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Abstract

The objective of this thesis is twofold. On one hand it targets the proposition of a more accurate
evaluation protocol designed for text detection systems that solves some of the existing problems in this
area. On the other hand, it focuses on the design of a text rectification procedure used for the correction
of highly deformed texts.

Text detection systems have gained a significant importance during the last years. The growing number
of approaches proposed in the literature requires a rigorous performance evaluation and ranking. In
the context of text detection, an evaluation protocol relies on three elements: a reliable text reference, a
matching set of rules deciding the relationship between the ground truth and the detections and finally
a set of metrics that produce intuitive scores. The few existing evaluation protocols often lack accuracy
either due to inconsistent matching procedures that provide unfair scores or due to unrepresentative
metrics. Despite these issues, until today, researchers continue to use these protocols to evaluate their
work. In this Ph.D thesis we propose a new evaluation protocol for text detection algorithms that tackles
most of the drawbacks faced by currently used evaluation methods. This work is focused on three main
contributions: firstly, we introduce a complex text reference representation that does not constrain
text detectors to adopt a specific detection granularity level or annotation representation; secondly, we
propose a set of matching rules capable of evaluating any type of scenario that can occur between a
text reference and a detection; and finally we show how we can analyze a set of detection results, not
only through a set of metrics, but also through an intuitive visual representation. We use this protocol
to evaluate different text detectors and then compare the results with those provided by alternative
evaluation methods.

A frequent challenge for many Text Understanding Systems is to tackle the variety of text characteristics
in born-digital and natural scene images to which current Optical Character Recognition (OCR)s are
not well adapted. For example, texts in perspective are frequently present in real-word images because
the camera capture angle is not normal to the plane containing text regions. Despite the ability of some
detectors to accurately localize such text objects, the recognition stage fails most of the time. Indeed,
most OCRs are not designed to handle text strings in perspective but rather expect horizontal texts in a
parallel-frontal plane to provide a correct transcription. All these aspects, together with the proposition
of a very challenging dataset, motivated us to propose a rectification procedure capable of correcting
highly distorted texts.
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1.1

General introduction and
contributions

We cannot solve our problems with the same thinking we

used when we created them.

— Albert Einstein

This chapter’s objective is to present the subject of this PhD thesis and place it in the context of the
Document Image Analysis (DIA) research field. We expose the diversity of topics and applications
that are part of this field, with a focus on the Scene Understanding Systems as they represent the
challenge of this thesis. Lastly, we highlight the main problems that guided this work and list our
contributions.

The subjects of this PhD thesis is the improvement of a text detection system and the proposition
of a new evaluation protocol for text localization algorithms. The aim of the thesis is twofold. First,
it consists of the proposition of a new evaluation protocol designed for text localization algorithms.
Today, no accurate protocol permits a reliable evaluation of such algorithms. The few existing protocols
used in the literature are not able to cope with the complexity of text detection scenarios and provide
poor metrics that produce unrepresentative scores. Hence, it is difficult to evaluate individually the
performances of a text localization system as well as to compare it with other systems. Secondly, we
focus on the improvement of a text detection chain by rectifying the text detection results to maximize
the performance of the text recognition process. When dealing with natural or born-digital images, texts
can have different orientations, or be subject to different deformations. Common OCRs have difficulties
in correctly recognizing such texts. This is why we propose a complex rectification method that can deal

and correct different text deformations.

In this chapter we will first present the different topics and applications linked to the DIA domain
to better understand the context and the importance of this work. We will then expose a variety of
challenges of natural and born-digital images that contain textual information. Next, we will introduce
the concept of a scene text understanding system. Finally, we will conclude this introduction by enlisting
the contributions proposed in this PhD thesis.

Document Image Analysis (DIA)

The goal of DIA is to process and extract information (semantics or content) from documents by applying
image analysis, computer vision, artificial intelligence and/or pattern recognition tools. Documents

can for example be images of scanned papers (e.g. newspapers, books), camera captures or video
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frames containing textual information (e.g. captions). Research topics in document analysis include
many fields, such as document layout analysis, document structure extraction, document segmentation,
document binarization, document deskewing, text detection and localization, text rectification, text
extraction, character and word recognition, symbol and graphic recognition, signature verification,
writer identification, handwritten text, mathematical formula identification and recognition, stroke
recovery from documents, or forensic document analysis.

A variety of applications are derived from the DIA technologies:

. Auto-driving systems such as self-driven cars that need to interpret automatically signs and
boards.

. Mobile mapping systems such as the GOOGLE® car that matches extracted text from streets to
indexed GOOGLE® maps.

. Aid systems for visually impaired people to help them in their natural indoor and outdoor
environments.

. Navigation systems that can automatically “read” maps.

. Tourist assistant systems that help tourists to face to unfamiliar environments or unknown
languages.

. Automatic document indexing with applications such as large document database sorting or

web search engines.

. Dematerialization such as book conversion to digital libraries for space saving.

. Signature verification.

. Automatic license plate reading to deliver speed fees or to check parking entrances.

. Gender prediction from writing.

. Optical music recognition (OMR) applications that automatically interpret music score sheets

and transform them into common audio formats.

. Various PDA and smartphone related applications.

In document analysis, the extracted information can be divided into two categories: textual information
(text elements) and graphics (symbols, diagrams, logos, etc.) [O’Gorman, 1997]. Based on the targeted
applications, the textual analysis scope can be further classified into two categories. The first one
involves an OCR conversion to get the textual transcription of characters and words into a digital format.
A more advanced type of OCR is an ICR system, designed to handle handwritten texts. The second
category is the layout analysis to identify the different structure elements of a document. It involves the
segmentation of the whole document to separate text blocks from the non-textual ones and then requires
their reordering for correct reading. Such techniques are mostly used for well formatted documents,
usually machine printed ones (newspapers, invoices, books, efc.) to extract the different structural zones

Chapter 1 General introduction and contributions
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(e.g. title, author, paragraph, keyword, abstract, table of contents) at different levels (word, line, text

region).

A particular type of document analysis can also be performed on born-digital images, natural scene
images and video frames. In such cases, the layout analysis usually targets the localization and extraction
of the textual information that can later be processed by an OCR.

Challenges of daily life text

The wide availability of PDAs, digital cameras, mobile phones or robot vision systems allow the acquisi-
tion of high resolution pictures at a relatively low cost. Most of them are taken from natural environments,
such as indoor places (e.g. homes, institutions, medical centers, kitchens, etc.) or outdoor scenes (e.g.
streets, roads, etc.). These images are usually referred to as real images, or also natural scene images and
considered as an important category of documents in the DIA field.

The texts present in natural scenes can be, among others, street signs, shop names or vehicle license
plates. Searching for such “clues” can be a difficult task, not only for automated machines, but also for
the human brain. Compared to traditional document images, urban scenes require more complex DIA
technologies, due to the challenges imposed by the outdoor environment. Different conditions can

influence the analysis of texts in natural scene images that are listed below.
Capture angle anon parallel capture can lead to perspective deformations.

Lighting text objects subject to shadows, brightness (specularity) or reflections can be

hard to extract or recognize.

Text variety the artistic design of many scene text objects that can contain many colors,

fonts or sizes.
Text orientation text can be inclined, vertical or even multi-oriented (in circle or curve).

Cluttered background a non-uniform background (bricks, fences, trees, etc.) can lead to the over
segmentation of an image and to the extraction of false text zones.

Occlusion text objects can be partially occluded which can decrease the detection perfor-
mances.

Image resolution poor resolution and quality can decrease the recognition accuracy of an OCR.

and quality

Natural scene text can then be considered as any text captured in the wild (real world) having no prior
knowledge on any of the conditions mentioned above.

1.2 Challenges of daily life text
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Scene Text Understanding Systems

STUS combine the layout analysis and the features of an OCR to recognize the textual information
in real-world images. Although Text Detection, Text Localization or Text Recognition terms have been
assigned to describe such systems, they can be misleading as they refer to specific stages of a STUS.

Text detection Text recognition

> Rectification .'t. Recognition

|
Segment the text Correct text for the Convert text image
from the background OCR blocks into characters

Localization Extraction

Validation

Find text candidate
regions

Knowledge based -
CC approach el Text binarization Multi-oriented text
o Feature discrimination o . Perspective distorted - -
Texture approach methods Text line segmentation text ‘Word recognition

Word spotting

Classify candidates
in text and non-text

Character recognition

Word segmentation

Character
segmentation

Fig. 1.1: A global framework dedicated to a Scene Text Understanding System.

A common framework for STUSs is divided into five main steps (see Figure 1.1): localization, validation,
extraction, rectification and recognition. During the localization stage, text region candidates are first
searched. They are then classified into text or non-text during the validation stage. The validated text
is segmented from the surrounding background to get the accurate boundaries of text zones. The
detection outputs can however be distorted and are then corrected during a rectification step. Finally,
the recognition stage converts the extracted text regions into characters. In the next paragraphs, we give
more details about these steps.

Text Localization. Text localization is the basis of any STUS as its objective is to localize the text
candidate regions in pictures. There mainly exists two families of methods for this localization: con-
nected component (CC) and texture based approaches. The connected component analysis consists in
segmenting characters separately based on different characteristics, such as size or color and then in
grouping them into text regions. A pre-validation stage is sometimes required for that latter. The texture
based approaches use a sliding window to extract features from image blocks that are next classified into
positive and negative text regions

Text Validation. During the localization step, a number of false text regions are detected. In the
work described in [Ye and Doermann, 2015] the validation techniques are divided into knowledge based
methods and feature discrimination methods. The knowledge based methods presume a prior knowledge
on the size, color or projection profile of the text and hence the validation is done based on some
predefined rules. On the other hand, the feature discrimination methods make no assumption on the

Chapter 1 General introduction and contributions



text characteristics. In such situations, different features are extracted from potential text regions and
then validated using a classifier.

Text Extraction. The extraction step, often referred to as segmentation, is the stage during which
accurate bounds of text zones are produced. We can consider different kinds of granularity for text
extraction. For example, at a pixel level, the stage is called binarization. The extraction can also be at
character, word or line level granularity. Depending on the text detection strategy, a grouping step can
be necessary to gather text regions into larger ones.

Text Rectification. Current OCRs can only handle horizontal texts. However, in natural scene images,
texts are often subject to perspective deformations. Many texts, due to the design format or to the capture
angle, can also appear inclined or vertical. In some situations we can also face curved texts or texts in
circle.

Text Recognition. The final step of a complete STUS consists in translating candidate text blocks
into ASCII values. At this stage, the recognition can be done. The character recognition targets the
classification of each CC separately based on different features, while word recognition also integrates a
language dictionary that predicts the translation of words based on various statistical analysis. A special
type of STUS applications that entirely rely on the text recognition step, word spotting methods, consists
in matching image text blocks to words of a lexicon.

Note. We mention here that the discussed STUS in this section is not a generic framework, as its
structure can differ from one case to another. For example, in some approaches, the validation stage
can be included into the localization one, or the rectification step can be part of the extraction process.
Moreover, some systems only focus on the detection stage and are commonly referred to as fext detection
algorithms. Conversely, systems that include both detection and recognition stages are usually referred
to as end-to-end text recognition methods.

The evaluation of a STUS can be done at two moments (see Figure 1.2): after the detection stage to
only quantify the localization performance quality or after the recognition stage and then the quality of
recognition is also evaluated. Of course, the validation and rectification stages can also be evaluated
separately.

Text detection Text recognition

[ Localization evaluation ] [ End-to-end recognition evaluation ]

Fig. 1.2: Levels of evaluation of a text understanding system.

1.3 Scene Text Understanding Systems



1.4

6

Contributions of the thesis

In this thesis we tackle two main problems of Text Understanding Systems. The first one, that motivated
this work, refers to the unreliable manner text detection systems are nowadays being evaluated. Such an
evaluation focuses on analyzing the performance of a detector to precisely provide the localization of text
regions in an image. Text detectors are often severely penalized and wrongly scored despite their correct
results. This happens for a number of reasons. The lack of accurate metrics and matching strategies
between the results and the ground truth derive unrepresentative scores. Currently, text detectors follow
the rules imposed by different evaluation protocols and adapt their results such that their methods are
not penalized. Hence, in this thesis we try to provide a different view of this problem and propose an
alternative evaluation approach which satisfies the challenges imposed by the diversity of text detection
methods.

Another problem that Text Understanding Systems are facing is the variety of text characteristics in
born-digital and natural scene images for which current OCRs are not well adapted. For example, texts in
perspective are frequently present in real-word images because the camera capture angle is not normal
to the plane containing text regions. Despite the ability of some detectors to accurately localize such
text objects, the recognition stage fails in most of the time. Indeed, most OCRs are not designed to
handle text strings in perspective but rather expect horizontal texts in a parallel-frontal plane to provide
a correct transcription. All these aspects, together with the proposition of a very challenging dataset,
motivated us to propose a rectification procedure capable of correcting highly distorted texts.

This manuscript is divided into two parts. The first part, which represents the core of this thesis, tackles
the problem of text detection evaluation and proposes a new protocol designed to cope and solve
many of the inconsistencies that current protocols are facing. The second part of this work consists in
the proposition of a text rectification procedure needed for enhancing the performance of traditional
OCRs.

In Chapter 2 we explain the common way text detection systems are being evaluated. We first introduce
the elementary notions of an evaluation protocol: a GT annotation, a set of performance metrics and a
matching strategy. We then introduce some of the most common problems that evaluation protocols are
dealing with and conclude this chapter by giving a detailed state of the art.

Chapter 3 is dedicated to presenting the core of this manuscript, consisting of the proposition of an
alternative evaluation protocol, EVALTEX, designed to handle many of the unsolved issues faced by other
evaluation methods. First, we discuss the contributions related to the GT annotation. Next, we explain
how the matchings between the GT and a set of detections are being treated. We then discuss the choice
of using a set of global performance metrics that can capture the complexity of a detection. Finally,
we show that our proposed protocol can be applied to any text representation. Namely, we explain its
functioning on text detections annotated with free-form masks.

The goal of Chapter 4 is to propose a visual representation of a text detector’s efficiency through his-
tograms. We show that this representation can provide additional information about the behavior of a
detector that cannot be captured by a set of performance metrics. We also introduce the use of the Earth
Mover’s Distance as an alternative evaluation method to the one proposed in Chapter 3.

Chapter 1 General introduction and contributions



In Chapter 5 we present the experimental results obtained with the proposed evaluation methods
introduced in the two previous chapters. To validate our solutions we propose a series of comparisons
with other commonly protocols used in the literature. The comparisons are done at two-levels. First, we
compute different performance scores on individual images. Secondly, we analyze the scores obtained
on a set of images.

Chapter 6 is dedicated to a introduction to the context of text rectification procedures and describes the
role of such a procedure in the global framework of a text understanding system. To do so, we illustrate
the challenges due to the different deformations that texts are often subject to in both born-digital
and natural scene images. Next, we list the related works done in this research area and present our
contributions.

The description of the proposed rectification method is detailed in Chapter 7. The proposed approach,
dedicated to text strings in perspective, relies on a well-known projective transformation that maps the
coordinates of the deformed text onto the world coordinate system. We show that for an accurate rectifi-
cation we need a precise approximation of the boundaries of the text. This approximation represents
one of the main contributions of this chapter for which we propose a robust solution that can be used
to rectify highly distorted texts. This chapter also proposes a simple and efficient method to correct
some curved text strings. It consists in approximating the orientation of a character with respect to the
location of its neighbors.

The experimental results that validate our proposed rectification method are shown in Chapter 8. The
evaluation performance of the rectification process is done based on the results obtained on the two
datasets proposed during the ICDAR 2015 Competition on Scene Text Rectification. In this chapter we
also show the advantages and the drawbacks of our method.

Finally, Chapter 9 provides some conclusions on the works introduced in this thesis. A general discussion
of all the aspects presented in this work are reviewed and possible future works are proposed.

1.4 Contributions of the thesis
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This chapter’s objective is to introduce the notion of performance evaluation in the context of text
detection systems. Firstly, we will describe the component elements of an evaluation protocol necessary
for the comprehension of this manuscript: the ground truth annotation, its associated dataset, the
performance metrics and the matching strategies. Secondly, we will discuss the limitations of commonly
used evaluation methods that motivated our work. Finally, we will give a detailed overview of the
evaluation frameworks used by recent text detection algorithms in the literature.

Introduction

The fast development of text detection systems in the last years has led to many approaches and
consequently to a variety of evaluation protocols. As in many fields of computer vision, evaluating
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text detection methods relies on a number of elements: firstly, the use of a pertinent dataset, built
based on the specificities of a text detection task; secondly, a text reference, commonly known as the GT,
which should be annotated as precise as possible; lastly, a solid profocol that estimates the accuracy of a

detector by evaluating the correspondence between its output and the GT.

Evaluating text detection systems can be done in different manners. While end-to-end text detection
systems imply a text recognition final stage, the text localization results should not be evaluated at the end
of a system’s chain, but rather separately as the detection accuracy might be distorted by the efficiency
of the used OCR. Moreover, the text transcription is not always necessary, as many applications are
only interested in the detection stage, to perform, for example text enhancement, license plate blurring,
etc. The text localization outputs can be evaluated based on a segmentation result. This requires a true
binarization reference of a text, that can vary depending on the stroke thickness. Here, the evaluation
does not only focus on the detection but it also evaluates the binarization method. The best compromise
to evaluate the localization of text seems to be the approximation of a text contour at the character, word,
line or region level, depending on the targeted application.

In the following, we will introduce the elements of an evaluation protocol. We will start by pointing out
in Section 2.2 the different levels and representations of a GT. We will then list, in Section 2.3, the existing
datasets on which most of the text detection methods in the literature have been evaluated. Section 2.4
is dedicated to the definition of an evaluation protocol and the description of its elements: matching
strategies and performance metrics. The existing evaluation protocols in the literature are listed and
discussed in Section 2.5. Finally, a series of recent text detectors and with their datasets and evaluation
strategy is given in Section 2.6.

Ground truth annotation

The GT is a notion designating a standard of accuracy. In text detection, it represents the text reference
to which all detections will be compared. An annotation level, also called granularity, as well as a text
representation, are required to label a GT text. The granularity refers to the minimum element to be
labeled as text. The representation on the other hand, describes the geometric form used to annotate
the text object. We hereby enlist the text annotation levels and text representations used in the literature
and illustrated some of them in Figure 2.1.

Pixel level When using a pixel level annotation the GT text objects are usually annotated
by irregular masks. This annotation is mostly used for evaluating segmentation
tasks.

Character level Characters are usually annotated by bounding boxes, circles, ellipses or ori-
ented polygons.

Word level Probably one of the most used granularities, the word annotation implies

grouping multiple characters into bounding boxes, most of the time.

Line level Aline level annotation implies grouping multiple words together. Text lines

are usually annotated by rectangular boxes, or polygons.

Chapter 2 How are text detection chains being evaluated



Region level The region annotation [Liang et al., 2001] and [Shafait et al., 2008] is usually
used for document analysis to detect specific sections of a document. In such
cases, the labeling is mostly done with either rectangular boxes or polygons.

NEVER STOP EXPLORING|

(a)Pixel-level (b)Character-level

NEVER STOP EXPLORING 'l NEVER STOP EXPLORING |

(c)Word-level (d)line level

Fig. 2.1: Examples of text annotation levels using bounding boxes.

Annotating the GT is not an obvious task. It relies on the target text detection application or on the
subjectivity of the person who manually annotates the GT. It is then sometimes difficult to choose, in
certain contexts, which text objects should be annotated and which should not (see Figure 2.2). For
example, what is the minimum text size we consider a detector should be able to deal with? How should
the occluded text be annotated? How should the word “COCA-COLA” be annotated: as a single object
or as two separate ones? What is the level of blurring or contrast allowed for a text object in order to
be annotated in the GT? In order to tackle some of these problems, some evaluation protocols added
text object characteristics in the ground truth metadata. However, assigning additional information
to ground truth text is still a subjective task. For example, based on their vision strength, two different
annotators can evaluate differently the visibility level of a text. Besides the subjectivity related issues,

due to strong illumination

LRSI

(c)Small text (d)Blurred text (e)Low-contrasted text

Fig. 2.2: Cases of text annotation ambiguities.

another annotation problem has been in the center of attention: the consistency between the granularity
level and the GT text representation. For example, a horizontal box can not correctly fit a tilted or curved
text: the surrounding box will also contain a large amount of non-text areas, and the annotation will
not be precise enough. Despite the increasing interest in multi-oriented text detection systems, a large
number of datasets still propose a GT annotation using rectangular bounding boxes and only few of
them use a more flexible representation of text, as it will be shown in Section 2.3.

