k-color graph, and M(\) be the GDE matriz of GJ.

1. If 0 < XA <1, then M(\) is nonnegative and doubly stochastic—that is, for all 1 < 1,7 < n,
mi;(A) >0, and 2i<j<n mi;(A) = Yi<i<n mi;(A) = 1.

2. If 0 < X < 1, then M(X) is primitive—that is, there exists a positive integer s such that
M*(X) > 0.

Proof. (1) Suppose 0 < A < 1. By definition, M.()) is nonnegative and doubly stochastic for
all ¢, 1 < ¢ < k. It is easy to show that their product (of multiplication) preserves the same
properties; that is, M () is nonnegative and doubly stochastic [1]. (2) Suppose 0 < A < 1. Then
m;(A) > 0 because (M.(X));; > 0 for all 1 < ¢ < k. Hence, M™1()\) > 0; and M () is primitive
for0<A<1. O

Because of the nonnegative and doubly stochastic properties, we can analyze the convergence of
{M*(X)} using the theory of nonnegative matrices and finite Markov chain [1]. Let u;(M (X)) (1 <
Jj < n) be the eigenvalues of M(A), and p(M (X)) be the spectral radius of M(X), i.e., p(M(A)) =
max;<;<n{|p;(M(N))|}. We define

Y(M(X)) = maxicj<nlpi(M(A)] = pi(M(X)) # 1}

Then, if p(M (X)) < 1, v(M (X)) = p(M())); otherwise, (M (A)) is the subdominant eigenvalue of
M(A)in modulus. According to the matrix iterative theory [1], the sequence { M*()\)} is convergent

if and only if 7(A) < 1. Along this line, we establish the following convergence theorem.

Theorem 3.1 Let M(\) be the GDE malriz of a k-color graph Gy, M be a malriz of order n
with all elements equal to 1/n, and W be a uniform distribution vector with all elements equal to
1. Then,

1. limy_ oo MY (X)) =M if and only if X € (0,1).

2. For any initial workload distribution W°, the sequence {W' ) generated by our GDE method
converges to bW if X € (0,1), where b =Y g, (w?)/n.

Proof (1) First, suppose A € (0,1). Then, from Lemma 3.1, M(A) is nonnegative and primi-
tive. According to the fundamental Perron-Frobenius theorem on nonnegative matrices, we have
p(M(A)) > 0 and its algebraic multiplicity is equal to 1. Also, since M(A) is doubly stochastic,
p(M(N)) = 1. Therefore, v(M(\)) < 1. Hence, lim;_,o, M*()\) exists, and each column of the
limit matrix is a positive eigenvector of M() corresponding to the spectral radius p(M(X\)). That
is, lim; .o, M*(A\) = M. On the other hand, suppose A = 0. Then, M.()\) is the identity matrix



of order n, for all 1 < ¢ < k; sois M(A). Suppose A = 1. Then M(X) is a permutation matrix
because for all 1 < ¢ < k, M.()) is a permutation matrix. Therefore, M(A) has the eigenvalue
1 in modulus with multiplicity » when A = 0 or 1, and hence y(M (X)) = 1. Thus, lim;—, ., M*
does not exist or if it exists, does not converge to M. Consequently, lim;_,., M = M if and only
if A € (0,1). (2) Since limy_,o, M*(X\) = M, for any initial workload distribution W9, we have

lim;_ oo WF = MW° = bW, where b = 2 0<i<n w?/n. O

The above theorem tells us that 0 < A < 1 is a sufficient and necessary condition for the
termination of dynamic load balancing using the GDE method. If A = 0, the workload distribution
would not change at all after an iteration step, and if A = 1, an iteration step would cause a
complete swap of the workloads of every pair of vertices and leave the variance of the workload

distribution unchanged.