2.2 Ground truth annotation
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Note: Horizontal or inclined bounding boxes have the advantage of simplicity as they require only four

coordinates. On the other hand, irregular polygons rely on the subjectivity of the annotator as different

point configurations can be used to label the same text. Clear and simple rules need to be defined to

annotate text.

Datasets

The increasing development in the text detection and recognition field (see [Ye and Doermann, 2015]

for a complete survey), has pushed the research community to propose numerous datasets for a variety

of tasks and applications. We list hereby, in the chronological order of their publication, a number of

datasets used for both detection and recognition purposes and summarize their characteristics. Some of

them are illustrated in Figure 2.3. A summary of these methods is also given in Table 2.1.

HUA’S DATASET

RRC’03
RRC’05

CHARS74K

The dataset proposed in [Hua et al., 2001]" consists of 45 video clips for a total
of 6,750 frames and 158 text boxes, belonging to Spanish TV RTVE and to the
Ministry of Education of Singapore. Three clips do not contain any textual
information. The GT annotation is done using the Ground Truth Generator
framework through which one can manually assign attributes (7Text String,
Height Variance, Skew Angle, Color/Texture, String Density, Recognizability In-
dex) to each text object. The dataset consists of horizontal graphic and natural
scene texts in English, Spanish and Chinese languages. The dataset is proposed
with an evaluation protocol discussed in Section 2.5.6.

The RRC’032 [Lucas et al., 2003] and RRC’05 [Lucas, 2005] datasets have been
designed for the Robust Reading Competitions during ICDAR 2003 and ICDAR
2005 and, until present, are still widely used. They contain 509 samples of
scene text images for a total of 2,276 GT objects. The datasets are divided into
two subsets: a training subset containing 258 images (and 1,100 GT text boxes)
and a testing subset with 251 images (and 1,156 text boxes). The datasets
mainly contain horizontal English words. The GT annotation is done at char-
acter and word levels.

The CHARS74K3 dataset [de Campos et al., 2009] is a character recognition
database containing English and Kannada symbols used for training purposes.
As its name suggests, this dataset contains 74k (74,107) images, each one with
one character (0-9, a-z, A-Z) from natural scene or synthetic images.

SIGN EVALUATION DATA In [Weinman et al., 2009], the authors propose a dataset” containing signs cap-

tured in a downtown area. The dataset consists of 95 text regions for a total

Ihttp://wuw.cs.cityu.edu.hk/~1iuwy/PE_VTDetect/
2http://algoval .essex.ac.uk/icdar/Datasets.html
Shttp://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
4http://www.cs.grinnell.edu/ weinman/
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101 VIDEO IMAGES

EPSHTEIN’S DATASET

OXFORD CORNMARKET

SCENE TEXT

KAIST

SVT

of 215 English words and 1,209 characters. It proposes a character level GT

annotation using bounding boxes.

In [Phan et al., 2009], the authors proposed a video dataset containing images
with horizontal text lines with various font colors and backgrounds. The video
frames taken from daily news programs, sports videos and movie clips contain
both graphic and scene texts in different languages (English, Chinese and Ko-
rean), and the image sizes range from 320 x 240 to 816 x 448 pixels.

The dataset proposed in [Epshtein et al., 2010]° is another database that fo-
cuses on text in street view scenes and contains 307 color images of sizes
ranging from 1024 x 768 to 1024 x 1360 pixels. The database is considered
harder to deal with than other common natural scene datasets due to the

cluttered backgrounds (repeating pattern objects and vegetation).

The OXFORD CORNMARKET SCENE TEXT® dataset [Posner et al., 2010] contains
using images of a busy street scene. The GT is labeled at word level using
bounding boxes. However, due to the complex environment, some text areas,
considered as difficult to detect, were not annotated. All images are resized to
a fixed size of 640 x 480 pixels.

The KAIST dataset [Lee et al., 2010], designed for segmentation, localization
and recognition tasks, contains 3000 samples of indoor and outdoor scene
images, all resized to a fixed size of 640 x 480 pixels. The images are taken under
various lighting conditions (night, day, shadow). The dataset contains English
and Korean text objects, annotated using bounding boxes at both character
and word levels.

The SVT? (Street View Text) dataset [Wang and Belongie, 2010] is dedicated to
text string in the wild benchmarks. Its data comes from GOOGLE Street View
engine and are used for both text detection and recognition purposes, making
the database useful for end-to-end systems. The majority of the natural scene
texts are frontal and captured at a middle distance [Ye and Doermann, 2014].
The image samples were chosen such that the skew of text objects is mini-
mized [Wang et al., 2011]. The GT annotation is exclusively done at word level.
It contains 350 images (100 training images for a total of 257 GT bounding
boxes and 250 testing images for a total of 647 GT text objects). The dataset is
composed of multi-oriented and horizontal English text. However, as stated

Shttp://research.microsoft. com/enus/um/people/eyalofek/text_detection_database.zip
Shttp://www.robots.ox.ac.uk/ posnerhi/TextSpotting/pmwiki.php/Results/IR0S10
“http://www.iapr-tcll.org/mediawiki/index.php/KAIST_Scene_Text_Database

8http ://tcll.cvc.uab.es/datasets/SVT_1
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NEOCR

OSTD

MULTILINGUAL DATASET

SIGNS-N800

RRC’11

SVHN

in [Yao et al., 2014], this database provides incomplete word annotation.

The NEOCR? dataset contains 659 samples of real world images with 5,238
annotated GT bounding boxes. This dataset presents the particularity to be
multilingual (eight different languages). The GT is labeled both with rectangu-
lar boxes for horizontal texts and quadrilaterals for oriented text zones.

The OSTD°(Oriented Scene Text Dataset) dataset [Yi and Tian, 2011b] focuses
on multi-oriented natural scene texts (indoor views, logos, street scenes), and
contains 89 samples for a total of 218 GT objects.

The dataset proposed in [Pan et al., 2011a] targets the performance evaluation
of detectors of English and Chinese texts. It consists of 248 training images and
239 test images captured from natural scenes.

The sIGNS-N800! dataset [Bouman et al., 2011] contains 241 images (81 sam-
ples of training images and a testing subset of 160 images) of flyers, road signs
and posters acquired by a VGA camera. Two GT annotations are available:
firstly, each character within a sign region is manually segmented; secondly,

each sign region is separately manually segmented.

The Robust Reading Competition'? dataset used during ICDAR’'11 contains
every sample of ICDAR’03 and ICDAR'05 databases, except for a couple of
images. It consists of two subsets: RRC’11-BD contains 552 born-digital im-
ages (420 training samples for a total of 3,583 GT text objects and 102 testing
samples for a total of 918 GT objects); and RRC’11-SI, contains 484 natural
scene images (229 training samples for a total of 848 GT text boxes and 255
testing samples for a total of 1,189 GT objects). The dataset is composed of
mainly English texts captured at a short distances [Ye and Doermann, 2014].
The GT annotation, which is done at word level, was revised due to some
annotation inconsistencies in ICDAR’03 and ICDAR'05 datasets. The main
challenges of this database consists in detecting texts of various sizes and in
various illumination conditions.

The SVHN'? (Street View House Numbers) dataset [Netzer et al., 2011] was de-
signed for recognition tasks and contains 10 classes of digits (1 for each digit).

9http://www.iapr-tcil.org/mediawiki/index.php/NEOCR: Natural_Environment_OCR_Dataset
Ohttp://media-lab.engr.ccny. cuny.edu/cyi/project_scenetextdetection.html
Uhttps://engineering.purdue.edu/~ace/kbsigns/

12http://robustreading . opendfki.de/
13http://www.iapr-tcll.org/mediawiki/index.php/The_Street_View_House_Numbers_ (SVHN)

_Dataset
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SHIVAKUMARA DATASET

ITIIT5K Word

MSRA-TD500

MSRA-TD500 WORD

SVT-PERSPECTIVE

There are 73,257 digits in the training set and 26,032 digits in the testing set,
and an additional of 531,131 less difficult digit samples.

The authors in [Shivakumara et al., 2012] proposed an independent dataset
for video text detection purposes. This dataset contains 220 samples of non-
horizontal text images (176 scene text images and 44 graphics text images) and
800 samples of horizontal text images (160 Chinese text, 155 scene text and
485 English text images).

The images in IIIT5K Word'* dataset [Mishra et al., 2012] are collected from
the GOOGLEg image search engine, based on queries such as billboards, sign-
board, house numbers, house name plates or movie posters. The dataset con-
tains 5,000 images (cropped words) for a total of 5,000 GT boxes (2,000 training
GT objects and 3,000 testing GT objects). The dataset contains distorted En-
glish text strings.

The MSRA-TD500'° [Yao, 2012] dataset contains 500 natural scene images
(300 training images for a total of 1,068 GT text boxes and 200 testing images
for a total of 651 GT objects) and is used for very complex scene text detection
tasks. The images are taken from both indoor (e.g. signs, doorplates, caution
plates) and outdoor (e.g. guide boards and billboards) environments. The
dataset contains multi-oriented English and Chinese texts over complex back-
grounds. The GT annotation is done at line level rather than word level due to
the difficulty of partitioning Chinese text lines into individual words.

MSRA-TD500 WoRD'® dataset [Phan et al., 2013] was proposed as an exten-
sion of MSRA-TD500 database, which provides only line level GT annotations.
MSRA-TD500 WORD preserves the images from MSRA-TD500 dataset but
proposes a word-level labeling of English texts.

The StreetViewText-Perspective'’ dataset [Phan et al., 2013] was designed to
fulfill the need of evaluating perspective text recognition systems. It is based on
the original SVT database which was proposed in [Wang and Belongie, 2010].
The images were taken at the same places as in the SVT dataset, but only side-
view angles were chosen to capture the scenes. For each image in the dataset,
the words present in the lexicon were manually annotated using quadrilaterals.

Yhttp://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K . html
http://pages.ucsd.edu/~ztu/Download_front.htm

18} ttps://www. comp.nus. edu.sg/~phanquyt/

17http://www. comp.nus . edu.sg/ phanquyt/
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RRC’13

SPORTS-10K,
TV SERIES-1M

ITIT STR

MASTER

CUTES0

ICDAR'13 dataset'® [Karatzas et al., 2013] is known as one of the most com-
mon datasets in the literature. It is used for localization, segmentation and
recognition tasks and contains of two subsets. The first subset, RRC’13-BD
corresponds to Challenge 1 and contains 551 samples of born-digital images
(410 training images with 3,564 GT objects, and 141 testing images for a total
of 1,439 GT text boxes). The image size ranges from 194 x 30 to 660 x 476
pixels. The second subset, RRC’13-SI corresponds to Challenge 2 and consists
of 462 samples of natural scene images: 229 are training images (containing
848 GT text regions) and 233 testing images (containing 1,095 GT objects).
Both datasets are annotated at word level and mainly contain preponderantly
horizontal English words.

SPORTS-10K AND TV SERIES-1M ' are two large video datasets (TV SERIES-
1M contains more than 1 million images, SPORTS-10K contains 10,000 im-
ages) [Mishra et al., 2013] designed for text retrieval tasks. SPORTS-10K dataset
contains frames taken from sport video clips with advertisement signboards.
The GT is based on manually annotating the queries contained in each frame.

The IIIT STR?® (Scene Text Retrieval) dataset [Mishra et al., 2013] is composed
of 10,000 images collected from the GOOGLEg and FLICKR image search en-
gines. Images containing texts were collected using GOOGLE;,¢jeqr €Ngine
based on 50 query words such as department, police, Microsoft building or
motel. Images with no text were extracted from FLICKR based on queries such
as sky or building. This dataset is dedicated to benchmark text retrieval sys-
tems (word spotting). Consequently, the GT consists in manually annotating
whether there is a query word or not in each image of the dataset.

The MASTER?! (Multi-script And Scene Text Reading) dataset, introduced
in [Kumar et al., 2013], was designed for text localization, segmentation and
recognition tasks and contains both training and testing data. The localization
task is done on 167 training and 167 testing images, annotated using bounding
boxes at word level. For recognition purposes, the dataset is divided into two
subsets: a subset for English word recognition task with 67 camera-captured
scene images, containing 495 training GT text regions and 645 GT testing
objects; a second subset, for Kannada word recognition task, containing 300
training images and 243 samples of test images.

The CUTE802%2 (Curved Text 80) dataset [Risnumawan et al., 2014], consists
of 80 indoor and outdoor images with curved text lines. The GT annotation

Bhttp://rrc.cvc.uab.es/

Bhttp://cvit.iiit.ac.
nttp://cvit.iiit.ac.
2lpttp://mile.ee.iisc.
2nttp://web.fsktm.um.

in/projects/STR/videoSTR.html
in/projects/STR/IIITSTR.html

ernet.in/mrrc/
edu.my/~cschan/downloads_CUTE80_dataset.html
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YOUTUBE VIDEO TEXT
(YVT)

HUST-TR400

BBC NEWS FOOTAGE

SOUTH INDIAN
LANGUAGES DATASET

MJSYNTH

Fujitsu

is done using a set of points for each text line. The dataset is characterized
by complex backgrounds, low resolution and perspective distortions. It also

includes an evaluation protocol (see Section 2.4).

The YOUTUBE VIDEO TEXT dataset, introduced in [Nguyen et al., 2014], is a
collection of YouTube text images: overlay texts, such as captions, song titles,
logos and scene texts (street and business signs). The GT annotation is done
with bounding boxes, using the VATIC framework [Vondrick et al., 2013]. The

dataset contains 30 videos, each one at 30 frames per second.

HUST-TR400%® dataset, proposed by [Yao et al., 2014], contains 400 natural
scene images with English letters and Arabic numbers of different colors, fonts,
orientations and sizes and was designed for end-to-end scene text recognition
systems. The images were taken from three different sources (images captured
by volunteers in different cities of the U.S.A., from FLICKR and from MSRA-
TD500 datasets). This database is designed to evaluate end-to-end systems.
The GT annotation is done at word level.

This dataset®! of 2.3 million frames from BBC News footage is used to test
the robustness of the text detector proposed in [Jaderberg et al., 2014c], and
generally for text spotting tasks. It contains images related to queries such as
Hollywood, Boris Johnson, Vision, Police, Oxford, United. However, no associ-
ated GT metadata are provided.

SOUTH INDIAN LANGUAGES dataset [Pavithra and Aradhya, 2014] is a collec-
tion of 114 multilingual (Kannada, Tamil, Telugu and Malayalam) text images
(text book and novel covers, magazines, posters) with varying complex back-
grounds, different font colors and sizes.

The MJSYNTH?® Synthetic Word dataset [Jaderberg et al., 2014a],
Jaderberg et al., 2014b] contains 9,000,000 images of 90,000 synthetically gen-
erated English words. This dataset is used for text recognition purposes.

The FujiTsu dataset [Wang et al., 2014] is a multilingual benchmark that con-
tains 208 scene text images captured with a smart phone and a digital camera.
The text objects are horizontal, vertical, inclined and of different languages.
The GT annotation level is not specified, and the text is labeled using inclined

2http://mc.eistar.net/
24nttp://www.robots.ox.ac.uk/ vgg/research/text/
nttp://www.robots.ox.ac.uk/ vgg/data/text/
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RRC’15-IST

TRW’15

bounding boxes.

ICDAR’15 dataset®® [Karatzas et al., 2015] is the dataset proposed during the
most recent ICDAR RRC. The novelty with respect to the previous dataset
RRC’13 consists of a new image set designed for incidental scene text detec-
tion, recognition and end-to-end tasks. It contains 1670 images (with 17,548
text regions) among which 1500 were made publicly available (1000 training
images and 500 images for testing) while the remaining 170 images are private.
The GT annotation is done at word level using quadrilaterals. Some words in
the dataset were annotated using a “do not care” tag, namely texts in non-Latin
scripts, non-readable or one and two-character words. The evaluation on
this dataset is made using the Pascal evaluation protocol described in Sec-
tion 2.5.12.

The TRW’ 1527 dataset was proposed for the ICDAR 2015 Text Reading in the
Wild competition [Zhou et al., 2015]. The dataset is focused on multilingual
(English and Chinese) text detection and recognition in complex natural scenes.
It contains around 1000 natural scene images, taken from the Internet or by
volunteers divided into: a testing subset of 484 images and a training subset of
500 images. The annotation is done at line level using polygons. Text regions
have been divided into four categories: “translucent English”, “translucent
other”, “non-translucent English” and “non-translucent other”. The translucent
text regions encode website links, describe shop names or contact information.
The dataset also contains “do not care” text regions. The evaluation on this

database is done using the ICDAR'03 protocol.

26pttp://rrc.cve.uab.es/
2"http://icdar2015. imageplusplus. com/
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Fig. 2.3: Text image samples from different datasets. From top to bottom: KAIST, IT1I5K, MSRA-I,
MSRA-TD500, OSTD, SVHN, SVT and CHARS74K datasets.
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http://rrc.cvc.uab.es/?ch=2&com=introduction
http://rrc.cvc.uab.es/?ch=2&com=introduction
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http://web.fsktm.um.edu.my/~cschan/downloads_CUTE80_dataset.html
http://web.fsktm.um.edu.my/~cschan/downloads_CUTE80_dataset.html
http://mc.eistar.net/
http://www.robots.ox.ac.uk/~vgg/research/text/
http://www.robots.ox.ac.uk/~vgg/research/text/
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http://icdar2015.imageplusplus.com/
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An evaluation protocol is a system that determines the relationships between a set of references (or
ground truth) and a set of detection outputs. In this section we introduce the elementary components of
an evaluation framework needed for the better comprehension of the manuscript. First, we enlist the
different metrics (confusion matrix, receiver operation characteristic, area under curve and Euclidean
distance comparison) that underlay the current evaluation approaches used in text detection. Next, we
define the different matching scenarios between the GT and the detection results.

Metrics

Confusion matrix. Nowadays, most of the common metrics used in the object detection area and
particularly for text detection performance evaluation are derived from the confusion matrix. The
confusion matrix, also known as the error matrix [Stehman, 1997] or as the contingency table, is a tool for
evaluating the performance of a classification system. It quantifies the number of correct and incorrect
detections made by a classifier with respect to the GT associated to a dataset. Table 2.2 shows a 2 x 2
confusion matrix for a two class classification case with the following entries:

TP: the number of correct predictions that a detection is an actual GT text object;
FN: the number of incorrect predictions that a detection is not a GT text object;
FP: the number of incorrect predictions that a detection is a GT text object;

TN: the number of correct predictions that a detection is not a GT text object.

Tab. 2.2: A two-class confusion matrix

DETECTIONS
TEXT NON-TEXT
GROUND TRUT
TEXT TRUE POSITIVE (TP) FALSE NEGATIVE (FN)
NON-TEXT FALSE POSITIVE (FP) TRUE NEGATIVE (TN)

In the following we will enumerate the different performance measurements that can be directly derived
from the confusion matrix.

Precision/Positive Predictive Value/Confidence is the proportion of the predicted positive cases that

were correct:
TP

P=—— (2.1)
TP+ FP
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Negative Predictive Value is the inverse of Precision and computes the proportion of negative predic-

tions that are really negative.
TN
NPR= —— (2.2)
TN+FN

Recall/True Positive Rate/Hit Rate/Sensitivity is the proportion of positive cases that were correctly

identified and is defined as:
TP

= (2.3)
TP+FN

R

True negative rate/Specificity is the inverse of Recall and quantifies the proportion of negative cases

that were correctly classified.
TN

== (2.4)
TN+FP

SPC

False positive rate/Fallout is the proportion of negative cases that were incorrectly classified as positive:

Fp
FPR= —— (2.5)
FP+TN

False negative rate/Miss Rate is the proportion of positive cases that were incorrectly classified as

negatives:
FN
FNR= —— (2.6)
FN+TP

False Discovery Rate is the proportion of false positives among all positive predictions.

Fp
FDR= ——— (2.7)
FP+TP

Accuracy is the total number of correct predictions :

TP+TN

= (2.8)
TP+TN+FN+FP

F-Score [Rijsbergen, 1979] is defined as the harmonic mean of Recall and Precision:

R-P
F1=2.-——
R+P

The F—Score, also known as F1 - Score, is a particular case of the Fg metric that favors Precision if § > 1

and Recall if 8 < 0 and is given by:
F—(1+ﬁ2)-& (2.9)
p= (B2-P)+R '

The F-Score uniformly balances the importances of Precision and Recall.

G-measure [David, 2011] is the the geometric mean of Recall and Precision:

G=VP-R (2.10)
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Matthews correlation coefficient [Matthews, 1975] is the correlation coefficient between the GT and
detection binary classifications that can take values between —1 (inconsistency between the GT and

detections) and 1 (perfect prediction):

_ TPxTN—-FPxFN
B V(TP+FP)(TP+FN)(TN+FP)(TN+FN)

McCC (2.11)

ROC ROC graphs are an alternative tool used for the comparison of classification models. The ROC
plot represents the FP rate on the X-axis and the TP rate on the Y-axis. The classification model
can depend on a parameter that gives more or less importance to TP compared to FP. Each (FP,TP)
configuration leads to a different ROC curve. If the classifier does not use any parameter, the ROC plot is
represented by a single point which corresponds to a (FP,TP) pair. An example of such a curve is given
in Figure 2.4.

An ideal classifier, that correctly detects all the texts, should be represented by a curve that climbs
fast toward the (0, 1) point (top left corner of the plot). Then, the false positive rate is 0 while the true
positive is 1. A classifier that outcomes all detections to be positive is represented by the (1,1) point.
Similarly, the point (0,0) depicts a model whose detections are all negative. Finally, the classifier for
which all detections are incorrect is represented by the point (1,0). One of the advantages of the ROC
plot is that, as stated in [Swets, 1988], it summarizes all the data in the confusion matrix. Moreover, it
provides a visualization of two main characteristics: the classifier’s capacity of correctly detecting and

the proportion of negative texts that are incorrectly detected.
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False Positive rate (100-5Specificity)

Fig. 2.4: AUC measure corresponding to the surface under the ROC curve®® (dark blue) depicted with
vertical blue lines.

Area under the curve (AUC). The two-dimensional representation given by the ROC plots provides
a straightforward visualization of a classification output. The accuracy of the classification model

28Credit: http: //i.stack.imgur.com/5x3Xj.png
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Fig. 2.5: Matching cases (GT is represented by dashed rectangles and detections by plain line rectan-
gles).

depicted with a ROC plot, can further be computed using the area under the ROC curve [Swets, 1988].
This measure is called Area Under the Curve (ROC). An illustration is given in Figure 2.4.

Euclidean distance comparison. A different approach used for calculating the performance of
a classifier from a ROC curve is to use the Euclidian distance. Based on the Euclidean distance (dg)
between the “ideal” point (0,1) and a given point (FP,TP), an accuracy performance measure is derived
as:

dp=VW-(1—-TP)2+(1-W)-FP? (2.12)

W is a weight parameter that assigns the importance given to FP, respectively TP. The values for dg
range from 0 (perfect classification model) to v/2 for a model that has incorrectly detected all texts.

Despite the measurement diversity offered by the confusion matrix, the most used metrics for text
detection evaluation remain the Recall, Precision and F—Score. In text detection, the Recall is the
proportion of correctly detected texts with respect to the total number of GT texts, while the Precision
represents the proportion of correctly detected texts with respect to the total number of detections.
Over-estimating the number of detections decreases the Precision, while under-estimating this number

decreases the Recall.

Matching strategy

Besides the performance measurements, an evaluation protocol relies on a matching strategy, that
defines the relationship between a set of GT objects and a set of detections. Four types of matchings are

considered as illustrated in Figure 2.5:

(a) one-to-one: one detection matches exactly one text object;

(b) one-to-many: multiple detections match one text object;

(c) many-to-one: one detection matches multiple text objects;

(d) many-to-many: conditions (b) and (c) are simultaneously satisfied.

Two more scenarios can also appear: a false positive represents a detection that has no correspondence
in the GT; a missed detection denotes a text object that has no correspondence in the detection set.

In order to describe the matching type between the text objects and the detections, one needs to rely on
alocal evaluation, done at object level. Unlike the metrics discussed in the previous section, that are

Chapter 2 How are text detection chains being evaluated



2.5

computed globally, the local evaluation consists in computing, for each pair of text object and detection,
a matching value, commonly known as the overlap area ratio.

Quality matching evaluation. One of the first local measurements introduced for text localization
evaluation is the Jaccard index [Jaccard, 1901]. It measures the similarity between two sets A and B and
is defined as the ratio between the intersection and the union of these two sets: J(A, B) = %. Given a
GT object G and detection D, the Jaccard index can be seen as the intersection area between the GT text
object and the detection divided by their union area:

J(G, D) = AreacnArean (2.13)

Areag\JAreap

The Jaccard index can take values in the unitary interval: a perfect matching will get the value 1, while a
mismatch will be evaluated to 0. Two common overlap area ratio coefficients, that are derived from the
Jaccard index, have also been used to locally evaluate the quality of a matching. The coverage coefficient

measures the proportion of matched surface with respect to the GT object area, defined as:

Areag(Areap
Areag

Cov (2.14)

The accuracy coefficient on the other hand, measures how precise is the matching area with respect to

the detection surface:

Areag(Area
Acc = AreacNAreap (2.15)
Areap
We can divide the one-to-one mapping into four categories (see Figure 2.6):
perfect detection: the detection perfectly matches the GT object;
partial detection: the coverage area between the detection and the GT object is smaller than the
area of both objects individually;
over-detection: the detection area is larger than the GT object’s one and covers it entirely;
under-detection: the detection area is smaller than the GT object’s one and is entirely included

within.

Note. One can observe that when dealing with an over-detection, the Jaccard index becomes the accuracy
rate because the detection includes the GT object and hence their union is the detection surface itself.
Correspondingly, evaluating an under-detection using the Jaccard index is equivalent to use the coverage
measurement because here, the GT object encloses the detection box and hence their union is equal to
the GT surface itself.

Evaluation protocols in the literature

This section is dedicated to the existing evaluation protocols in the literature. In a first instance, we review
the main approaches used by the evaluation methods. Then, we individually analyze the protocols by
presenting their matching process as well as their advantages and disadvantages.

2.5 Evaluation protocols in the literature
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Fig. 2.6: One-to-one detection types; GT are represented by plain rectangles and detections by dashed
rectangles.

Minimum area constraint. Most of the current algorithms consider a detection as valid (respectively
a GT text object as matched) if the local measurements (overlap area ratios) satisfy a minimum over-
lap [Clavelli et al., 2010], [Karatzas et al., 2013], [Mariano et al., 2002], [Lucas et al., 2003], [Lucas, 2005],
[Nascimento and Marques, 2006], [Wolf and Jolion, 2006], [Shahab et al., 2011]. Such an approach vali-
dates all matchings for which the local measurement is higher than a predefined threshold and rejects
all others. This is however a problem, because most of the time, the detection is evaluated in a binary
manner with scores equal to 1 or 0, depending if the minimum overlap constraint is satisfied or not.
Hence, if we compare two localization systems, one that partially detects a text (without satisfying the
overlap constraint) and one that entirely misses the text both will get the same score, which makes their
comparison unfair, as seen in Figure 2.7. In other cases, if the minimum area constraint is not satisfied
the detections can even be counted as FPs, decreasing the Precision rate. The overlapping area ratio
constraint misclassifies many GT text boxes during the matching protocol which results in low scores,
even when the detected boxes substantially overlap the GT ones. Also, the scattering scenarios are poorly
treated. For example, if a GT text box is matched with multiple detections, only the detections that satisfy
the area constraint will be considered, while the other ones will be rejected.

B3l

E ‘Q/g E i

Text not detected; ICDAR’13  Partial detection (red
Inkam method rectangle); ICDAR’13
Text_detector_CASIA method

Fig. 2.7: An example of irrelevant score. Both methods get Recall and Precision scores equal to 0 during
the ICDAR 2013 RRC evaluation protocol because none of them satisfied the constraint.

Best match approach. Beside the minimum area constraint, some evaluation protocols imply a best
match approach which consists in assigning only one GT object to a detection, regardless of the real
number of matched GT objects. In many cases, when the GT annotation is done at word level, a text
detector that produces line level results can be frequently penalized as evaluation protocols cannot deal
(or deal too coarsely) with granularity differences.
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Score normalization approaches. Usually the final scores, such as the Recall or Precision, are a
result of a normalization of the sum of local measurements. Sometimes, this normalization is done with
respect to the number of images in a given dataset. While this seems to be the natural way of doing
this, it can severely distort the scores. For example, an image containing a single GT text will weight
more in the computation of final scores than an image containing one detected GT object and one
undetected GT object. The normalization could also be performed with respect to the total surface of
all GT and detection objects. In such case, small objects would contribute less to the final scores than
the larger ones. In text detection, smaller objects are not necessarily easier to detect than the larger
ones. Other approaches normalize the local measurements with respect to the total number of GT
objects and detections. Then, all GT objects, respectively all detections, are treated equally, regardless of
their surface. This last approach remains the best compromise as all objects equally contribute to the

performance of a detector.

In the following sections we detail the existing evaluation protocols, in an alphabetical order, by pro-
viding their matching strategy and performance measurements. Also, for each protocol, we summarize
their advantages and drawbacks. Fifteen evaluation frameworks are being analyzed: Anthimopoulos’s
protocol (Section 2.5.1), Clavelli’s protocol (Section 2.5.2), CLEAR metrics (Section 2.5.3), CUTE80
(Section 2.5.4), DETEVAL (Section 2.5.5), Hua’s protocol (Sectio 2.5.6), ICDAR’03 (Section2.5.7), Ma’s
protocol (Section 2.5.8), Mariano’s protocol (Section 2.5.9), MSRA-TD500 (Section 2.5.10), Nascimento’s
protocol (Section 2.5.11), PASCAL metrics (Section 2.5.12), Shivakumara’s protocol (Section 2.5.13),
VACE metrics (Section 2.5.14), Yi’s protocol (Section 2.5.15) and ZoneMap (Section 2.5.16).

From now on, let us consider the set of GT objects ¢ defined as ¢ = {G;};-1..n; and the set of detections
2 defined as 9 = {D} j=1..n;,, where G; represents a GT object and D its corresponding detection. Ng
denotes the number of GT objects in ¢, and Np the number of detections in 2. Area(x) will be used to
denote the area (in pixels) of an object (GT text or detection) x.

Anthimopoulos’s evaluation protocol

In [Anthimopoulos et al., 2010] an evaluation method was proposed based on the estimation of the
Tt
[T
representing the character and space ratios. The number of characters in a text line r; is here considered

number of characters rn. in a text line computed as n, = where r. and r; are two constants,
as proportional to the ratio width w; to height h; of that text line. Based on this assumption, the
contribution of each box to the overall evaluation is defined as r; = w;/ h;. The overall performance is
then computed based on the Recall and Precision of the area coverage, normalized by the approximation

of the number of characters for every text line. This gives the following redefinition of Recall and

Precision:
zNG GDI; ZND DGlj
i=1 "hg? o j=1 hdj?
Recallem = N(;A—rea(Gi)’ Preczszonem = W (216)
i=1  hg? j=1 hdjz,

where hg; is the height of GT object G; and hd; the height of the corresponding detection box D;. GDI;
and DGI; are the corresponding intersections computed such that minor inconsistencies between the
GT and the detection sets are not penalized:

Area(Gi((U; 3 D))

Area(Gj) { = th
GDI; = ’ ArealCs (2.17)
Np ) Area(Giﬂ(szle))
Area(GiNWUE D)) if —eacdy—— < th
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Ne
A (D;iNU.Z Gi))
Area(D) if %&1’ >th

N . Area(D;NU,S G))
Area(D;N(U;5 G)) if W <th

DGI; = (2.18)

Finally, the F-Score metric is computed to get a global measurement.

Anthimopoulos’s evaluation protocol: advantages(") and disadvantages ()
/" relaxation of localization errors;
/" non-binary local evaluation;

// notvery accurate since based on approximations;

/\ no details on how the different types of matchings are handled.

2.5.2 Clavelli’'s evaluation protocol

Clavelli et al. [Clavelli et al., 2010] proposed a multi-level annotation scheme which consists in repre-
senting text objects at pixel (text part), atom (e.g character), word and line levels. This framework can
evaluate text segmentation tasks, when text objects are represented at pixel and part levels, as well as
localization applications when text is represented at character level.

The matching protocol is based on two thresholds: T, and Tmax, used to validate the matchings
between a GT and a detection represented by a set of connected components (CCs). The default values
are set to: Trpin = 0.9, Tmax = min(5,0.5- T), where T corresponds to the thickness of the text part. Based

on this, the detection CCs are classified into several categories, presented in Table 2.3.

Tab. 2.3: The detection types handled in [Clavelli et al., 2010].

Detection type Matching Minimal coverage Maximal coverage
background false positive
fraction one-to-one not satisfied satisfied
whole one-to-one satisfied satisfied
. satisfied collectivel
. satisfied for all text S Y
multiple many-to-one arts for the combination of
P the covered text parts
. satisfied collectively
. . not satisfied at least for ..
fraction & multiple many-to-one for the combination of
one text part
the covered text parts
mixed if any other case occurs

The matching at word and line levels is done with respect to the ability of a detector to group character
blocks. Recall, Precision and F-Score are computed with respect to the number of correctly extracted

atoms with respect to the two coverage thresholds.

32 Chapter 2 How are text detection chains being evaluated



Clavelli’s evaluation protocol: advantages(,”) and disadvantages ()
/" separation of matching types;

/" accurate evaluation due to the minimum text granularity level;

./ binary local evaluation due to the use of thresholds Tiin, and Tiax;
,/ can not handle word and line level texts represented with a bounding box annotation;
./ one-to-many scenarios are not handled;

// requires a character level detection and a grouping stage for word and line detections.

2.5.3 CLEAR metrics

The CLEAR metrics have been proposed by the authors in [Kasturi et al., 2009]. The accuracy of a
detector is calculated based on the number of detection failures m; and false positives, FP. Then, for
each frame ¢, a Multiple Object Detection Accuracy (MOD A) measure is computed in the following
manner:

Cm -Mmy+cr-FP
MODA(f) =1— %
NG

(2.19)
where ¢y, and cy are the cost functions corresponding to the missed detections and false positives and
N(Gt) is the number of GT objects in the t*"* frame. c,,, and ¢ '+ are scalar weights that can be set depending
on the application. For a set of frames, the accuracy is computed using a Normalized MODA (N_MODA)

metric:
ZNframes

N_MODA=1- Zi=t Cm it & FE)

Ny 0) (2.20)
e N
The Jaccard index is used to compute the MappedOverlapRatio between the GT and the detection

results:
(1)

Nonapped Area(GEn N DE.[))

(2.21)
izt Area(G"UD)

MappedOverlapRatio =
where Gg” is the i’ GT object in the t'" frame, Dgt) is the detection object corresponding to th), and
N® denotes the number of matched object pairs in frame ¢. The Multiple Object Detection Precision

mapped
(MODP) for each frame t is computed as:

M dOverlapRati

Mopp(p = Marre ik fo) (2.22)

mapped

Similar to N — MODA, the Normalized MODP is given by:
Nframes
’ MODEP(t)

N-MODP = i1 (2.23)

frames

CLEAR metrics advantages(,") and disadvantages ()

/" provides both quantity (MODA) and quality measurements (M ODP);

2.5 Evaluation protocols in the literature
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34

/" used to evaluate other object detection applications;

/ one-to-many, many-to-one and many-to-many matchings not treated;

// the normalization of N — MODP is done with respect to the number of frames in the database.

CUTES8O evaluation protocol

The evaluation protocol described in [Risnumawan et al., 2014] and associated to CUTE80 dataset
handles curved text lines represented by a set of polygon points. The matching strategy consists in
establishing the minimum intersection area, a;, between the GT G; and the polygon area of a curved
text line detection D, defined as:

Area(Dj)
a; = (2.24)
Area(DjUG;) — Area(D;NG;)
Global scores are computed using the well-known Precision, Recall and F-Score metrics:
Recall = =% (2.25)
Ng
Precision = Lidi (2.26)

D

CUTES8O evaluation protocol: advantages(,) and disadvantages ()
/" handles curved text;
/" non-binary local evaluation;

,/ only one local measurement is used for computing the recall and precision;

/\ no details on the different matching scenarios;.

DetEval evaluation framework

DETEVAL is an evaluation protocol [Wolf and Jolion, 2006] used during ICDAR 2011 and ICDAR 2013
RRC (Challenge 1 and Challenge 2). The local evaluation is done based on the arearecall A, = %"‘Qfﬂ

. . A GiND; . . .
and area precision A, = %g]_)]) that need to satisfy the following conditions:

A =1 (2.27)
Ap=ty (2.28)
Ng
YAzt (2.29)
i
Np
Y A=ty (2.30)
J
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where 7 and 1, € [0, 1] are the area recall and precision constraints. The matching between a GT object
and a detection is then decided based on the following constraints:

1 if G; matches exactly one detection box
(Equations 2.27 and 2.28 satisfied);
0 if G; is not matched by any detection box;
MatChG(Gi,@,tr,tp) =4 (2.31)
(Equations 2.27 and 2.28 not satisfied);
fsc(l)  if G; is matched by k detection boxes

(Equations 2.28 and 2.29 satisfied)

1 if D; matches exactly one GT box;
(Equations 2.27 and 2.28 satisfied);
0 if D; does not match any GT box;
Matchp(Dj, 4, ty, tp) = 4 (2.32)
(Equations 2.27 and 2.28 not satisfied);

fse(k) if Dj matches k GT boxes

(Equations 2.27 and 2.30 satisfied);

fsc(k) represents a fragmentation level applied if a GT object is matched multiple times. The Recall and
Precision are then computed as following:

Y. LiMatchg(GF, DX, 1, 1)

RoB(G,D, tr, 1) =
" Y, | GF|

(2.33)

Y X Matchp (DX, GX, tr, 1)
X, | D¥|

The DETEVAL tool also proposes an alternative set of metrics, based on the AUC and a visual representa-

POB(G_)Dy trr tp) =

) (2.34)

tion thought ROC plots, with the objective to capture the complexity of the results given by a detection
algorithm. It consists in characterizing both the quality and the quantity natures of a detection set.
Compared to the default version of DETEVAL, the only difference is the way of computing the global recall
and precision values, while the local object matching rules remain the same. The recall and precision
values are computed over a range of 20 different area threshold values used to obtain the AUC graph and
then averaged to give two overall metrics, Roy and Poy in the following manner:

1 T
ROV——TZ D,ilT, tp)+2—ZROB(GD tr,ilT) (2.35)

1
POV_ﬁZPOB(GD ilT, tp)+2—ZPOB(GD tr,ilT) (2.36)
i=1

DETEVAL framework advantages(,”) and disadvantages ()

/' quantity/quality characterization of detections;

2.5 Evaluation protocols in the literature
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36

visual tool for representing the detector’s performance.

many-to-one matches are often dismissed due to Equation 2.30;

one-to-many matches are often dismissed due to Equation 2.29;

NONON N

partial matchings are discarded when the thresholds in Equations 2.27 and 2.28 are not satis-
fied;

N

binary local evaluation for one-to-one matchings.