3.2 Convergence rate

The introduction of the exchange parameter A into the dimension exchange method is not for
forcing a convergence which is present in the original method but rather improving the convergence
rate. Consider the asymptotic convergence rate R (M (A)). Since the spectral radius of M () is
unique, the size of the subdominant eigenvalue in modulus (A (X)) directly affects R (M(N))
which is equal to —Iny(M(X)). If v(M (X)) = 1, then R (M(A)) = 0, which means that the
iterative process is divergent. If y(M (X)) = 0, then R. (M (X)) is maximum. The problem here
is to choose a A so that (M (X)) is as close to 0 as possible, i.e., Roo(M (X)) as large as possible.

Roo(M(X)) depends not only on the structure of M (), i.e., the arrangement of positive and
zero elements in M(A), but also on the size of each positive element. To examine the effects of A
on Ro,(M(X)), we first work out a computation formula for the positive elements in M (), which

is based on a concept of color paths in color graphs.

Definition 3.1 Let G be a k-color graph of G. A sequence of edges in Gy, of the form
(i = ig,i1;€1), (F1,925€2), -+ oy (U1, 51 = Ji 1)

is called a color path of length I from i to j if all intermediate vertices is(1 < s <[ —1) are
distinct and k > ¢1 > ¢3 > ... > ¢; > 1. A color path from i lo j is said to be closed if i = j.
Two color paths from @ lto j in Gy are said lo be distinct if their intermediate vertices do not

coincide at all. All the distinct color paths from i to j comprise a set P;;.

For example, in the color graph in Figure 1(a), there exist from vertex 2 to vertex 1 two
distinct color paths, (2,1;3) and (2,3;3),(3,1;2), of length 1 and 2 respectively. The sequence of
edges (1,2;3), (2,0;2), (0,1;1) is a closed color path of length 3 incident on vertex 1. It is clear

from the definition that the length of any color path in a k-color graph cannot be larger than k.

The following lemma presents the computation formula for the elements of M (). Its proof is
based on the concept of color paths and the particular features of each M (), which is somewhat

tedious. We leave it to the Appendix.



Lemma 3.2 Let M(X) be the GDE matriz of a k-color graph Gy. If 0 < X < 1, then for
0<i,5<n

mij(A) = 2 pep,, (1= A)PA) i# ]

mi(A) = (1= AP0 4+ 30 ep (1= A)2Alr)
where [, is the length of the color path p € P;; of the form

(i =10,113¢1), (21,925 ¢2), - oy (11,01, = JiC1,)5

and r, = Ei”zo(ns), where ng is the number of incident edges of © whose color number is larger

than cy; ny, is the number of incident edge of j whose color number is smaller than c;,; and
ns(1 < s <1, — 1) is the number of incident edges of i; whose color number is larger than cs4q

and smaller than c;.

Proof. See Appendix O

As an example, let us examine the GDE matrix of the color graph in Figure 1(a).

(1-X)? A1 =) A
M) =] MI=XA)4+A2(1=A) M4+ (1-A)?2 A1 =)
A1 = N2+ )2 M1I=X)+A2(1=X) (1- )2

Since there are no closed paths incident on vertices 0 and 1, mgg(A) = ma2a(A) = (1-X)%. However,
m11(A) = A2+ (1 —X)? because of the closed color path of length 3 incident on vertex 1. Consider
the ordered pair of vertices < 2,0 >, there are two color paths (2,0;2) and (2,1;3),(3,0;1) from 2

to 0, which contribute to the first and second terms in mgg(A), respectively.

We next prove, for a given k-color graph, the existence of an optimal A that maximizes the

asymptotic convergence rate R (M(X)).

Lemma 3.3 Let M()\) be the GDE matriz of Gy. The eigenvalues of M()X) are a continuous
function of X\, A € [0,1].

Proof. Because the eigenvalues of M(A) are just the zeros of its characteristic polynomial, they
are continuously dependent on the coeflicients of the polynomial according to the fundamental
theorem of algebra [12]. Given also the fact that the coefficients of the characteristic polynomial
of a square real matrix are continuous functions of the elements of the matrix, it follows that the
eigenvalues of M(\) are continuously dependent on the elements of M(A). On the other hand,
each element of M(A), which is a polynomial in A according to the last lemma, continuously

depends on A. Therefore, the eigenvalues of M () continuously depend on A. O

Theorem 3.2 Let M () be the GDE matriz of Gi,. There exists a Xy € (0,1) such that Roo(M(Ap)) >
Roo(M(X)) for all X # Ay.