Hua's evaluation protocol

The evaluation protocol introduced in [Hua et al., 2001] assigns a detection difficulty level to each GT
object of a dataset: Initial Level, Textbox Height, Textbox Width, Character Height Variance, Skew Angle,
Color and Texture, Background Complexity, String Density and Contrast. Based on a Detection Difficulty
value denoted as Lpp and a Recognition Importancelevel RI, the authors give a Detection Importance
rate DI to each GT object G; and computed as:

DI(G;) = Lpp(Gi) - RI(G;) (2.37)

Then, for each GT-detection pair (G;, D;), with ¢ representing their overlap area and E(x) denoting the
number of Sobel edge points of a text box x, the authors define a DD-independent text box detection

quality Qpp as:
E(Dj-o)

2.38
E(Dj) ( )

QDD(Gi) - QO(C)I/ LDD(Gi)' where QO(C) =1-

Two detection qualities, Basic quality (Qy(G;)) and Fragmentation Quality (Q rr( f)), are then used to
compute the total quality rate Q(G;):

Q(Gy) = Qp(G)Qfr(Gy), (2.39)
with
Y. prezc. (Qpp(DxNGHE(DrNGy))
Qp(Gy) = - (2.40)
maX(E(Gi)yZDke@Gi E(DrNGy)
\/ZD,CE@GL. E(DrNGy)?
Qrr(Gy) = , (2.41)

Y peaq, E(DkNG)

where Dy € 9, corresponds to the set of detection objects that matched the GT box G;. Finally, the

overall detection rate DR is:
_ Yieng Q(Gi)DI(G))

DR =
Y ieng DI(Gi)

(2.42)

Hua’s evaluation protocol advantages(, ") and disadvantages ()
/" takes into account the detection difficulty of text objects;

/" non-binary local evaluation;

// matching strategies not clearly exposed;
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/. many-to-one matchings not treated;
 final score is highly dependent on the subjectivity of the annotators;

,// too many subjective parameters.

2.5.7 ICDAR’03 evaluation protocol

2.5.8

The ICDAR'03 protocol [Lucas et al., 2003] was used to evaluate the text localization performance during
the RRC. This evaluation framework is based on the best match approach m(r, R) which assigns for each

rectangle r in a set of rectangles R the maximum matching area m,:
m(r, R) = max{m,(r,r")|r' € R}

Here, the matching area m,, corresponds to the Jaccard index, which computes the ration of the intersec-
tion and union of two object surfaces. The Recall R;¢cpario3 and Precision Prcparioz are then computed
over the set of GT objects ¢ and detections 2 in the following manner:

N6 m(G1,2)

Ricparos =
Ng

08 m(D;,4)
PICDAR’OS = N—D

The final ranking of the participants is given by the classic F-Score. In practice, the match score m,, is
taken into consideration as long as its value is greater than 0.5.

ICDAR'03 protocol advantages() and disadvantages ()

/" non-binary local evaluation;

.~ highly penalizes algorithms detecting text lines (many-to-one matchings) due to the best match
approach;

./ partial matchings allowed only if the detection box does not exceed the boundaries of a GT
object;

// not dealing with one-fo-many matchings due to the best match approach.

Ma’s evaluation protocol

In [Ma et al., 2007] a word-level evaluation is proposed, where GT texts are clustered with respect to a
proximity criterion. Two matrices, RM and PM, are defined to establish the local performance between
a GT object G; and a detection D;:

Area(G;NDj)
Area(G;j)

Area(G;NDj)

RM(i, j) = Area(E;)

) PM(i, j) = (2.43)

2.5 Evaluation protocols in the literature
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A binary matching matrix M is then computed based on a minimal coverage constraint:

1 if RM(i, j)=th
M, j) = (2.44)

0 else

where th is a threshold to fix. For each GT object detected several times (one-fo-many match) only the
maximum overlap area is considered:

RG(i) = max(RM(i, j)) (2.45)
J

The Recall and Precision are then redefined as:

¥ N6 max; (RM(i, j)) Y32 PE())

Area_recall = , Area_precision= , (2.46)
Ng Np

where PE(j) is the sum of PM(i, j) corresponding to the largest cluster that can be formed by the covered
GT objects. The protocol also proposes an overall metric measuring the false positive rate defined as:

ZDkE@pp Area(Dk)

(2.47)
Zj.szl Area(Dj)

Areaggise =

where Zrp represents the set of FPs in 2.

Ma'’s evaluation protocol: advantages(,”) and disadvantages ()

/" many-to-one matchings are handled;

/ one-to-many matching poorly treated;
/. many-to-one matchings are penalized if covered GT objects do not belong to the same cluster;

// binary local evaluation.

Mariano’s evaluation protocol

In [Mariano et al., 2002], authors proposed three sets of evaluation metrics for video sequences: three
pixel-count based metrics, two area-unconstrained object based metrics and two area-constrained object
metrics. The first set of metrics (pixel-count based metrics) are Area-Based Recall for Frame, Area-Based
Precision for Frame and Average Fragmentation computed according to the following equations:

Ntrames Nframes
= Area(Ugw) x Rec(1) ! Area(Unwm) x Prec(t)
OverallRec=="="——— < , OverallPrec=="~1— Dt
¥, e Area(Ugn) ¥, Area(Up)
(2.48)
Frag(G\") = 1 (2.49)
i 1+ lOglO(NDmﬂG(,”)

where Ugw and Up represent the spatial union of the text objects in the GT frame G'”, respectively

the union of text boxes in the detection frame D'Y. N frames Tepresents the number of frames in the GT,

Rec(t) — Area(UDm ﬂUG(t)) Area(UDm n UG([))
Area(UG(,)) Area(UDm)

D is represented by N,

and Prec(t)=1- . The number of output boxes in the frame

(ClaTelCN
13
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The second set of metrics is composed of the Recall and Precision measurements on three levels: object,

frame and set, obtained in the following manner:

Area(GE” NUpw) Area(Dy)ﬂUGEn)
ObjectRecall(G{") = TN BoxPrecision(D'") = — (2.50)
Area(G;") I Area(D}")
N
{\icm ObjectRecall(G") Zj:Dlm BoxPrecision(G%”)
Recall(t) = =1 L y Precision,(t) = (251)
Nguw Npo
Nframes Nfrumes . .
= Ngw x Recall(1) >, Npw x Precision(t)
OverallRecall = ==L —-C= . OverallPrecision= =1~
Zt:f{ames NG(I) Zl’:flrames ND(t)
(2.52)

The third set of metrics computes the Recall and Precision based on a binary matching strategy, where
GT objects and detections are validated if their overlap area satisfies a threshold T. Hence, Recall and
Precision are defined as:

Z?g‘lm” Loc_Obj_Recall(?)

Overall_Loc_Obj_Recall = ~ (2.53)
YL N
f=17°G
Nframes
Zf:1 Loc_Box_Count(t)
Overall_Output_Box_Prec = N , (2.54)
Zfil ND(t)
where Loc_Obj_Recall(t) and Loc_Box_Count(t) are computed as:
Neo
Loc_Obj_Recall(t)= ). ObjDetect(G\"), (2.55)
i=1
Npw
Loc_Box_Count(t) = Z ,BoxPrec(D;t)) (2.56)
j=1

The binary local scores B oxPrec(D;t)) and Obj Detect(GE”) are computed based on the minimum area
coverage approach (threshold ¢h) in the following manner:

.o Area(DP'NUGw)

1 i m— > th
Boxprec(D;”) = Area(D;7) (2.57)
0 otherwise
it Area(GPNU ) > th
(1)
ObjDetect(G\") = ArealGi7) (2.58)

0 otherwise

Mariano’s evaluation protocol: advantages(,”) and disadvantages ()
/" complex evaluation protocol;

/" global Recall and Precision averaged with respect to the total number of text objects;

2.5 Evaluation protocols in the literature
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./ binary evaluation for the third set of metrics;

/\ does not mention how different matchings are handled.

MSRA-TD500 evaluation protocol

The MSRA-TD500 [Yao, 2012] evaluation protocol is associated to the dataset with the same name. The
framework can manage oriented bounding boxes. The matching strategy is based on the overlap ratio
between a GT rectangle G; and a detection rectangle D;. In order to compute their intersection, the
two bounding boxes are axis-aligned by rotating G; and D; around their centers, from angles 6 and 0
respectively, and the result is then denoted by G?l and D?Z. The overlap ratio between G; and D; is then

the Jaccard index:
Area(G? an.Z)

J(G;,Dj) = (2.59)

Area(G]' UD%)

The detections are divided into true or false positives according to the overlap between the minimum
detection area rectangle and the GT rectangles. The protocol considers a detection as correct if the angle
of 0, and 0, are less than 7/8 and the overlap ratio is larger than 0.5. If multiple detections match the
same text line, they are considered as false positives. Overall scores are then computed using the well
known Precision, Recall and F-Score metrics.

MSRA-TD500 evaluation protocol advantages(") and disadvantages ()
/" can evaluate detections represented with oriented bounding boxes;

/" can handle many-to-one cases due to the text line annotation of the associated dataset;

./ can not handle one-to-many scenarios;
./ there is no distinction between partial and total detections;

./ binary local evaluation for one-fo-one matchings.

Nascimento’s evaluation protocol

Authors in [Nascimento and Marques, 2006] proposed an evaluation protocol for object detection algo-
rithms in video surveillance tasks. It evaluates separately the percentage of different types of matchings:
correct detection, false alarm, detection failure, merge region, split region and split-merge region. The
different matching scenarios depend on the overlap area between the GT and the detections that
should satisfy an area constraint. Finally, the evaluation framework produces six scores representing the
percentage of each of these matchings.

Nascimento’s evaluation protocol: advantages(,”) and disadvantages ()
/" separation of matching types;

/" adapted to video text detection;
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/. no global measurement is proposed;

// binary local evaluation.

2.5.12 PASCAL metrics

The PASCAL metrics proposed for the PASCAL Visual Object Classes (VOC) Challenge [Everingham et al., 2015]
consider a detection D ;, matched to a GT object G;, correct if the corresponding overlap area between
the two objects divided by their union area, denoted by a, (and equal to the Jaccard index), exceeds the

lue 0.5:
vae Area(G;ND;)

o= Area(G;UD;) (2.60)

The global performance of a detector is given by the average precision metric (AP), computed from the
average precision over a set of eleven recall levels [0,0.1, ..., 1] [Everingham et al., 2015]:

1
AP=— ) PDinterp(r), (2.61)
11 re001,...1)

where pjnerp(r) is the maximum precision for which the corresponding recall 7 exceeds r:
Pinterp = Max p(), (2.62)
rir>r
with p(7) representing the precision at recall 7.
PASCAL evaluation protocol: advantages(,”) and disadvantages ()

/" non-binary local evaluation;

/" provides a global performance score that captures the quality-quantity aspects of a detection.

./ penalizes partial one-fo-one matchings;

/ single global performance score.

/\ provides no information on how many-to-one or many-to-many matchings are being handled.

2.5.13 Shivakumara’s evaluation protocol
In [Shivakumara et al., 2009a], [Shivakumara et al., 2013], [Shivakumara et al., 2009b],
[Shivakumara et al., 2011] the authors proposed an evaluation framework in which the matching strategy
consists of classifying the text objects into the following categories:
Truly Detected Block (TDB): a detection that contains at least one valid character;

Falsely Detected Block (FDB): a false positive;

Text Block with Missing Data (MDB): a detection that covers less than 80% of the characters in a text
line.

2.5 Evaluation protocols in the literature 41
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The global performance scores are the Recall R, the Precision P, the false positive rate FP and the

missdetection rate M DR computed as:

TDB b TDB — FDB MDB
ATB’ " TDB+FDB’ " TDB+FDB’ TDB

where AT B represents the number of actual text blocks. The F-Score is finally used to combine R and
P.

Shivakumara’s evaluation protocol: advantages() and disadvantages ()
/" allows both fully and partially detected text lines;

/" provides a complex set of metrics.
./ no separation between partial and perfect detections;

/\ provides no information on how one-fo-many or many-to-one matchings are being handled.

VACE Metrics

In [Kasturi et al., 2009] a Frame Detection Accuracy (FDA) overall performance measurement was intro-

duced to evaluate a set of GT-detection matchings based on the best spatial overlap approach:

Overlap_Ratio

Nt Np , (2.63)
2

FDA=

where Overlap_Ratio is the sum of all Jaccard indices between the GT objects G; and their correspond-

ing detections D; defined as:

Nmapped Area(G;ND;)

o Area(G;UDj)’ 2.64)

Overlap_Ratio =

and Ny, appeq TEpresents the number of matched text object pairs between the GT and the detection set.
Small matching inconsistencies are avoided by thresholding this overlap ratio. The proposed thresholded

overlap ratio is computed as:

Nmapped  pp A T(i)

Thresholded Overlap_Ratio = l:Zi AreaGiUD)’ (2.65)
where FDA_T (i) is computed with respect to a threshold value ¢4 in the following way:
Area(GiND)), i Freqorp = th
FDAT()={ Area(GiUD)), if Froqagpy < th and thelo, 1] (2.66)
0, if Froaeigpy < thand the (0,1)
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VACE metric advantages() and disadvantages ()
/" relaxation of localization errors;

/" non-binary local evaluation.

// no clear separation between the recall and precision;
/ one-to-many or many-to-one mapping are not considered;

.~ normalization of all FD A to the number of frames in the database.

2.5.15 Yi’s evaluation protocol

In [Yi and Tian, 2011b], the authors proposed an evaluation protocol that deals with inclined text lines.
It consists in computing the precision of a detected text line D?l with respect to a GT text line G?Z, with
0 and 0, denoting the slant angles corresponding to the two objects:

Area(G?2 ﬂD?l)
Py =———1 (2.67)
Area(Djl)

Yi’s evaluation protocol: advantages(,) and disadvantages ()
/" more accurate evaluation due to an adaptation to inclined texts;

/" non-binary evaluation;
/. no Recall value;

/\ different matching strategies not explained.

2.5.16 ZoneMap metric

The ZoneMap metric proposed in [Galibert et al., 2014] is a generalization of the metric proposed
in [Mao and Kanungo, 2002] and the DETEVAL framework [Wolf and Jolion, 2006] used for evaluating
page segmentation and area classification in documents. It computes different error rates based on two
coverage rates CD],,GI, and Cg;,p i between a GT object G; and a detection D; as:

Area(D;jNGy)

(2.68)
Area(Dj)

CDj,Gi =

Area(D;NGy)

Area(G;) (2.69)

CG,‘,Dj =
For each match, a force link, fg, p i is computed as a combination of the two coverage rate values:

fo.p; = C,p, +Ch, , (2.70)
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ﬂ. Definition of link forces betweeﬁ
zones in hypotheses and references
: ‘ 3 A B c D E F

3 } 1 1 0 084 0 0 0 0
2 0 119 0 0 0 0
[ 30 0 101 123 113 0
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(A):(B.1,2); (C.4.6) . (D,E,3), (F.5)

/
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\

M
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Fig. 2.8: Zonemap framework [Galibert et al., 2014].

The final score is the error rate, Ezonemap:

EZoneMap =—, 2.71)
where E; is a linear interpolation of a surface error rate Es and a classification error E¢ defined as:
E=(1-a)Es+a.Ec, 2.72)

where a € [0,1] is the weight assigned to the surface rates. Es and E¢ are given depending on the
matching type.

ZONEMAP metric advantages() and disadvantages ()

/" one-to-many mappings handled;

// many-to-many matchings are not allowed;

/. one-to-many and many-to-one matches are treated in the same way.

Text detectors and used evaluation protocols

Despite the diversity of protocols used for text detection purposes, most of them still lack accuracy
or are not sufficiently elaborate to deal with the complexity of the detection scenarios that can occur.
Table 2.4 summarizes a series of recent text detection methods and their experimental details. For each
text detector, we mention the used datasets and evaluation protocol. Existing inconsistencies, related to
the used evaluation procedures, are signaled in the last column of this table. Based on Table 2.4 we can
make several conclusions:

Chapter 2 How are text detection chains being evaluated



1. The majority of text detectors are evaluated on the ICDAR databases.
2. The ICDAR'03 protocol is still used despite its well-known drawbacks (see Section 2.5.7).

3. The DETEVAL protocol is by far the most used framework for evaluation purposes. However, only
a few number of text detection methods specify the chosen configuration when evaluating their

results.

4. Asignificant number of text detection methods use as evaluation procedure “traditional” Recall,
Precision and F—Score, without providing any information on how they were obtained or on the

implied matching strategy.

5. A number of works need to manually change their level of detection to cope with the granularity
imposed by the majority of protocols, mainly passing from a line level detection to a word level
one. Most of the times, the way this is done is not even explained.

6. The comparison between detectors is often wrong because it is based on the results obtained not
with the same evaluation protocol, but with different ones.

Based on these statements, we can conclude that there is no unified evaluation protocol used by the text
detection community. While only few works question the reliability of the existing protocols, most of
the time they propose different solutions to avoid the restrictions imposed by these protocols instead
of directly tackling the encountered problems. While the biggest interest is given to text detection
approaches, a reflexion on the validity of the used evaluation protocols seems to be neglected. Hence,
we believe that a more significant importance should be given to the manner in which text detectors
are being evaluated. The objective of the following chapter is to propose an evaluation framework that
solves many of the existing problems discussed herein and that can deal with the diversity of outputs
produced by detection methods.

2.6 Text detectors and used evaluation protocols

45
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This chapter describes the full chain of our evaluation for text detection systems, called EVALTEX. We are
interested in covering all aspects: the ground truth annotation choice, the applied matching strategies, as
well as the metrics used to compute the local and global scores.

In order to evaluate the performance of a text localization algorithm, we adopt a two-level ground
truth annotation for each image (see Section 3.2): first, each word is bounded by a rectangular box;
then, we group several words and bound them into text regions. This two-level annotation is then
used to compare the ground truth text objects with the detection results. Based on the overlap be-
tween the GT and the detection objects we determine to which type of matching a GT object be-
longs to: one-to-one, one-to-many, many-to-one or many-to-many. Depending on the matching
type, we compute a dedicated set of performance metrics for each GT object (see Section 3.3). Next,
we compute global scores for an image or a whole dataset (see Section 3.4.2), by providing both
a quality and a quantity evaluation of the detection results. Finally, we show how EVALTEX can
be extended to any irregular text representations, such as polygonal, elliptic or even free-form ones.

Specifications for a reliable evaluation protocol

Before detailing the evaluation protocol proposed in this manuscript, we first need to enumerate the
series of constraints and assumptions that form the basis of EVALTEX. A reliable evaluation framework
should :

1. deal with different ground truth annotation representations;
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2. treat all four types of matching scenarios: one-to-one, one-to-many, many-to-one and many-to-
many,

3. treat the different matching scenarios consistently;

4. penalize the one-to-many cases as the detections are splitting the granularity of the GT elements;
5. treat equally different detection granularity levels within some well-defined limits and rules;

6. provide intuitive metrics, both at object and global levels;

7. provide a visualization tool, as an alternative to metric interpretation, capable of illustrating
intuitively the characteristics of a detection;

8. provide accurate evaluation results, independent of the target application;

9. offer a clear separation between the quantity aspect of a detection and its quality aspect;

Two-level ground truth annotation

In Section 2.2 we have discussed the diversity of issues related to the GT annotation. While some of
those issues still remain debatable (for example concerning annotator’s subjectivity), others, such as
the granularity inconsistency, can be overcome, as it will be shown in this chapter. For many evaluation
protocols, dealing with detection granularities different than the GT ones can lead to severe penalizations.
However, in many cases, we want to treat and score equally the different detection granularities (i.e.
word and line level). This can be done by dealing simultaneously with multiple GT annotation levels.
Hence, in our approach, we propose to annotate the GT by bounding, using a rectangular box, each
text object at a word level and then to manually group text boxes into regions following a predefined
criteria that will be defined in the following. Given a subset W of GT objects in 4 = {G;};=1..n;, we define

Reg (W) as their region if and only if:
Area(Reg(w)) <2)_ Area(G;),with G; e W 3.1)

In other words, the evaluation protocol considers text boxes as part of a same region as long as the
text area within the region is larger than the non text area. In practice, texts that are aligned in a same
row (respectively column) and having similar heights (respectively widths) can be grouped into regions.
Figure 3.1 illustrates some cases of dismissed region labeling due to the violation of the constraint in
Equation 3.1.

A region is therefore considered the box bounding one or several GT text objects. If a GT object cannot
be associated to others, then it is considered as a region itself. In Figure 3.2 two objects (words “HFC”
and “BANK”) are annotated belonging to two separate regions, because their association violates the
constraint in Equation 3.1. The reasoning behind the region labeling is based on two aspects. First, we
do not want to penalize the scores for detections covering several text boxes (many-to-one detections),
as long as the covered boxes belong to the same region. When a detection exceeds the boundaries of

a GT text object, the Precision is obviously penalized. Hence, when a detection matches several GT

Chapter 3 EVALTEX evaluation tool



HOME *
© 4
ENTERTAINMENT

Fig. 3.1: Examples of invalid text region annota- Fig. 3.2: GT objects (labeled in red) that
tions (black rectangles) due to the fact that the non o

textual area within the region is larger than the text
area.

are also single regions (yellow rectangles).

objects, the existing non-text area within the detection will contribute to the decrease of the Precision
value. By region labeling the GT, all matched GT objects are treated as a single object and hence an

unfair Precision penalization is avoided.