Proof. From Lemma 3.3, v(M (X)) is continuously dependent on A, where A € [0,1]. Therefore,
there exists a Ay € [0,1] such that y(M (X)) < (M (X)) for all A € [0,1]. In addition, y(M(X)) =
1if A = 0 or 1; otherwise y(M(A)) < 1. Hence, Ay € (0,1), and there exists a A € (0,1) such that
(M (X)) is smallest, or Roo(M (X)) is largest. O



Our objective is to determine the optimal A in order to minimize y(M(A)). However, as we
found no effective methods available for arbitrary matrices, we limit our scope to particular classes
of matrices which correspond to particular kinds of structures. Along this line, we establish below

a sufficient condition for a k-color graph under which R (M (X)) is largest when A = 1/2.

Theorem 3.3 Let Gy be a k-color graph of G. If G is regular with 6(G) = k, and |P;;| =
|Piul + 1 = |Pj;| + 1 for each pair of vertices i, j, 0 < i,5 < n and ¢ # j, then X = 1/2 is the

optimal choice.

Proof. Suppose M(A) is the GDE matrix of the color graph Gy. If G is regular with §(G) = &,
then the incident edges of each vertex have consecutive color numbers from 1 to k. Hence, the

computation formula in the above lemma can be simplified as

mij(A) = Lpep, (1= AN)FAl) iF ]
mii(A) = (1 - )‘S D+ Epep (1= A)Al)

It can be further simplified as mi;j(A) = X ep,, o and mi(X) = g + 3 ,ep,, 55 for 0 < 0,5 <
n,t # 7 when A = 1/2. Furthermore, if |P;;| = |Pi|+ 1 =|Pj;| + 1 (= s), M()) is then reduced
to a uniform matrix, each element of which is equal to 5z. As a result, the rank of M(X) equals
1, and all the eigenvalues except p(M(A)) are equal to 0. Thus, y(M (X)) = 0, which maximizes

the convergence rate. O

With this theorem, we now derive an important result about hypercube structures. Since the
hypercube structure is a uniquely colorable graph, i.e., there is only one way of coloring the edges
(without respect to the permutation of colors), its corresponding color graph is implicit in the

following corollary.

Corollary 3.1 With the GDE method, A\ = 1/2 is the optimal choice for dynamic load balancing

in hypercube structures.

Therefore, A = 1/2, i.e., equal exchange of load between two directly connected nodes, which
was initially proposed as a heuristic choice for hypercube structures [20, 6], is now confirmed by
this corollary to be the optimal choice. In addition to the hypercube, there are other structures
that have the same property. Two examples are the 4 X 4 torus and the complete graph of 4

vertices.

For the structures of chain, ring, mesh and torus, we examine the spectrums of their GDE
matrices, MCy(A), MR, (X), MMy, ,,(X) and MT,, ,,(X) respectively, and calculate their sub-
dominant eigenvalues in modulus as A varies from 0.1 to 0.9 in steps of 0.05. It is found that for
a given structure, the optimal exchange parameter Ay is critically dependent on the scale of the
structure. For example, in the chain of 4 vertices, A\y(MCy(A)) is somewhere between 0.55 and
0.65; in the chain of 8 vertices, Ay(M Cs(A)) is between 0.7 and 0.8. Furthermore, through closely
analyzing these GDE matrices using block circulant matrices [7], we derived the optimal exchange
parameters for the “even” case of these structures and uncovered the relationships between their

convergence rates. Suppose ny, ny are even, and n = max{ny,ny}. Then,

M(M R, (N) = Xe(MTon, 205(X)) = Ap(MCR(X)) = M(M My, 1, (M) (5)



2—+/2(1—cos(27/n))

1+cos(27/n)

which is equal to
per [24].

. The complete detailed proof can be found in a related pa-

4 Extension and Comparison with The Diffusion Scheme

An obvious extension of the method is to relax the restriction of a single parameter and to allow
different values of the exchange parameter to be used for different edges. We analyze such an
extension in this section and then use it to establish a relationship between the GDE method and

the diffusion scheme of Cybenko.

4.1 Extension of The GDE Method

This extension is easily justified by intuition. For instance, consider a chain. One would tend
to think that, for better efficiency, the nodes at the two ends should send a major chunk (i.e.,
a large \) of its load away during an exchange step, while the nodes at the middle should use a

more moderate .

We introduce a set of parameters, A;;, 0 < ¢,7 < n and A;; = Aj;, to characterize the set of
exchange patterns over all pairs of directly connected processors. Consequently, the basic iterative

operation between the two nodes of a colored edge (i,j;c) is modified as
w; = (1 — /\”)wZ + /\Z'jw]'

Denote A to be the set of parameters A;;. Then, by repeating the same matrix modeling
technique as in Section 2, we obtain an extended GDE matrix M(A), each element of which is a
polynomial of A;;. It is clear that M(A) is nonnegative and doubly stochastic when 0 < A;; < 1,
and primitive when 0 < A;; < 1 for 0 <+¢,j < n. Similar to Theorem 3.1, we obtain the following

convergence theorem.

Theorem 4.1 Let M(A) be the extended GDE malriz of a k-color graph Gy, M be a matriz of
order n whose elements are all 1/n, and W be a uniform distribution vector whose elements are
all 1, then

1. limy— oo MY (A) = M if and only if \;j € (0,1) for 0 <i,j < n.

2. For any initial workload distribution W°, the sequence {W*} generated by the extended
GDE method converges to bW if A\;; € (0,1), for all0 < i,j < n, where b =3, .;,.(w?)/n.

Similarly Theorem 3.2 can be generalized such that for a given color graph Gy, there exists a

vector of A;; that maximizes the convergence rate of M(A).

To further illustrate the relationship between the convergence rate of M(A) and the parameters
Aij, we analyze quantitatively the extended GDE matrix on the color chain of order 4 as in

Figure 1(b). With the extended GDE method, three parameters A\;, Ay and A3 are necessary

10



for parameterizing the exchange patterns for edges (0,1), (1,2) and (2,3) respectively. Then the

extended GDE matrix is as follows.

1- A Ay 0 0
ey = | M=) (=200 =) Aa(1 =) A2 s
Az Aa(1 = Ap) (1= A)(1=As) As(l—Ay)
0 0 As 1- s

Similar to the quantitative computation imposed on chain structures, we calculate the sub-
dominant eigenvalue in modulus, y(M(A)), as A; (¢ = 1,2,3) varies from 0.1 to 0.9 in steps
of 0.05. It is found that y(M(A)) equals 0.1, the smallest value in the testing group, when
(A1, A2,A3) = (0.5,0.7,0.6) or (0.6,0.7,0.5). Theoretically, the smallest value of v(MC4(X)) is
equal to 2A — 1 = 0.172 when A = 2 — /2, and hence the extended GDE method using these two

vectors of A; converges faster than the GDE method with a single, optimal A.

The dependence of v(M(A)) on A;;, being an optimization problem with multiple parameters,
is somewhat difficult to analyze. Nevertheless, in the next subsection, we will show that it is

equivalent to the analysis of the diffusion method of Cybenko.

4.2 Comparison with The Diffusion Scheme

In the synchronous diffusion scheme [6], each processor is supposed to interact with all its neighbors

at every step, which at step ¢ can be modeled as

wf"’l = wl+ Eo§j<n—1ai]’(w§ —wj) 0<i<n (6)

where a;; is called the diffusion parameter and 0 < a;; < 1 if nodes 7 and j are direct neighbors;

a;; = 0, otherwise. As a whole, the change of the workload distribution at step ¢ is modeled as

witt = pwt (7)
where D is called a diffusion matrix, and (D);; = a;; if ¢ # 75 (D) = 1 — Yo<jan,jzi(ij),
otherwise.