Secondly, it is essential to produce a comparable and undifferenced evaluation for algorithms that
produce the same results, but at different detection levels (i.e. word and line level). Often, the different
output levels depend on the choice of the text detection approach. Connected component based text
detection methods are able to extract characters and therefore can provide a more precise character or
word level. On the other hand, texture-based approaches have more difficulties in correctly defining the
exact boundaries of a text region. They rely on the extraction of texture features from pre-defined size
image blocks. A classifier then decides whether the blocks contain textual information or not. Therefore,
the detection box is rather an estimation of the text localization than a precise set of text coordinates.
However, the detection output can also be influenced by the grouping step. Once text candidates have
been detected, they can be grouped into larger text areas: words, single text lines or even larger text
regions (multiple lines).

Example. Figure 3.3 describes the proposed two-level annotation. In Figure 3.3a the GT annotation
is done at a word level, while in Figure 3.3b we show the region level annotation. If we suppose these
two figures correspond to the outputs of two detectors, an efficient protocol should evaluate equally
the two sets of detections and produce equivalent scores for both methods.

In practice, the region level annotation consists in assigning to each GT object a tag, or a region number.
Based on this, GT objects that have the same tag can be grouped to form a region. The practical usage of
the region tag is shown on the many-to-one matchings, during which a detection matches multiple GT

objects (see Section 3.4.1).

The arguments exhibited in this section lead to a legitimate conclusion: evaluation protocols should be
more flexible and designed to deal evenly with different granularity output levels instead of constraining
text detectors to conform to a specific granularity as this might slow down the research progress in the
text detection field.

3.2 Two-level ground truth annotation
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Lifelines Family Support

a b

Fig. 3.3: Two examples of GT annotation: (a) at word level; (b) at region level.

Matching strategy

The evaluation protocols designed to cope with object detections need to adopt a matching strategy
to make the correspondence between a set of detections and a set of GT objects. In the following, we
introduce two local detection properties: quality and quantity. The quality aspect refers to the portion
of a GT object’s area that has been detected or to how precise the detection is with respect to a GT
object. The quantity property is focused on whether a GT has been detected, or if a detection has a
correspondence in the GT.

Local measurements

To locally evaluate the quality of the matching between a GT object and a detection we define the
coverage and the accuracy metrics, equivalent to the Recall and Precision coefficients introduced in
Section 2.4.2. Let 4 = {G;};=1..n,; be the set of GT text boxes and & = {D;}j-1..n, the set of detections.
Ng (resp. Np) represents the number of objects in ¢ (respectively in 2). For each G; matched to a
detected box Dj, the coverage Cov; is computed as the ratio between the intersection area of G; and Dj;,

and the area of G;:
3 Area(G;Dj)

Cov; = 3.2
! Area(G;) 8-2)
For each G; matched to a detected box Dj, the accuracy Acc; is computed as the ratio between the
intersection area of G; and D, and the area of D;:
Area(G;N Dj)

Acci=———. (3.3)
Area(Dj)

The coverage and accuracy can be seen as local quality measures because they reflect the detection
quality of a pair (G;, D). On one hand, the coverage corresponds to the amount of the GT surface
matched to a detection, while the accuracy measures the amount of the detection surface that matches a
GT object. A perfect detection leads to a value of 1 for both quality coefficients; a partial detection gets a

value in the interval [0, 1] while the nonexistence of a matching is evaluated to 0.

Note. Commonly, in the literature, the coverage value is assigned to a GT object while the accuracy
is attributed to a detection. The EVALTEX framework addresses this in a different way. Both quality
measurements are assigned to GT objects. This approach does not disturb in any way the evaluation
truthfulness because the two detection characteristics are still counted. This adjustment was implied as
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3.3.2

a logical response to the way of interpreting many-to-one matchings as multiple one-to-one matchings.
A more detailed explanation is given in Section 3.4.1.

We have seen in Section 2.4.2 that the coverage and accuracy rates are special cases of the the Jaccard

index:
Area(G;)(NArea(Dj)

Area(G;)UArea(Dj)

J(G;,Dj) =

The advantage of using both the accuracy and coverage compared to the single Jaccard index is to capture
two different aspects of a detection. While the Jaccard index is a convenient metric for evaluating the
local complexity of a detector, the two rates are a more suitable choice if we want a better understanding
of the detection results.

Additionally, for each G;, respectively D, we assign a matching value, Gmatch; (respectively Dmatch;),
which takes a binary value, depending on the existence of an intersection between G; and a detection,
respectively between D; and a GT box. The matching value represents a local quantity measure, which
describes whether a GT object (respectively detection) has a correspondence in the detection set (re-
spectively GT) or not. The local quantity metrics are used for counting the number of valid GT and
detection boxes. For each object G; in ¢, Gmatch; is the metric that indicates if G; has at least one
correspondence in 2:

1 if3jew|Area(GiND;)>0
Gmatch; = (3.4)
0 otherwise

For each object D; in 9, Dmatch; is the metric that stores whether D; has at least one correspondence
in4:

1 if3ie¥|Area(G;ND;j)>0
Dmatchj = (3.5)

0 otherwise

Ground truth - detection relationships

The matching process consists in establishing the relationship between the detections and the GT text
boxes. Let us generally denote by >« the relation between the GT and its corresponding detections.
We then define the matching between a set of GT text boxes {G;,...G;, |{i1..ix € [1, Ngl}, and a set of
detections {Dj,...Dj, [{j1..j1 € [1,Npl} as (Gj, ...G;, < Dj,..Dj,).

The EVALTEX protocol handles the four types of matchings previously introduced in Section 2.4.2:

(a) one-to-one one text object D; in 9 matches exactly one text object G; in 9,
denoted by (G; >< Dj);

(b) one-to-many multiple text objects in 2 match one text object G; in ¢,
denoted by (G; >< Dj,...Dj,),with {j1...j;} € [1..Np];

(c) many-to-one one text object D; in 2 matches multiple text objects in ¥,
denoted by (Gi1 ---Gik >< Dj),With {ii..ig} € [1, Ngl;
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Fig. 3.4: Filtering procedure: matching detected boxes (blue) with GT boxes (dashed green); (a) the
tilted text causes an overlap between GT text boxes, (b) the character height variation (see the
letter “J”) causes the inclusions of GT text boxes.

(d) many-to-many conditions (b) and (c) are simultaneously satisfied;
this case is denoted by (G, ...Gj, >< Dj,...Dj,), with {i;..ix} € [1, Ng] and
{]1]1} € [1..ND].

The FPs are denoted by {¢ >< D;...D;}, with j < Np, while the missed detections are denoted by
{G1...G; >< @}, with i < Ng. The FPs decrease the precision of a text detector, while the missed de-
tections decrease the overall recall rate of a detector.

Filtering procedure

The rectangular text representation is easy to use for both an annotator and a detector, as it only requires
four coordinates to be defined. However, in natural scenes and digital images we often deal with
overlapping GT text boxes which can distort the matching results. This is usually caused by inclined
texts that is not well fitted by a rectangular box. Namely, when two GT objects overlap, a detection that
should be matched with only one of them could automatically be attributed to the other GT object. To
avoid such confusions, we apply a filtering procedure to determine if all GT text boxes associated to
a detection really corresponds to that detection. The filtering procedure mainly targets two scenarios:
partially overlapping GT text objects and total inclusions between GT text objects. These cases are
illustrated in Figure 3.4.

GT partial overlapping. The filtering process occurs when a detection matches a set of GT objects
that overlap. Hence, in the case of a many-fo-one match, we check if there is an intersection between
two or more GT objects. Let D; be a detection box covering two overlapping GT boxes G;, and G;,. We
then assign Dj to G;; and not to G, if the following area constraint is satisfied:

Area(Giz ﬂDj) - Area(Gil ﬂGiz) = Toverlapping : Area(Gig)) (3.6)

where Toperigpping is a threshold that regulates the amount of overlap area between two GT objects.
Tovertapping Was set to 0.1 in our experiments, which assures the filtering of objects that have a small
overlap area in the GT. By increasing Toyeriapping, We could reject valid GT objects that are part of a
many-to-one matching.

Chapter 3 EVALTEX evaluation tool



Example. Figure 3.4a illustrates the case of two overlapping GT boxes (in dashed green) because
they contain tilted text. In the proposed approach, the filtering procedure ensures that only the word
“inside” is matched to the blue detected box, while “intel” is discarded from the detection.

GT total inclusion. Another situation that can perturbe the matching process concerns GT boxes
inclusions: one GT box contains another or several GT boxes. If a detection covers a GT object that
includes one or more GT objects, two scenarios can be adopted:

1. consider all GT objects as matched;

2. consider only the bounding GT object as matched.

The first scenario favors text detectors that group detections into larger regions. However, following this
approach, one risks to over-evaluate an “abusive” detection, such as outputting the whole image or to
score GT objects that were never supposed to be detected. Consequently, the second choice remains
a better and more straightforward alternative. Similarly, let us consider D; a detection box covering
two overlapping GT boxes G;; and G;,. We then assign D; to G;, and not to G;, if the following area
constraints are verified:

Gi, € Giy; 3.7)
Cov(Gy)) = Cov(Gyy); (3.8)
Area(Gi, [ \Gi, (D)) < Area(Gj, [\ Gi,). 3.9

Moreover, if the many-to-one match corresponds to only two GT boxes, {G;, ;, >< D}, then the following
constraint also needs to be checked:
Acc(Gyy) = Ace(Gyy), (3.10)

If more than two GT objects are part of the many-to-one match, {G;,..;, >< Dj}, then the following
constraint needs to be satisfied:

Cov(Gj)) - Cov(Gyy) = Teoverage (3.11)

Note. The constraints in Equations 3.7, 3.8 and 3.9 ensure that the object G;, is totally included in
G,,, its overlap area (with the detection) is smaller than that of G;, and the intersection surface of all
three objects (G;;,G;, and D) is smaller than the intersection surface of G;; and G;,. Once these three
constraints are fulfilled, an additional verification is done based on the total number of GT objects
detected by Dj. If G;; and G;, are the only objects to be matched with D, then we exclude G;, if and
only if its accuracy is lower than the accuracy of G;,, as seen in the constraint of Equation 3.10. If more
than two GT objects are part of the matching with D; we then ensure that their both coverages are high
enough (i.e. the product of coverages higher than a threshold T¢operage has been set experimentally to
0.8).
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Example. Figure 3.4b illustrates the case of inclusion: the bounding box of the word “JAVA” contains
the bounding boxes of all words below it: “Mastering”, “the”, “JFC”, “3RD”, “EDITION”. In this situation,
the only matched GT text boxes are the words “JAVA”, “graphic”, “TM” and “2”, while the other words
are discarded from the detection. In order to be considered as matched, the removed GT objects
should be detected with individual bounding boxes and not part of a many-to-one scenario.

Performance evaluation

In this section we will describe the performance evaluation of a detector, based on the different matching
types described in the previous section. Firstly, a local evaluation is done, during which to each GT
object will get a coverage and accuracy value. Next, based on all local scores we will derive a set of global
scores to have a full characterization of a detector’s efficiency.

Local (object-level) evaluation

The local evaluation refers to the attribution of scores to each GT object independently. The local
measurements introduced in Section 3.3.1 are divided into two quality metrics (coverage and accuracy)
and two quantity metrics (GT and detection matching values). While the local quantity measurements
strictly depend on the existence of a match, the local quality measurements also depend on the type of
matching. Intuitively, a truthful evaluation protocol should interpret differently a one-to-one match and
a one-to-many match: for example, a detection that matches a GT object with an overlap area s should
be scored higher than the case where two detections match the same GT object with the total overlap
surface s. Hence, based on the matching type, we adapt the coverage and accuracy local metrics such
that:

. the quality scores of GT objects belonging to a one-to-one match are not penalized as the detec-
tions correspond to the exact GT reference granularity;

. the quality scores of GT objects corresponding to one-fo-many matches are penalized as the

detections split the minimum granularity reference;

. the quality scores of GT objects part of a many-to-one match are penalized as long as the involved
GT objects do not have the same text region tag;

. the quality scores of GT objects part of a many-to-many match are evaluated based on the

combination of quality scores corresponding to many-to-one and one-to-many matches.

One-to-one match

A one-to-one scenario consists in an exclusive match between a detection and a GT object. If a detection
box does not perfectly cover a GT box we refer to it as a partial match. In some cases, especially in
natural scene images, the content of GT objects can be hard to read, either because they contain very
small text characters or because of a blur effect. Assuming that a perfect match is rarely achieved, we
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want to not penalize the local quality scores in case of very small offsets between the position of a GT
text box and the position of its matched detection box. To do so, we vary the size of the GT text box G;,

by expanding or shrinking it with respect to a margin error.

Let G; be a GT text object and T}y, gin a regularization parameter. We then define a margin error m, for
G; by:

A G; . . .
. Tma,gin.% if height(G;) = width(G;) 812
o= .

A G; .
Tmargin #}E(éz) otherwise

Note. Tinargin is the parameter that regulates the thickness of the margin error with respect to the size
(in pixels) of a text box. This parameter was set during our experiments to 0.1 to make a compromise for

equally larger and smaller GT objects. However, very small GT objects should get very low margin values.

Since these objects are the hardest to detect due to their size, we proposed to set the margin error to 3 in
cases of m, < 3.

Let [xg;, YG,» Wa;, hg,;] characterize the GT text box G;, where xg, and yg, are its left upper corner
coordinates, and wg, and hg; its width and height respectively. Let us now define Ge; and Gr; as the

extended and the reduced text boxes of G;:
Ge; 1 [xG; — Me, YG, — Me, WG, +2- Me, hG, +2 - me] (3.13)

Gri:[xg, + Me, yG; + Me, WG, —2- Mg, hg; — 2+ M) (3.14)

Example. Figure 3.5 shows the reduced and enlarged boxes for a GT box. As it can be observed, the
margin error does not influence severely the GT box size. The reduced box slightly “cuts” the borders
of text, but it still remains readable.

a: Enlarged text box Ge; b: Reduced text box Gy,

Fig. 3.5: Illustration of the extended (left) and reduced (right) boxes, in red, obtained from a GT box
(dashed green).

In order to evaluate one-to-one detections, we use the defined coverage (Equation (3.2)) and accuracy
(Equation (3.3)) rates. Let us consider the one-ro-one matching (G; >< D;) and Ge; the enlarged GT box

corresponding to G;. Then, the accuracy measurement is computed as:

Area(Ge;(NDj)

Acc; =
Area(Dj)

) (3.15)
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Let us consider the one-to-one matching (G; >< D;) and Gr; the enlarged GT box corresponding to G;.
Then, the coverage measurement is computed as:
Area(Gr;N\D;)
Covj= ——— 1 (3.16)
Area(Gr;)

For any one-ro-one match between a detection box D; and a GT box G;, the accuracy measurement is
computed by considering the enlarged text box Ge;. This allows detections that are slightly larger than
the GT text box not be penalized by the extra detection area. Following the same reasoning, we compute
the coverage measurement based on the reduced text box G;,. This allows detections that are slightly
smaller than the GT text box not be penalized by the missing coverage area.

Impact of margin parameter. By increasing the value of the parameter Ty,4,gin the coverage and
accuracy values will increase equally. Hence, it is not recommended to give a very high value to this
parameter as it might degrade the detection evaluation. The experimental value of 0.1 allows only small
imprecisions for detections.

Example. Figure 3.6 illustrates the impact of Ty;,4rgin 0N the coverage scores obtained from matching
the GT object “4B.532” with a detection box that is smaller than the GT one. The coverage value of
the GT text when the margin option is disabled (Tr;4rgin = 0, see Figure 3.6a) is 0.68. By increasing
Tmargin, the margin error increases as well. As a consequence the size of the GT box is gradually
reduced which leads to a higher matching surface between the two objects and hence an increase
of the coverage values. This example illustrates the good choice of setting Ty;,4rgin to 0.1. When
higher values of Ty;4rgin are used, the GT object becomes too much shrinked (see Figure 3.6f) and
the reduced box does not represent anymore accurately the GT text.

The accuracy scores vary in a similar way when T4, gin increases. The only difference is that instead
of reducing the box, we enlarge it and then compute the matching area between the two objects.

d: Tyuargin=0.3, me =69, Cov=0.80 €: Tygrgin =04, me=93,Cov=085 f: Ty, 4in=0.5 me=116, Cov=0.88

Fig. 3.6: The impact of the Ty,4,4in value on the coverage scores of a GT text box (red) matched to a
detection (in green): (a) original GT box size; (b)-(f) shrinkage variations of the GT box.
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One-to-many match

The one-to-many case consists in attributing multiple detections to a singular GT text box. We refer to
this as a fragmented matching that, as already discussed in Section 3.4.1, will contribute to the quality
measurement penalization. Figure 3.8 illustrates three different one-ro-many cases involving one GT
object and two detections.

Fig. 3.7: Different one-to-many scenarios (detections are illustrated with dashed rectangles, the GT is
depicted with plain rectangle) with different fragmentations: (a) s; = 2; (b) s; =3; (¢) s; =4.

We have an ideal matching if each GT object is detected only once. But in some cases, a GT object
can be matched to multiple detections: we penalize such cases by applying a fragmentation rule. Let
F; be a fragmentation penalty with values in [0, 1], and s; the split level corresponding to the GT text
box G; (number of detections that intersect G;). Examples with different fragmentations are illustrated
in Figure 3.7. Let us consider the one-to-many match (G; >< Dj,...D; Jthat intersects G;. Then, the
coverage of G; is obtained as follows:

Cov; =Cov} - F;, (3.17)

where Covl?‘ represents the union of all intersection areas between Gr; and all detections Dj, with
j €1lj1,Js;], divided by the GT area, and defined as:
Js; ' '
Uj:j1 Area(GriNDj)
Area(Gr;)

Cov} = (3.18)
Let us now consider the corresponding accuracy for the text box G;, defined as the union of all intersection
areas between Ge; and all detections Dj, with j € [j1, js;], divided by the union of all detection areas:
Jsi _ _
Uj:j1 Area(Ge;(NDj)
UL, Area(D))

Acci = (3.19)

Equations 3.18 and 3.19 are usable only if the detections are disjoint (Figure 3.8a). We denote I as the
intersection of the detections (Dj,...D isi ):

Jsi
Ip=)D; (3.20)
J=h

If the detections intersect, either partially or totally as illustrated in Figures 3.8b and 3.8c, the two equa-
tions would count the intersection surface of the detections Ip twice. Then, in order to avoid summing
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a: Disjoint detections. b: Partially intersected detections. c: Included detections.

Fig. 3.8: Different one-to-many scenarios in which two detections (dashed rectangles) correspond to
one GT object (plain rectangle); here, s; = 2.

the surface of Ip multiple times, we recompute the coverage and the accuracy rates by subtracting it
from the union of the matching surfaces:

U™ Area(Gr;N\D:) - Ip
C u _ J= J
ov; = (3.21)
Area(Gr;)

U;.S:ijl Area(Ge;NDj)—Ip
Acci = 5 (3.22)
U].’:1 Area(Dj)

Note. The fragmentation is applied once during the computation of local quality measures to only
penalize the coverage (see Equation 3.17). In the literature, the fragmentation scenarios are generally
treated in three ways. First, the protocols that rely on a best match approach select the detection
with the largest matching area. When detections are included into others, the best match approach
completely forgives the one-to-many case by not considering the included detection (see Figure 3.8c) and
only validating the detection with the largest matching area. Here, the matching area is not penalized
due to the inclusion. In other situations, namely when the detections matched to a GT object are
disjoint or partially overlap (Figures 3.8a and 3.8b), this approach is even more penalizing, as it excludes
valid detection areas from the local measurement computation. Secondly, there are protocols that
count all the matching surfaces between the multiple detections and the corresponding GT object
but apply no penalization. A third category of methods that considers all detections, and applies
a fragmentation penalization. Such a technique, introduced in [Mariano et al., 2002] and later used

in [Wolf and Jolion, 2006], proposed the fragmentation penalty F; = with s; the number of

detections matched with a GT text G;. For example, using this metrics in Equation 3.17 to evaluate
a perfect one-to-many detection (Covl’.’ = 1) with two detections (s; = 2) leads to Cov; = 0.59. If the
same surface is detected three times (s; = 3) Cov; = 0.48, while four detections lead to Cov; = 0.42.
One can observe that, used as a fragmentation penalization (and not as an individual metric), F; can
be rather penalizing, especially when dealing with two detections. The advantage of this index is
however the linear growth property of the logarithmic function which ensures a consistent penalization
with respect to the fragmentation level. Other penalization metrics can also be used, as the EVALTEX
protocol evaluation is designed to allow adapting this fragmentation index with respect to the targeted
application. In this manuscript all experiments are conducted using the fragmentation index proposed

in [Mariano et al., 2002].
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Fig. 3.9: Example of a one-to-many case (“Yarmouth” word detected two times): one text box in ¢
(dashed green) is matched to multiple boxes in 2 (blue).

Example. The one-to-many case, illustrated in Figure 3.9 which shows the word “Yarmouth” being
matched to two different detection boxes. The coverage value computed without the fragmentation
penalization is Cov}' = 0.82. Since the word has been matched two times (F = 0.59) the final coverage
value is Cov; = 0.48. However, if only the detection matched with “Yarm” would take place, the
coverage would be Cov; = 0.44. Then the score difference between having only one detection and
having two detection would be 0.04. Hence, this fragmentation penalty is still not ideal, as it can
sometimes punish too much a one-fo-many matching. An alternative fragmentation penalty, that
provides a smoother transition between the scores obtained with different number of detections,
could be F] = 11Ty
obtain Cov; = 0.73, which is less penalizing than the score obtained with F;.

x 0.6+ 0.4 (see Figure 3.10). By applying F; to the text object “Yarmouth” we

Fig. 3.10: The fragmentation penalty proposed in [Mariano et al., 2002] in green, F; = ——~—

TG and our
-0.6+0.4.

proposed fragmentation penalty in purple, F| = m

Many-to-one match

The many-to-one case implies merging several GT text objects into one single detection. Our protocol
treats a many-to-one match as “many” one-to-one cases. This consists in partitioning the detection
surface into multiple areas and attributing them to each GT object.

Let us consider the many-to-onematch (G;, "'Gimj >< D), with m; representing the merge level (number
of GT objects associated to D;) matched to the detection box D;. Then, the coverage of each GT box G;,
in {G;, ...G,-mj} is computed as:

Area(Gri(N\Dj)

(3.23)
Area(Gr;)

Cov; =

While the coverage only focuses on the amount of valid matched text areas, the detection accuracy also
takes into account how much non textual areas (areas outside the GT box), illustrated in Figure 3.11 with
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a: No region grouping. b: Region grouping.

Fig. 3.11: Many-to-one matchings: one detection (dashed rectangle) matches multiple GT objects
(plain rectangles); the red surface corresponds to the non-textual surface; the white surface
corresponds to the valid GT area.

red, has been detected. Consequently, when a detection matches several GT objects, the non textual area
derived from the inter-object spacing should contribute to the penalization of the accuracy measurement.
Then, a truthful comparison between a word level detection and, for example, a line level detection
would not be possible. Following this reasoning, the one-to-one detections would always outperform
a many-to-one detection. However, in many cases, if not most of them, detecting at object level or
detecting at region level should be scored equally. The proposed solution, described in Section 3.2,
of assigning a two-level GT annotation solves this problem and allows a better comparison between
different detection outputs. This is achieved by assuming that the area of a text region does not contain
any non textual area. We now consider the spacing area between GT objects belonging to a same region
as a valid text surface. This is illustrated in Figure 3.11b where the white surface denoting the text region
visibly exceeds the boundaries of the three GT objects contained into the region. In order to compute the

a: Ty ={3,4}, Reg(T1) = {G3, Ga} b: T> ={1,2,3,4}, Reg(T2) = {G1, G2, G3, G4}
c: T3=1{2,3,4}, Reg(T3) = {G2,G3, G4} d: Ty =1{2,3}, Reg(Ty) = {G2,G3}
e: T5 =1{1,2,3}, Reg(Ts) = {G1, G, G3} f: T =1{1,2}, Reg(T5) = {G1, Go}

Fig. 3.12: Different valid region configurations (yellow) denoted with Reg(T)) for a set of four GT
objects illustrated with black rectangles and denoted, from left to right, with G, G2, Gsand G4
that are labeled with the same region tag.

accuracy rate for each GT G;, we first need to assign them a detection area. We recall that our protocol
computes both the coverage and accuracy for each GT object, while traditional approaches assign the
coverage to GTs and accuracy to detections. Therefore, the detection area is split between the targeted
mj GT objects. Let us define TextAreap, as the valid detection area obtained from the union of all GT
text areas within the detection box D;.
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We first suppose that the GT is as a set of text boxes exclusively at word level, as seen in Figure 3.11a.
Then, TextAreap i is computed as follows:

im;

TextAreap; = Area(|J (Gei[D)) (3.24)
=1
Let us now also consider RT(G;) the region tag associated to a GT object G;. Now, based on all m;
GT objects involved in the many-to-one mapping, we generate the corresponding set of r < m; re-
gions {Reg(T1)...Reg(T;) | Z;Zl |T;| = m;}, such that Tjcy,, is a tuple of GT indices defined as T} =
(11, .er) tke[l,mﬂ)- Then, a region Reg(T}) is composed of either:

asingle GT object G, if Vi€ [1,m;]|i # t1, RT(Gy) # RT(G;) or

aset of GT objects G,,...G,, such that Vb e [1,k—1], RT(G;,) = RT(Gy,,,) and Gy, < Gy, |, where <
is a neighborhood function defined between two GT objects. Figure 3.12 illustrates an example of
all possible region configurations for a set of four GT objects with the same region tag.

Then, TextAreap, is computed as the union of all text regions Regj within a detection box:

r

TextAreap; = Area(| J (Reg(T) (D)), (3.25)
=1
Consequently, the non-valid detection area, nonTextAreap It corresponds to the total detection area of
D; excluding TextAreap:
nonTextAreaDj = Area(Dj) - TextAreaDj. (3.26)

We can now define Area(D;,;) as the corresponding detection area for each G; involved in the (G;, ...G,-mj ><
Dj) match:
Area(Ge;)

Area(Dj ;) =
TextAreap ;

-nonTextAreap It (3.27)

Let us consider the many-to-one match (Gil-nimj >< D), with m; representing the merge level of the
detection box D; and Area(Dj,;) as the detection surface allocated to each GT text box G;. Then, the
accuracy associated to each matched G; is:

Area(Ge;(Dj)

Accij= ——————, (3.28)
Area(Dj ;)

Example. Figure 3.13 shows examples of many-to-one scenarios. The image illustrates three GT
objects (“YOU”, “ARE” and “HERE”) with different configurations based on the region grouping and
the detection accuracy. The coverage value for all cases remains constant and equal to 1 because the
entire GT surface is detected.

Let us consider the cases of the strict detections (nearby the coordinates of the GT objects). In
the first example, Figure 3.13a, each text is treated as an individual region and get the accu-
racy values Acciyou; = 0.8363, Acciarg = 0.8328 and Acciygrp = 0.8374. The accuracy values
for the the second case (Figure 3.13b), where the three objects have the same region tag, are
Accryou) = Acciarp) = Accigerg) = 1 because the protocol treats this scenario as a one-to-one
mapping between the detections (in blue) and one GT object, namely the region (depicted in yellow).
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a b

c d

Fig. 3.13: Many-to-one mapping examples: boxes in D (blue) match several boxes in G (dashed green);
(a) a detection box close the GT objects; (b) a detection box close the GT objects grouped
into a region (yellow); (c) a coarser detection of the GT objects; (d) a coarser detection of the
GT objects grouped into a region (yellow).

b: Two many-to-one detections.

Fig. 3.14: Many-to-many scenario types: detections are depicted with dashed rectangles; the plain blue
rectangle corresponds to a GT object part of a one-to-many match.

We now focus on the examples in which the detection area is significantly larger than the GT object
area. In the example of Figure 3.13c the accuracy values are much lower than in the previous two cases:
Accryou) =0.3067, Acciarp) = 0.2988 and Acciggrg) = 0.3020. When enabling the region annotation
(Figure 3.13d) the accuracy increases (due to the larger GT area and consequently decrease of the
non-textual area): Acciyou) = Acciarg) = Acciuerg) = 0.33318.

Many-to-many match

The many-to-many case is invoked when multiple GT objects (at least three) are involved simultaneously
in a one-to-many and many-to-one match. Depending on the one-fo-many mapping, we can have
two many-to-many configurations, as shown in Figure 3.14: it can be derived from one many-to-one
and one one-to-one matching (Figure 3.14a) or it can also be generated by two many-to-one matchings
(Figure 3.14b).
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Fig. 3.15: One-to-many classic scenario: a GT object (depicted with plain blue rectangle) is matched
by two detections.

When such scenarios occur, the coverage and accuracy rates of the involved GT objects can be computed
based on two cases of one-to-many and many-to-one. The GT objects that exclusively take part of
a many-to-one mapping (illustrated with empty plain rectangles in Figure 3.14) are computed using
the standard Equations 3.23 and 3.28 seen in Section 3.4.1. For objects involved in one-to-many cases
(depicted with plain blue rectangles in Figure 3.15), the coverage rate is computed as in Section 3.4.1
(Equation 3.17):

Cov;=Cov}-F; (3.29)

The particularity of a many-to-many mapping consists of the adaptation of the computation of the
accuracy for the one-to-many objects. To do so, we combine the accuracy equations used during
one-to-one and many-to-one scenarios.

When a GT object is part of one-fo-many mapping due to multiple one-to-one detections (see Figure 3.15),
the accuracy rate is as in Equation 3.22:

Js; ) P )

Uj=j1 Area(Ge;MDj) nj=j1 D;
Jsi NE ]

Uj=j1 Area(Dj) - D;

Acc; =

Jsi
j=i

We also use Equation 3.28 to evaluate the accuracy for the many-to-one case:

Area(Ge;(NDj)

Acc; =
Area(Dj ;)

Hence, we compute the accuracy as the ratio between the union of all intersection areas between the GT
object G; and the union of all k; detection surfaces that are generated from the many-rto-one mappings
as well as all s; detections generated from the one-fo-one mappings:

J sitk; . N jsi
LJ].:].1 Area(Ge;(NDj) mj:jl
Js;
j=h

Dj

Acci = 7 m (3.30)
U2, AreaD)—Ni%; D)) U U, Area(Dy)

Jj=h

Fig. 3.16: A many-to-many mapping example: a mix of one-to-many and many-to-one cases.
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Example. Figure 3.16 illustrates a many-to-many match which is treated as a sequence of one-to-
many and many-to-one cases. Particularly, two many-to-one matches (“HEALTHY COLC”) and
(“ESTER 2000”) determined the one-to-many match of the word “COLCHESTER”. All three GT objects
are associated with the same region label.

The word “HEALTHY”, part of a many-to-one match, is evaluated using the coverage and accuracy in
Equations (3.23) and (3.28) respectively. This word, perfectly covered by the detection, gets a coverage
Coviggarray) = 1. Due to the region labeling the accuracy of the GT object is also evaluated to
Acciggarray) = 1. Similarly, the word “2000” also gets a perfect local evaluation: Covgpo; = 1 and
Accppooo = 1.

The word “COLCHESTER” is involved in a one-to-many match derived from two many-to-one matches.
Hence, the obtained local measures are: CovicorcuresTER] = 0.5212, obtained with Equation 3.29 and
is due to the mismatch of the letter “H” and the two-level fragmentation; the accuracy is maximal
AccicorcaesTer) = 1 (Equation (3.30)) because both many-to-one mappings are accurate with respect
to the GT region.

Global (dataset) evaluation

The performance measurements presented in the previous sections for each type of matching describe
how well an individual GT text box has been detected and quantify the accuracy of its detection. More-
over, the local quantity metrics serve to mark, on one hand if a GT object was detected, and, on the other
hand, if a detection has a correspondence in the GT. However, dealing with an individual evaluation of a
GT-detection pair is different than dealing with a set of images (and obviously a set of text objects). One
needs more complex metrics that, similarly to the local rates, can measure both the quality aspect and
the quantity natures of the detections.

Let ¥ = (G1,Gy,...,Gn,) be the set of GT text boxes within a database, where N represents the total
number of GT text boxes within the set of multiple images. Let TP be the number of true positives (GT
objects that were detected), computed as the sum of all matched objects in ¢:

TP = %(Gmatchi =1), (3.31)
i=1
Similarly, we count the number of false positives, FP, computed as the sum of objects in 2 that have no
correspondence in ¢:
Np
FP=) (Dmatch;=0) (3.32)
j=1
If we deal with a many-to-one detection, as detailed in Section 3.4.1, we split the detection box area in
several detections that are assigned to the involved GT objects. Hence, an accuracy value is computed for
each matched GT object (i.e. to each of the TP GT objects). The number of total detections is then the
sum of true positives and false positives TP + FP. Based on the coverage and accuracy rates we derive
two global scores. We define the global recall value R as the sum of all coverage values normalized by

the total number of GT objects Ng:
g = T O 3.33
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Keep clear Keep clear

a: Two of the four objects fully detected. b: All objects detected half.

C: One of the three objects fully detected. d: All objects detected one third.
Two false positives.

Fig. 3.17: Four examples illustrating GT objects with red rectangles and detections with green plain
rectangles: (a)-(b) two examples for which recall R = 0.5; (c)-(d) two examples for which
precision Pg = 0.33.

The global precision value Pg is computed as the ratio between the sum of accuracy measures and the
total number of detections TP + FP:
Zf.\iGl Acc;
Pg=——— (3.34)
TP+FP
Although these two indicators give an overview on the performance of a set of detections, individually,
they still do not provide sufficient information. As first stated by the authors in [Wolf and Jolion, 2006],
it is important to differentiate the quantity aspect of a detection (“how many GT objects/false alarms
have been detected?”) from its quality aspect (“how accurate is the detection of the objects?”). Figure 3.17

illustrates the importance of this distinction. One can observe that the same Recall (Figures 3.17a

and 3.17b) and Precision (Figures 3.17c and 3.17d) scores can correspond to different detection outputs.

Intuitively, it is then hard to correctly evaluate a detection characteristic through one value, hence we
need to separately evaluate the quantity and quality properties.

Example. Figures 3.17a and 3.17b show how two different sets of detections can lead to
the same global Recall Rg = 0.5. In the upper-left image only two out of four GT text
objects are matched: Covirirg) = Coviexir) = 1 and Covicrpan) = COVgeep) = 0. In the
upper-right image on the other hand, the four GT objects have half of their surface covered:
Covirrrp) = Coviexir = CovicLEan) = CoVigeep) = 0.5.

In the same way, Figures 3.17c and 3.17d illustrate that two distinct detection configurations can
produce the same Precision score Pg = 0.33. The lower-left example shows a case where one out

3.4 Performance evaluation
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of three detections has a correspondence in the GT, namely one perfect object level detection
and two false positives: Accinvarurar = 1, Acciuisrory) = Accimuseum) = 0 and FP = 2. In the
lower-right image, the three GT text objects are matched with the accuracy values: Acciyarurar) =

AccigisTory) = Acciquseum = 0.33.

We will further show that we can decompose each global metric into two separate quality and quantity

components. Let us rewrite the global Recall R as the product of two terms:

Y Covi TP Z \ Cov;
Rg = = _— (3.35)
NG NG TP
The left term of the product represents the ratio between the number of true positives and the total
number of GT objects. We interpret this ratio as the quantity Recall Rgyqx1, as it accurately describes the

percentage of detected GT objects, regardless of their coverage:

TP

—, 3.36
No (3.36)

unant =
The second term is get by averaging all coverage rates of the detected GT objects. Intuitively, we can

denote this proportion as the quality Recall, Ry, as it characterizes the mean of covered surface of the

GT:

Z , Covi
Ryual = T (3.37)

By applying the same reasoning, we obtain the following decomposition of the global Precision Pg:

Z L Acci TP Z | Acc
PG = = (3.38)
TP+FP TP+FP TP

Here again, the left term of the product provides an insight on the percentage of detections that have a
correspondence in the GT. Consequently, we call this measure the quantity precision Pgyqn::
TP

Pguant = TP+ FP’ (3.39)

Inversely, the right term computes the accuracy average obtained from the matching of the detection set
and the GT. This ratio will then be referred to as the Precision quality P

P L;x; Acc (3.40)
qual = TP ’ .

The majority of evaluation protocols in the literature propose an overall single metric used to judge the
entire performance of a detector. The need of ranking different text detectors justifies the importance of
such a measurement. In this work, we use the F-Score metric as the overall performance of a system,
defined as the harmonic mean of recall and precision values:

2-Rg-Pg

Fg=——m— 3.41
G R+ Pg ( )
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Fig. 3.18: A set of four images; GT objects are bounded by a red rectangle, green rectangles represent
the detections.

Tab. 3.1: Quantity, quality and global scores for each individual image, as well as for the entire image
set in Figure 3.18.

Figure NG/TP/FP unant Pquant unal Pqual RG PG FG

3.18a 2/2/0 1 1 0.66 0.74 0.66 0.74 0.69
3.18b 15/11/0 0.73 1 0.86 0.92 063 092 0.75
3.18c 4/2/5 0.5 0.28 1 1 0.5 0.28 0.36
3.18d 1/1/2 1 0.33 1 1 1 0.33 0.5
Set 22/16/7 0.72 0.69 0.86 0.91 063 0.64 0.63

Example. Figure 3.18 illustrates a set of four images with their corresponding GT and detection boxes.
The evaluation of these examples using the metrics proposed above, is summarized in Table 3.1: on
one hand, we show the evaluation results for each image individually; on the other hand, we compute
the same metrics for the whole set. In Figure 3.18a both GT objects were detected, which is reflected
in Rguant and Pgyqane values. In Figure 3.18b only 73% of the 15 GT objects were detected with a
coverage mean indicated by the quality metric Rq;4; = 0.86, whose value suggests that the matched
GT objects were not all perfectly covered. Figure 3.18c is a good example of the precision complexity
of the detection set. Only 28% of the detection boxes (2 out of 7) are valid detections, while the rest
are false positives. The valid detections are however within the bounds of the targeted GT objects
which justifies the precision quality value Pg;q; = 1.

3.4 Performance evaluation
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a: with rectangles b: with masks

Fig. 3.19: Different shapes for GT annotation (red)

Extension to any-form text annotation evaluation

In this section we show how the EVALTEX framework can be extended to the evaluation of detection
results having an irregular text annotation representation. The objective here is, first, to point out the
disadvantages of using the bounding box annotation for text objects, and then to show what are the
adjustments needed to evaluate text represented by irregular shapes. One of the advantages of EVALTEX
consists in its ability of managing rectangular text objects even when dealing with “difficult” text strings,
such as tilted, curved, circular etc. (see Figure 5.13 in Section 5.2 for examples) through the filtering
process that can discard “unwanted” matched GT objects. Nonetheless, the rectangular representation
still presents several limitations:

« tilted and curved text strings cannot be precisely located by rectangular bounding boxes;

 overlapping GT objects may mislead the matching process; in such cases, the filtering process
invoked by EVALTEX cannot always assure a complete removal of invalid GT objects from the
matching;

« the surface of a rectangular text box does not necessarily correspond to the true surface of the
enclosing text string, which can severely distort the quality scores.

In order to avoid the situations mentioned above, we propose modifying the EVALTEX evaluation frame-
work so that it can handle an irregular text representation of the GT. In order to use this annotation,
detectors should also be able to produce precise estimations of text boundaries. Using a more accurate
text annotation many detection ambiguities can be removed. In the following, we will refer to any of
these irregular representations as masks.