Notice that M(A) reflects a complete sweep—i.e., k consecutive iterative steps, each of which
involves an I/O communication action at a processor. On the other hand, the diffusion matrix
D reflects a single iterative step which involves §(G) I/O communication actions at a processor.
Since §(G) < k < 6(G)+ 1 [10], a complete sweep of M(A) is comparable to an iterative step of

D in terms of I/O communication actions.

To facilitate our establishing the relationship between the two methods, we introduce the

concept of an extended digraph based on the color graph Gy.

Definition 4.1 An extended digraph, denoted G = (Vk,Ek), s a directed graph deduced from a
k-color graph Gy = (Vy, Er) such that

1. <iyi>€ By forall0<i<n

2. <t,7> € Ey iof there exists a color path from i to j in Gy.

11



Figure 3: Examples of extended digraphs

Figure 3 depicts two extended digraphs derived from the color graphs in Figure 1.

It is clear from the definition that GG is an edge-deleted subgraph of G, when each undirected
edge (7,7) € E is viewed as a pair of directed edges < 7,5 > and < j,7 >. Now we are ready to
show that the GDE matrix M(A) of a G}, is a diffusion matrix of Gy.

Theorem 4.2 Suppose M(A) is the GDE matriz of a k-color graph Gy, and Gy, is the extended
digraph of Gi. Then, M(A) is a diffusion matriz of the digraph Gy.

Proof. For 0 < 4,5 < n and 7 # j, my;(A) = 0 if and only if there are no color paths from ¢
to j (from Lemma 3.2), and if and only if < 7,5 >¢ Gy (by the definition of ék) Hence, for
0<1¢,7<mnandi# 7, mi;(A)>0if and only if there is a directed edge < 7,j >€ Ek, Moreover,
there exists a loop for each vertex, which makes m;;(A) > 0 for 0 < ¢ < n. Thus, M(A) is a
diffusion matrix on the digraph Gp. O

The above theorem reveals the similarity between the diffusion and the dimension exchange
methods. According to this theorem, the comparison of the two methods is then reduced to
the comparison of the diffusion method on two different graphs Gy and ék. Since G}, is an
edge-deleted subgraph of ék, the diffusion matrix of G has more positive elements than the
diffusion matrix of G. It follows that a processor balances its workload only with its neighbors
at each iterative step in the diffusion scheme while in the dimension exchange method it might
balance its workload with more than just its neighbors at each complete sweep. As an example,
consider load balancing of the color graph in Figure 1(b). Suppose at the time when the load
balancing is activated, processor 0 is most heavily loaded and the others are lightly loaded or
empty; processor 0 would therefore diffuse some portion of its workload to its neighbors, and
processor 2, for instance, would receive the load in two iterative steps of the diffusion scheme.

However, with the GDE method, processor 2 would receive the load in a single complete sweep.

5 Concluding Remarks

We presented in this paper the generalized dimension exchange method (GDE) for dynamic load
balancing in distributed systems which is a refinement of the original dimension exchange method
with the addition of an exchange parameter. We analyzed its termination property and potential
efficiency. The results are: a suflicient and necessary condition for the termination of the GDE

scheme, a proof that equal splitting of workload achieves optimal efficiency for the hypercube
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structure, and in the structures of chain, ring, mesh and torus, that the optimal exchange pattern
is critically dependent on their scales. We also extended the GDE method to allow for the use of
multiple exchange parameters, and used it to establish the relationship between the GDE model
and the diffusion method.

The results derived in this paper not only give us a deeper understanding of the dimension
exchange method, but also a basis for designing more efficient methods for specific structures.
Like those in [6, 13], our analysis does not take into account the overhead incurred in migrating
workload during runtime. However, it is the case in many applications that workloads are rep-
resented by only a small amount of information, such as an integer or two, which can be sent
around with small or negligible overhead. Note also that in practical implementations, load bal-
ancing in our model would be divided into two stages: the first one consists purely of exchanges
of load information among the processors until reaching an acceptable balanced state, and then

the actual load migration would take place in the second stage.

To complement the GDE method, we have developed a fully distributed mechanism for the
termination detection of load balancing based on the method [25]. We are also in the process
of incorporating the GDE load balancing algorithm into remapping of data parallel computa-
tions [19].

Finally, we should point out that the GDE method is based on the assumption of a synchronous
model in which migration of workload across an edge can be treated as instantaneous. In asyn-
chronous models, however, because of the communication delays and asynchronism among the
processors, the analysis of applicable load balancing methods is expected to be more difficult than
the present analysis. Bertsekas et al. ventured into this domain by analyzing the asynchronous

diffusion scheme [2].
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Appendix — The Proof of Lemma 3.2

Given an ordered pair of vertices < ¢,7 > in Gg, we exhaust the three cases concerning the color

paths from ¢ to j.

Case 1. There are no color paths from ¢ to j in Gy. Then for all 1 < ¢ < k, (M(X));; would
be 0, and the element (7,7) in the §(¢) matrices would equal to 1 — A, and 1 in the other
matrices. From the definition of M (),

M(X)= Mp(X) x ... X M(A) X ... X Mi())
It is then clear that my;(A) = (1 — A)*@); m;(A) = 0,4 # j.
Case 2. There is a single color path of length [ from ¢ to j.

1. If I =1, i.e., ¢ and j are adjacent, then (M;);; = (M.);; = A, and (M) = (M.);; =
1 — A, where ¢ is the color number of the edge. Because there are no matrices Mj(1 <
h <k, andh # ¢) in which the elements in positions (¢, ), (j,7), (¢,7) and (J, ) have the
same size as the corresponding elements in M., the following statements can be derived
according to the definition of M(X). Forall h,e¢ < h <k, if (M});; =1, i.e., vertex ¢ has
no incident edges with color number h, then the premultiplication of M.(A) by Mp(\)
does not have any effects on the size of the element (M.(A));;; if (Mp)i; =1 — A, i.e.,
vertex ¢ has an incident edge with color number £, then the premultiplicity of M.()\)
by M} (A) changes the size of the element (M.(A));; to (1 — A) x (Mc(A));;. Similarly,
for all b, 1 < h < ¢, the postmultiplicity of M.(\) by Mp(A) changes (M.()));; to
(1 = A)M.(X) only when vertex j has an incident edge with color number h. As a

result, we have
mij(A) = (1= A)° x A x (1—=A)" = (1 - A)notm x N

where ng is the number of incident edges of ¢ whose color number is larger than ¢ and

ny is the number of incident edges of 7 whose color number is smaller than c.

2. If I > 1, and the color path is of the form
(i = io,i1;c1), (F1,%25€2)5 -y (U1, 6 = Ji 1)
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then for all 1 < s < [, we have (M. (\))i; = (M: (M) = A, and (M. (X)) =
(M., (N);; = 1—A. Generally, M()) is of the form

Mp(A) X oo X Moy (M) X oo X Moy (A) X oo x Mo, (A) x ..o x My(X)

From the analysis for the case of [ = 1, it can be deduced that

mi;(A) = (1 =X X AX(1=A)" x Ax...x(1=X)"=txAx(1l=-A)™
— (1 _ A)n0+n1+~~~+TLZAl

where ng is the number of incident edges of 7 whose color number is larger than cq,
n; is the number of incident edges of j whose color number is smaller than ¢;, and
ns(1 < s <1 —1)is the number of incident edges of vertex 75 whose color number is

larger than ¢s41 and smaller than c,.

Case 3. There are more than one distinct color path from ¢ to j, all together comprising a set

P;;. Then according to the principle of matrix multiplication, we have

mij(A) = Lpep, (1-A)PAP) 1< i,j<n
where [, and r, are as stated in the lemma.

Hence, the lemma follows. O
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