GT annotation and representation

The interest of using masks rather than rectangles is to represent text strings, not only in horizontal or
vertical configurations, but also tilted, circular, curved or in perspective. In such cases, the rectangular
representation might disturb the matching process: a detection can involuntary match a GT object due
to its varying direction (inclined, curved, circular). Such a situation is depicted in Figure 3.19a. Whenever
the word “Pago” is matched by a precise detection, a truthful protocol that considers many-to-one
mappings, could also match involuntary all text strings that intersect the object in the GT, namely the
words “SINCE”, “1889”, “PREMIUM” and “FRUIT”. Our method proposes a procedure, described in
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a: Original c

Fig. 3.20: Different mask annotations (pixels within the red contour) for the word “Blanc”.

Section 3.3.3, to discard “unlikely” matched rectangular GT objects. However, for texts that are neither
horizontal, nor vertical, typically text of urban scenes, a representation using free-form masks is a
more convenient choice than rectangular ones. Figure 3.19b shows an example of such a mask-based
annotations, which clearly prevents any intersections or inclusions between the GT objects.

The EVALTEX protocol considers a mask as a set of pixels situated inside the contour of a text object.

Annotating text with irregular masks is a more laborious task than the bounding box labeling as it
requires more than four points to represent the text areas. It also implies a higher level of subjectivity
during the annotation process. Depending on the desired level of contour faithfulness of a text, different
mask annotations can be formed for the same GT object. This is illustrated for the word “Blanc” in
Figure 3.20.

The irregular mask annotation disables the use of the region tag as it was introduced in Section 3.2
and further explained in Section 3.4.1. When dealing with rectangular boxes, the regions are generated
automatically based on the coordinates of the GT objects. Consequently, a region is the bounding box
of several “smaller” boxes. Thus, when masks are annotated irregularly, regions cannot be generated
automatically. One possible solution would be, for a given set of GT objects labeled with the same region

tag, to provide a region mask for each possible configuration (similar to the cases depicted in Figure 3.12).

In practice, implementing this approach would require a laborious work, especially when dealing with
larger sets of GT objects. However, if text areas are annotated following some well-defined rules, then
the text region features can be used as described in this manuscript. Other examples of well-defined
annotation representations besides the bounding boxes, can be inclined boxes, various polygons, ellipses
etc.

Performance evaluation using masks

The evaluation principle using masks behind EVALTEX remains close, regardless the text representation.

Hence, by using masks, we only need to adopt the following changes:

« additionally to the text representation using the bounding boxes (four coordinates) we add a mask
representation to each GT object;

« the extension and reduction of a GT object (Equations (3.13) and (3.14)), are computed using
dilation and erosion morphological operations on the text masks;

« many-to-one scenarios are handled without the region property.

The mask annotation does not change the computation of local quality measurements. However, the

enlargement and reduction of the GT object discussed in Section 3.4.1 needs to be changed. Hence, in
order to overcome the subjectivity of the GT annotation and the numerous ways algorithms can produce

3.5 Extension to any-form text annotation evaluation
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a: true mask b: dilated mask c: eroded mask

Fig. 3.21: Masks for the word “Pago” illustrated in Figure 3.19

detection masks, we vary the mask area size by using dilations to produce accuracy scores and erosions
to compute coverage scores. Therefore, when a detection does not perfectly match the GT mask, it is
compared to the dilated and eroded GT mask. This ensures that small annotation variations do not
affect the recall and precision scores. The two morphological operations correspond to the extended and
reduced GT boxes computed according to Equations (3.13) and (3.14). The dilated and eroded masks
corresponding to the GT object “Pago” are depicted in Figure 3.21.

Let ./ (G;) be the GT text mask of G; and H a (2m,) x (2m,) square structuring element, where m, is the
margin error defined in Equation 3.12. The margin error is computed based on the size of the rectangular
box bounding the mask. We then define .#,(G;) and .4, (G;) as the extended and the reduced text masks
of 4 (G;) respectively and given by:

Mo (Gi) =M (Gi)oH (3.42)

M (Gi) =M (G;)e H, (3.43)

where @ and e represent the dilation and erosion morphological operations. The equations used to
compute one-to-one, one-to-many, many-to-one and many-to-many detections correspond to those
presented in Section 3.4.1. Finally, the performance measurements computed over a dataset are com-
puted accordingly to the quality, quantity and global metrics described in Section 3.4.2. Our protocol
can then be straightforwardly adapted to any kind of shapes for annotating the GT and representing the
detections.

Note. Computing the margin error with respect to the rectangular bounding box of a curved text is
not always a good approximation of the size of the structuring element used for the morphological
operations. A text with a small character height which follows an arc form will produce a large margin
error. Then, when eroding the text mask it may happen that the latter becomes completely erased (or
fragmented) because the margin error is larger than the characters height. A possible solution would then
be to set the margin error with respect to the distance from the contour of the mask to its skeleton.

Figure 3.19 illustrates a set of detection examples where text is annotated with masks. Five detections
are attributed to the seven GT objects: one detection is matched to the words “SINCE” and “1888”
(many-to-one); one detection is matched to the word “Pago” (one-to-one); one detection corresponds
to the words “PREMIUM” and “FRUIT” (many-to-one); two more detections are matched individually
to two GT objects, respectively “POIRE” and “PERA” (one-to-one). The local evaluation of the seven
GT objects leads to the following coverage and accuracy values: Covisincg = 0.96, Accisince) =
0.90; COU[lggg] =0.99, ACC[1888] = 0.89; COV[pago] = 0.94, ACC[pago] = 0.99; COV[PREMIUM] =0.99,
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ACC[PREMIUM] = 0.92; COU[FRUIT] = 0.39, ACC[FRUIT] = 0.93; COU[po[RE] = 0.99, ACC[pO[RE] = 0.95;
Covipgra) = 0.97, Accipera) = 1. We can observe that due to the nonuse of the region tag, the two
many-to-one mappings contribute to a diminution of accuracy values for the words “SINCE”, “1888”,
“PREMIUM” and “POIRE”. The final scores, corresponding to the quality, quantity and global recall
and precision scores are: Ryuant = 1, Pquant = 1; Rgual = 0.89, Pgua1 = 0.94; Rg = 0.89, P = 0.94.

Fig. 3.22: Example of a mask detection: GT objects are shown in plain red masks and detections with
green contour line.

Conclusion

In this chapter we have presented a new evaluation protocol, EVALTEX, designed to estimate the per-
formance of a text detection method. This protocol comes as smart solution to many of the existing
problems that current evaluation protocols cannot deal with. First of all, EVALTEX solves the GT anno-
tation issues, as it can handle both well-defined and irregular text representation. Hence, the protocol
matchings strategy and metrics can be used in the same manner when text is bounded with rectangular
boxes but also with texts that have a free-form representation (see Section 3.5), that we generically
referred to as masks. In order to solve the granularity problems, we proposed in Section 3.2 the use an
additional annotation level, the region tag, that allows detectors that provide for example, word-level
detections and those providing line-level detections to be scores equally, without penalizing any of the
detectors.

When rectangular GT annotations are used, the EVALTEX invokes a filtering procedure that filters and
validates the matched GT objects, presented in Section 3.3.3. Rectangular boxes are not the best way
of bounding texts that are inclined or curved because often a detection targeting a specific GT object
can be erroneously matched to all GT objects that have an intersection with that GT object. Hence, the

filtering procedure predicts the intention of detections.

In Section 3.4.1 we show that the proposed framework identifies and deals with all matching scenarios,
including one-to-one, one-to-many, many-to-one but also many-to-many. We adapt two local measure-
ments, coverage and accuracy, for each of this matching type. The evaluation protocol was developed to
allow many-to-one detections and penalize them only if the detections exceeds the region area formed
by the matched GT objects. Moreover, the protocol penalizes one-fo-many detections but accordingly to
the detected surface. Finally, in Section 3.4.2 we propose, for the overall evaluation of a set of detections,
a series of six measurements: two that define the quality nature of the detections, two that capture the
quantity aspect of the detections and two global ones.

3.6 Conclusion
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In Chapter 5 we conduct a series of experiments which validate our evaluation protocol and point out
the advantages of using EVALTEX with respect to other protocols in the literature.
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Visual evaluation comprehension
throughout histogram representation
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In the previous chapter we have described an effective tool for evaluating the performance of a text detector
by providing both quality and quantity global scores. However, to fully interpret the performance of a text
detector, we also need a visual tool that characterizes the whole behavior of this detector. In this chapter
we introduce an alternative way of capturing the quantity-quality aspects of a detector’s performance
throughout histogram representation. Moreover, based on this representation, we derive a second set of
global scores computed using histogram distances. To do so, we use of the well known Earth Mover’s
Distance.

Context

In order to design an elaborate evaluation protocol one needs, not only to develop a reliable set of scores,
but also to propose a visual tool to better understand the complexity of a detector and its results. We
have discussed in Section 3.4.2 the importance of differentiating the quantity nature of a detection from
its quality one. For that we have proposed to separate the global Precision and Recall scores into two
sets: a qualitative set composed of R;yq; and Py, and a quantitative one consisting of R;yqn: and
Pguant- But when comparing two detectors only based on these scores, we can only determine which
of them performs better, but not why. For example, one might be interested to know which algorithm
produced more false positives or which one detected more GT objects entirely, instead of only partially.
This kind of information cannot then be retrieved by only looking at the global scores. Consequently, the
set of four quality and quantity metrics (Rgyal, Pguai, Rquant and Pgyuans) provides a larger view on the
characteristics of a detection than Rg and Pg. This is also true for cases when we want to analyze the
performance of a single detector. The authors in [Wolf and Jolion, 2006] proposed a set of performance
graphs based on ROC curves to illustrate the entire behavior of a detection algorithm, including its quality
and quantity natures. The method generates two graphs by varying the two quality area constraints (,
and f,) presented in Section 2.5.5, over a wide range of values. The graph representation illustrates then
how many objects (both from the GT and the detection set) respect the overlapping area constraints
imposed by a given pair of thresholds (#, ). By varying these thresholds we can then have a plot of the
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performance of a detector. The problem of this approach is that it is not straightforward. First, a quality
measure is computed and then thresholded to obtain a binary score. Next, the threshold is varied and all
objects having a local measure equal to 1 are counted and used to form the ROC curve. The obtained
plots are also ambiguous and difficult to read as they rely on two parameters (#, and ). The area under
the curve obtained by varying these constraints is then used to represent the overall Recall and Precision
measures. This is equivalent to averaging the sum of all object level measurements computed over all
possible constraint values.

In this chapter we propose an alternative to the ROC curves and the AUC metrics. To capture the
complexity of a set of detections we characterize them throughout histogram representations and use as
metrics the distance between histograms [Calarasanu et al., 2015]. The proposed idea is illustrated in
Figure 4.1. First, local measures, computed at object level, are quantified into quality histograms. Next,
these histograms are compared to an optimal one using a distance to provide a final score. This approach
is independent of the object representation and can be applied to rectangular or inclined bounding
boxes or even free-form masks. The contributions of this method are two-fold. On one hand, it provides
a practical and intuitive visualization of detection results. On the other hand, these histograms can
also be used to compute performance scores necessary for a global evaluation or comparison between
different detectors.

Object evaluation Proposed approach for dataset level evaluation
(local metrics) (global metrics)
- -
. . Histogram
alit { g . .

Quality quantification of : -
measures . | -

¢ | quality measures | b

! ‘ ¢ Histogram |

. Global scores
of quality -
measures

pooTTTe
i Optimal
i histogram

Fig. 4.1: Workflow of the histogram-based evaluation framework.

Histogram representation

Because histograms are graphical representations of frequency distributions over a set of data, they can
be also seen as convenient tools to represent simultaneously the quality and quantity aspects of a set of
detections:

« the quality aspect can be described by the histogram’s bin: each bin corresponds to a coverage (or
accuracy) interval;
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« the detection quantity feature can be represented by the bin values: for example, the bin value
counts how many GT objects have a coverage (or accuracy) value that belongs to that bin’s interval.

This is illustrated in Figure 4.2. Let us consider a 1D finite valued function f that contains values
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Fig. 4.2: Histogram representation of a detection set.

f(j)€l0,1], j =1,...,n. Its quantified histogram into B intervals (bins) is a 1D numerical function h
defined as:

h(b) =

n . b b+l .

P f(he|d ZLt ifb=0,...,B-2

- [ff bl } (.1
E)

o {rie|s ) =81
The EVALTEX evaluation protocol described in Chapter 3 provides two sets of local quality scores, namely
for coverage and accuracy values. These sets can then be quantified by using two detection histograms

as it will be explained in the following. Let us consider fc,, the set of local coverage scores, computed,
for example, using the EVALTEX protocol. We then derive the coverage histogram hc,, as:

B Z{\fl{f(:oy(i)e[g,%} ifb=0,...,B-2
e ®= Z;icl{chu(i)e[g,%]} ifb=B-1 @2

Similarly, let us consider f4.. the set of local accuracy scores. We then derive the accuracy histogram

Race as:
TP faceide [ 5,52} ifb=0,...,B-2
Mace(b) = TP+FP b ]l . 4.3)
Zj=1 {fAcc(])E[E,T} ifb=B-1

Figure 4.3 illustrates the advantage of using histograms to represent a set of quality measures. In the case
of coverage values (Figure 4.3a), the histogram provides at a glance the following rates of:

» undetected objects (GT objects with coverage score equal to 0) captured in the first bin,
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Fig. 4.3: Quality histograms

o partial matches (GT objects with coverage values belonging to the interval ]0, 1[) are found in all
bins but the first and the last ones,

o perfect matches (GT objects with coverage values equal to 1) captured in the last bin of the
histogram.

Similarly, the accuracy histogram (Figure 4.3b) intuitively provides the following proportions of:

e false positives (detections with no correspondence in the GT) included in the first bin,

o partial detections (detections with accuracy values in the interval ]0, 1[) captured in all bins but
the first and the last ones,

« perfect detections (detections with an accuracy equal to 1) found in the last bin of the histogram.

Note. The histograms in Figure 4.3 contain 10 bins which can misrepresent the exactness of the quality
values. In this case, for example, all accuracy values in the interval [0,0.1[ will be counted as 0. This
means that even if a detection has an accuracy equal to 0.05 it will still be counted as a false positive. We
emphasize here the fact that, for a precise representation of local scores, the number of bins needs to
be sufficiently high. However, for visual purposes exclusively, 10 bin histograms are used to illustrate
different examples throughout this manuscript.

W o«

Example. The detection example in Figure 4.4a illustrates the case of four GT objects (“i”, “Tourist”,
“information” and “Castle”) and four detections, among which, one is a false positive. In this example,
using the EVALTEX protocol we get the coverage scores {0.0,0.55,0.8,1.0} and the accuracy scores
{0.0,0.45,1.0,1.0}. Their representation using histograms with B = 10 bins is given in Figures 4.4b
and 4.4c.

4.3 Histogram distances for performance evaluation

A histogram is not only a powerful tool for characterizing the whole nature of a detection, but also an
instrument for computing performance scores as it will be described in the following. Until now, we have
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Fig. 4.4: Detections in an image and the corresponding (b) coverage histogram and (c) accuracy his-
togram.

shown that we can populate a histogram with quality measures (coverage and accuracy values). We now
want to compare two quality histograms and quantify their difference into a score. To simply evaluate a
detection algorithm, this comparison can be made by computing the distance between its quality (or
quantity) histogram and a reference one. The advantage of using the histogram distance is that the lower

it is, the higher the similarity between the histograms, which finally leads to a performance score.

Let us from now on consider the normalized quality histogram ﬁqlml of hgyq so that:
B-1

Z Equal(b) =1 (4.4)
b=0

Consequently, let ECOU and h Acc be the normalized coverage and accuracy histograms (containing B

bins), such that:

B-1 _
hcov(b) =1 (4.5)
b=0
B-1 _
hacc(b) =1 (4.6)
b=0

The histogram representation provides both a quantitative (i.e. values of bins) and a qualitative (i.e.
number of bins) representation of the detection. A perfect algorithm should get maximal accuracy
and coverage values for all detections, e.g. their corresponding histogram representation should have
only one populated bin, the last one (for example, for B = 10, with all values belonging to [0.9,1]). This
histogram is referred to as the optimal histogram.

Let ho be the normalized optimal histogram (containing B bins), whose all bins except the last one are
empty, defined as:
1 ifb=B-1

0 otherwise

Ybe [0,B-1],ho(b) ={ 4.7

We then propose to measure a detector’s performance as the distance between ECO,, (and h Ace) and the
optimal histogram h¢: the lower the distance, the higher the similarity between the histograms. Hence,
we get two global detection performance measures corresponding to Recall and Precision.

Histogram distances. There are two main families of distances between histograms [Dubuisson, 2011]:

4.3 Histogram distances for performance evaluation 85
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BIN-TO-BIN Bin-to-bin distances only consider bin content (or size) and often make a

linear combination of similarities measured between same bins of the two
considered histograms (for example, the Euclidean distance). This assumes
that histograms are aligned and have the same size;

CROSS-BIN Cross-bin distances also consider the topology of histograms by integrating
into the computation the distance between bins.

In any case, the topology of histograms is very important. For example, if we consider the case where all
bins of ECOU but one are empty (same reasoning for h Acc), then the Euclidean distance between ECOU
and Eo will give the value 0 if bin ECOU(B —1) =1 (case of a perfect match), 1 otherwise (any case where
hcov(b) =1, b # B —1). However, we would like the distance to be lower when the only populated bin of
}~ch,, is close to the last bin B — 1, because this corresponds to better Recall scores on all the database.
This is the reason why it is required to both consider the bin content and the distance between bins (as
a kind of relationship between bins). Hence, a cross-bin distance is a better choice for computing the
histogram dissimilarity in our context. The EMD has been chosen to compute the dissimilarity between
a quality histogram and the optimal one for two main reasons [Rubner et al., 2000]:

1. it captures the perceptual dissimilarity better than other cross-bin distances;
2. itcan be used as a true metric.

Two other cross-bin distances (see [Yan et al., 2007] for a review) have been proposed in the literature: the
Quadratic-form (QF) distance [Pele and Werman, 2010] and the Diffusion distance [Ling and Okada, 2006a].
Let us consider h; and h; two histograms to compare. The Quadratic Form histogram distance between

h; and h, is defined as:

QF(hy, hy) = \/(hl —h)TA(hy — hy), (4.8)

where A is the bin-similarity matrix.

The Diffusion distance between two histograms was defined as a temperature field which uses the

Gaussian pyramid to discretize the continuous diffusion process to make h; perfectly match hy and
defined as:

L
K(hy, ho) =) 1di(b) |, 4.9)
=0
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where
do(x) = hy(x) = ha(x) (4.10)

ai(x) =[dj—1(x) * p(x,0)] |2 (4.11)

L represents the number of pyramid layers and o the constant standard deviation for the Gaussian filter
¢, while “|,” defines a half size downsampling.

Earth Mover’s Distance

The EMD, first introduced by Rubner et al. [Rubner et al., 2000], is a cross-bin distance function, based
on the solution to the transportation problem that computes the dissimilarity between two signatures. In
other words, this distance can be seen as the cost needed to transport piles of earth into a set of holes. Let
P ={(p;, wpl.)}lf'il and Q = {(q;, wqj)};.’:1 be two signatures of sizes m and n, where p; and q; represent
the position of the ith, respectively the jth, element and w), and wy; their respective weight. The EMD
searches for a flow F = [f;;] between p; and g, that minimizes the cost to transform P into Q, so that:

COST(RQ,F)=)_ Y dijfij 4.12)
i=1j=1

where d;; is the ground distance between clusters p; and g;, while f;; is the amount transported from

one cluster to the other one. The cost minimization is done under the following flow constraints:

fij=0, ie[l,m], jell,n] (4.13)
n
Y fijswp, i€ll,m], je(l,n] (4.14)
j=1
m
Y fijswq;, i€ll,ml], jell,n] (4.15)
i=1
m n m n
Y. fij=minQ) wy, Y wg), i€ll,ml, jell,n] (4.16)
i=1j=1 i=1 j=1

Equation 4.13 ensures that the moved quantity is done in a precise order, namely from P to Q. Equa-
tion 4.14 ensures that the quantity sent by the clusters in P does not exceed their weights. Similarly,
Equation 4.15 ensures that the quantity received by the clusters in Q does not exceed their capacities.
Equation 4.16 requires to move the maximum quantity possible. After solving the transportation prob-
lem and retrieving the optimal flow F, the final EMD distance between the two signatures P and Q is

computed as the cost function divided by the total flow:

Z;ZIZ?:I dijfij

EMD(PQ) =
Z?l12?=1ﬂj

(4.17)

EMD between histograms. Histograms can be considered as a special kind of signatures where each
bin of the histogram is treated as the signature’s cluster, while the value of the bin (frequency) can be
viewed as the signature’s weight [Ling and Okada, 2006b]. For example, we can consider Scoy and Sacc
two signatures of the same size B derived from the two normalized histograms Ecgy and Acc, Where

4.3 Histogram distances for performance evaluation
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each bin b; corresponds to a same cluster (intervals of the coverage/accuracy values between [0, 1]),
while the value of the bin, namely the frequency Equal, is the signature’s weight :

Scov ={(bi, hoow (B (4.18)

Sace = {(bi, hace(bi)}E} (4.19)

Knowing that the two histograms ECO,, and h Acc are normalized, we can then simplify the constraints
that need to be satisfied for finding the optimal flow needed for the computation of the EMD between
the two quality histograms and the optimal histogram, EM D(ECOU, ﬁo) and EMD(h Accs ﬁo) respectively,
in the following manner:
fij=0, i,je(1,B-1]
B-1 _ B-1 _
2 fij=hcov(bi), X fij=Paceb), i,jell,B-1],

j=1 j=1

B-1 _
> fij= how,, i,j€ll,B-1]

i=1

EMD as a metric. In [Rubner et al., 2000], the authors proved that when the ground distance is a
metric and the total weights of the two signatures are equal, the EMD is a true metric. Let us then
consider d as the Euclidean distance between two clusters b; and b, with , j € [1, B], where the cluster
b; belongs to a quality histogram (ECO,, orh Ace) and bj to the optimal histogram ﬁo:

d=+/(b;— bj)Z (4.20)

Moreover, because the quality detection histograms were normalized, the total weights of the two derived
signatures are 1 and hence equal (Equations 4.5 — 4.7). Consequently, we can use the EMD to compute
global coverage and accuracy scores, that will be referred to as global Recall (Rgy/p) and Precision
(PEMp). Since the EMD is a dissimilarity function (the closer the histograms, the lower the distance) the
global scores, Rgyp and Pgysp, are computed as in [Wan, 2007]:

Remp = 1 - EMD(hcoy, ho) 4.21)

Peyp =1—EMD(hace, ho) 4.22)

Example. The histogram representation of the text detection results in Figure 4.4 can be further used
to compute the corresponding global Recall and Precision scores using Equations 4.21 and 4.22 which
leads to the following values: Rgp/p = 0.625 and Pgjsp = 0.6, when the number of bins B = 10. These
two scores can be compared with the ones obtained using the Equations 3.33 and 3.34 in Section 3.4.2:
R; =0.5875, PG = 0.6. We can see that the EMD is a predictable metric. Both approaches provide the
same precision results. The Recall, however, gives a score difference of 0.038. When using histograms
with a small number of bins (10 in this example), the EMD can overestimate the performance values
if the quality values are situated within the bin intervals. In this example the difference is exclusively
due to the coverage value of 0.55 attributed to the word “information”, which is counted into the bin
0.6.
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4.4 Conclusion

In this chapter we have introduced a novel and intuitive approach to represent text detection results
and compute global performance scores. It is based on the histogram quantification of local quality
scores, computed at object-level (coverage and accuracy). This approach visually captures at a glance
the behavior of a detector: the rate of undetected GT objects and false positives, the percentage of
partial matchings or the proportion of perfect matches and detections. Besides this straightforward
interpretation of a set of detections, we have also proposed the derivation of global Recall and Precision
scores using histogram distances. To do so, we introduced the notion of optimal histogram, which can
describe quality detection scores. Thus, a distance between histograms distance is computed between
the coverage and accuracy histograms and the optimal histogram. To do so, the EMD cross-bin distance
was chosen due to its ability of handling histograms and due to its true metric property. The obtained
distance is then used to derive two similarity measures: Recall and Precision. The primer interest of using
histograms as an evaluation tool lies on the fact that they offer a complex visualization of the detection
results. Moreover they can be used as an efficient tool to compare different text detectors by providing at
a glance useful characteristics that could not be interpreted from global scores. The predictability of
the obtained scores and the efficiency of using the histogram representation will be further discussed in
Section 5.3.

4.4 Conclusion
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This chapter is dedicated to the experimental results that show the efficiency of the evaluation protocol
proposed in this manuscript. In a first stage, we explore the advantages of EVALTEX when using both
a rectangular text representation or a mask annotation, described in Chapter 3. A comparison with
current evaluation protocols such asICDAR'03, ICDAR’13 and DETEVAL is done on the rectangular
representation results, while the mask annotation results are evaluated on a smaller home-made
database. A second set of tests is proposed to prove the usability of the histogram representation of text
detection results. Moreover, we will show that the scores obtained using the EMD distance are similar to
those computed with EVALTEX.

The EVALTEX protocol was designed to evaluate text detection results in both natural and digital environ-
ments. The ICDAR’13 dataset has been chosen to conduct a series of experiments for two main reasons:
the dataset is a reference in the text detection community and, due to the RRC online framework’,
numerous teams can evaluate and rank their detector performances in an acknowledge setting with all
results made publicly available. Since EVALTEX uses a two-level GT, in our experiments, we use the same
annotation as the one proposed by the ICDAR’13 RRC Challenge 2 dataset and in addition, we manually
add the region tags (Section 3.2), to each GT object. The labeling is then checked for any region constraint
violations. If the annotator grouped text objects that do not fulfill constraint in the Equation 3.1 (the sum
of the text areas is larger than the non-textual area within the region formed by the GT objects labeled
with the same tag), the annotator has to revise the region labeling. The experimental results using the
rectangular representation are presented in Section 5.1. All ICDAR datasets have primarily focused
on horizontal texts. To highlight the efficiency of EVALTEX when dealing with mask representation we
need image samples containing more challenging texts. We then propose to evaluate different mask
detections containing text which is tiled, curved, circular or even perspective deformed on a sample
database detailed in Section 5.2. Finally, we prove the interest of using the histogram representation
through a series of experiments conducted on the ICDAR’13 datasets in Section 5.3.

http://rrc.cvc.uab.es/
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Experimental results using the rectangular
representation

To illustrate the advantages of EVALTEX, in this section we compare it to the most commonly used
evaluation protocols in the text detection field that use a rectangular representation. A first set of score
comparisons with ICDAR’03 (Section 5.1.1) and DETEVAL (Section 5.1.2) frameworks will be conducted
based on a series of detection types with different scenarios depicted in Figures 5.1, 5.2 and 5.3. A more
complex comparison is conducted with the ICDAR’13 evaluation protocol, consisting of analyzing both
the matching strategy, for which the results were released, and the final performance scores.

a

Fig. 5.1: Examples of one-to-one detections: the GT (red rectangles) and the detection (solid green
rectangles).

a b c

Fig. 5.2: Examples of one-to-many detections: the GT (red rectangles) and the detections (solid green
rectangles).

—

a b c

Fig. 5.3: Examples of many-to-one detections: the GT (red rectangles) and the detections (solid green
rectangles).

In Section 5.1.3, a quantitative comparison is done based on the results of several text detection methods
that participated at ICDAR’13 competitions. For better differentiating these protocols we also compute
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the final scores of all participants. Finally, in Section 5.1.4 we illustrate the principle of the two-level
annotation with a set of examples and its impact on the performance scores.

Comparison to ICDAR’03/'05 evaluation protocol

The ICDAR’03 protocol, presented in Section 2.5.7, was one of the first to be extensively used for
analyzing the performances of text detection system. It has been first introduced for the RRC during
ICDAR 2003, and then re-used during ICDAR 2005. Although many protocols have been proposed since,
this one is still used nowadays despite its drawbacks exposed in Section 2.5.7. In the following we will
focus on the performance results obtained using the ICDAR’03 and EVALTEX frameworks. When using
the ICDAR’03 protocol, the one-to-one matches are scored accordingly to the true ratio between the
intersection and the union surface of a detection-GT pair. When dealing with detection boxes that are
inside the GT boundaries, the matching score should be close to the EVALTEX coverage one. However, in
some cases the two methods lead to significant score differences. In Figure 5.1a the coverage area, which
is also equal to the Recall as the image only contains one GT object, gets a score of 0.74 by ICDAR’03
protocol, whereas EVALTEX gives a value of 0.61. The 13% gap can be explained since the two methods
apply different principles for the local measurements needed for computing the Recall: the ICDAR'03
protocol uses the Jaccard index, whereas EVALTEX uses the coverage measure. A similar situation, with a
larger score variation, is shown in Figure 5.1c.

The precision computed with ICDAR'03 protocol is not measured with respect to the detection surface,
but with respect to the same matching score used for computing the Recall. Therefor, when evaluating a

single one-to-one mapping the Precision is always equal to the Recall rate, as it can be seen in Table 5.1.

This behavior can easily over or under penalize the performance of a detector.

Tab. 5.1: Score comparison between ICDAR’03 and EVALTEX protocols based on the detection results
(one-to-one matchings) of Figure 5.1.

Figure 5.1a Figure 5.1b Figure 5.1c
ICDAR'03  EvaLTEx ICDAR03  EvaALTEXx ICDAR03  EVALTEX

Recall 0.74 0.61 0.64 0.63 0.7 0.55
Precision 0.74 1 0.64 1 0.7 1
F-Score 0.74 0.75 0.64 0.77 0.7 0.7

With ICDAR’03 protocol the Recall scores obtained on one-to-many matchings (see Figure 5.2) are
0.79, 0.73 and 0.69, as shown in Table 5.2. These scores however do not reflect, neither the union of the
intersections between the GT objects and the detection, nor the coverage rate of the largest detection
that matches the GT object. Moreover, the Recall scores do not take in account the fragmentation of
the GT objects, as done by EVALTEX. Our framework penalizes each of the three cases in Figure 5.2. In
Figures 5.2a and 5.2b the true coverage value is 0.85 but is decreased to 0.50 due to the fragmentation
penalty.

Another drawback of ICDAR’03 protocol is due to the use of the best match approach for the many-to-
one cases, illustrated in Figure 5.3. It can be easily seen that when a detection covers more than one
object the mapping procedure of ICDAR’03 is done with respect to a single GT object, by rejecting
all other matched text boxes, making this protocol suitable only for detectors that are able to provide

5.1 Experimental results using the rectangular representation
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Tab. 5.2: Score comparison between ICDAR’03 and EVALTEX protocols based on the detection results
(one-to-many matchings) of Figure 5.2.

Figure 5.2a Figure 5.2b Figure 5.2c
ICDAR03  EvALTEX ICDAR03  EvALTEX ICDAR03  EVALTEX
Recall 0.79 0.50 0.73 0.50 0.69 0.54
Precision 0.51 1 0.64 1 0.62 1
F-Score 0.62 0.67 0.68 0.67 0.65 0.71

“unitary” (word) level results. EVALTEX protocol was designed such that all detected GT objects should be
taken into consideration and hence scored. The logic behind this simply relies on the fact that having two
GT objects detected should normally weight more than just having one. In this sense, EVALTEX is clearly
a better choice for evaluating many-rto-one matchings because none of the GT objects is dismissed, but
all are counted and scored, unlike what is done with ICDAR’03 protocol.

Tab. 5.3: Score comparison between ICDAR’03 and EVALTEX protocols based on the detection results
(many-to-one matchings) of Figure 5.3.

Figure 5.3a Figure 5.3b Figure 5.3c
ICDAR03  EvALTEX ICDAR03  EvALTEX ICDAR03  EVALTEX
Recall 0.35 1 0.54 1 0.61 1
Precision 0.39 1 0.77 1 0.65 1
F-Score 0.36 1 0.63 1 0.62 1

Based on all the aspects discussed above, we can conclude that ICDAR’03 protocol presents drawbacks
that severely affect the evaluation accuracy of a detector. We mention here the equality of Recall and
Precision obtained on one-to-one and one-to-many matchings or the best match approach used to
evaluate many-to-one mappings. This comparison emphasizes the fact that our proposed evaluation
method better characterizes the efficiency of a detector by, conversely to ICDAR’03 protocol, clearly
differentiates Recall and Precision scores for all matchings, discriminates partial one-to-one from one-to-

many mappings and provides a precise count of all GT objects detected in a many-to-one case.

Comparison to DETEVAL evaluation protocol

The DETEVAL tool, presented in Section 2.5.5, uses the object detection evaluation method proposed
in [Wolf and Jolion, 2006]. This tool can be configured in different ways, depending on the chosen area
thresholds. The framework can be configurable through eight parameters:

six parameters representing the minimum recall (#,) and precision (f,) overlap areas between
detection results and the GT for one-to-one, one-to-many and many-to-one
cases;

one parameter that permits or not the use of an additional border verification;
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one parameter

used as a threshold on the difference of the centers of two matching bounding

boxes.

Depending on the parameter configuration, different results can be obtained using the DETEVAL frame-
work. So, in order to cover as many comparisons as possible of DETEVAL and EVALTEX we imply the
following three DETEVAL configurations that will be explained in the following: “relaxed”, AUC metrics

and default.

Tab. 5.4: One-to-one detection scores corresponding to Figure 5.1 using the “relaxed” DETEVAL
(DETEVAL,.;), the AUC metrics of DETEVAL (DETEVALAyc) and EVALTEX.

Figure 5.1a Figure 5.1b Figure 5.1c
- & - O - O
N 2 3 N
> > >
s = K £ £ H® £ g &
23] 53] o [8a] [8a] ] 8a] 8a] ]
= = < = = < = = <
23] 23] = = 23] = 2] 23] =
A A <51 A A <3} A A <3}
Recall 1 0.78 0.61 1 0.76 0.63 1 0.72 0.55
Precision 1 0.78 1 1 0.76 1 1 0.72 1
F—Score 1 0.78 0.75 1 0.76 0.77 1 0.72 0.7

Tab. 5.5: One-to-many detection scores corresponding to Figure 5.2 using the “relaxed” DETEVAL
(DETEVAL,;), the AUC metrics of DETEVAL (DETEVALAyc) and EVALTEX.

Figure 5.2a Figure 5.2b Figure 5.2¢c
- @) - @) - O
: 3 I I
= < <
s ¥ E & § E ® § B
m 82} | s3] m | 88} m )
= = < = = < = = <
23] 23] = 23] 23} = 23] 23] =
A A <3} A A <3} A A <51
Recall 0.8 0.71 0.50 0.8 0.78 0.50 0.8 0.76 0.54
Precision 0.8 0.69 1 0.8 0.76 1 0.8 0.74 1
F—Score 0.8 0.70 0.67 0.8 0.77 0.67 0.8 0.75 0.71

Tab. 5.6: Many-to-one detection scores corresponding to Figure 5.3 using the “relaxed” DETEVAL
(DETEVAL,,;), the AUC metrics of DETEVAL (DETEVALAyc) and EVALTEX.

Figure 5.3a Figure 5.3b Figure 5.3c

- 9] - 9] - &)

»JE »—?Cl AE E »—1E E
= < =
s [ = £ = = E
53] 8] ] 58] 53] ] 8a] 0 hE
= = < = = < = = <
= = > = = > = = >
A A <5] A A M A A m
Recall 0.8 0.65 1 0.8 0.74 1 0.8 0.72 1
Precision 0.8 0.66 1 0.8 0.57 1 0.8 0.74 1
0.64 1 0.8 0.73 1

F—Score 0.8

0.65 1 0.8
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“Relaxed” DETEVAL

In our experiments, we first evaluate the text detection results using a “relaxed” version of DETEVAL by
disabling the minimum area coverage constraints. In such a case, we attempt a more fair comparison
with EVALTEX, which by definition is less-restrictive than the common evaluation protocols and does
not use any area thresholds. So, in order to bring closer the two evaluation approaches, we tune the
DETEVAL system to obtain its “relaxed” version, such that:

« therecall and precision area thresholds are both set to ¢, = £, = 0: by this, similarly to EVALTEX, all
matchings between the GT and a detection are considered as valid, regardless of their intersection
surface.

« the center difference threshold is set to 1.

The command line used to produce the “relaxed” evaluation of DETEVAL is:

> evaldetection —p 0,0,0,0,0,0,0,1 det.xml gt.xml > res.xml
> readdeteval res.xml

We illustrate the behavior of “relaxed”DETEVAL protocol during one-to-one, one-to-many and many-to-
one scenarios as this gives a good insight of this method’s shortcomings and justifies once again our
evaluation choices.

We rely on Figure 5.1 which shows some examples of partial one-to-one detections which, evaluated
with “relaxed” DETEVAL, are granted with maximum recall values, as seen in Table 5.4. This raises
again the questionability of having a fair comparison between detectors providing perfectly accurate
detections and detectors that output partial ones. With our method, partial one-fo-one matchings are
scored according to their true intersection area (between the GT and detection boxes) which, in the
current example, correctly penalizes the final recall scores. By doing so we defend once again our idea
that a partial detection is still better than no detection especially if the text detections are used for a
recognition stage.

All many-to-one cases, illustrated in Figure 5.2, obtain the same Recall, Precision and F—Scores equal
to 0.8 when using the “relaxed” DETEVAL. The recurrence of this value suggests that all one-fo-many
detections are scored identically regardless of the matching areas between the GT and the detection
set. On the opposite, EVALTEX keeps the Precision value constant to 1 as all detections are within the
boundaries of the GT objects and applies to the true coverage area a fragmentation penalty. The EVALTEX
scores are more representative because they include the count of all the detected surfaces of a GT but in
the same time they reflect that the matching is not ideal, but fragmented.

Although the one-to-many detections depicted in Figure 5.3 match entirely all GT text objects, they are
penalized by the “relaxed” DETEVAL, as seen in Table 5.6. Moreover, the penalty is applied to both Recall
and Precision metrics which are set to the same constant value of 0.8 as in the case of one-fo-many
scenarios, independently of the number of matched GT text boxes. and does not penalize the many-to-
one cases. Hence, even when using the most permissive configuration of DETEVAL, our method is able to
evaluate more accurate detection results because the provided Recall score truly reflects the fact that the
whole GT surface has been detected, contrary to “relaxed” DETEVAL for which this score could easily be
interpreted by the fact that only 80% of the GT area has been matched, which is false.
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By implying this set of comparisons, we showed that EVALTEX better describes the detection efficiency
than DETEVAL protocol, even when the later was used with the configuration with the rules closest to
EVALTEX ones.

AUC metrics

DETEVAL also integrates a set of new metrics to capture the complexity of the result given by a detection
algorithm, by characterizing both its quality and quantity nature. Recall and Precision are computed
over a range of 20 different area threshold values and then averaged to provide two overall metrics. These
metrics correspond to the AUC graph obtained by ranging the area threshold. To produce the AUC
scores we have relaxed the two area constraint by setting , = f, = 0 and use the following command
line:

> ./evalplots —tr—fix=0 —tp—fix=0 det.xml gt.xml

While these metrics solve the binary behavior of partial matchings of the “relaxed” DETEVAL, the Precision
still tends to be equal with the Recall values when dealing with one-fo-one cases (see Table 5.4) This
is a problem because the two metrics, Recall and Precision, should characterize different aspects of a
detection, as successfully shown by the scores provided by EVALTEX.

The same score similarity characteristics between Recall and Precision is produced when evaluating
one-to-many scenarios (see Table 5.5).

The scores for the many-to-one matches (see Table 5.6) also present the same problem: the small
difference between the Recall and Precision values corresponding to Figures 5.3a and 5.3c does not
give a full understanding of how much of the GT boxes were detected versus how well the detection
box covered the GT boxes. A higher difference between the two scores is obtained for detections of
Figure 5.3b. Nonetheless, this still remains difficult to interpret.

The difference between the evaluation accuracy produced by AUC metrics and by EVALTEX is clear. The
drawback of the AUC metrics, handled by EVALTEX, is the inability of separating the properties described
by the Recall and Precision scores.

Default DETEVAL (ICDAR’11/13/15 evaluation protocols)

The default configuration of DETEVAL assumes that the Recall and Precision thresholds are set to ¢, = 0.8
and £, = 0.4 respectively. Hence, any detection having an accuracy value higher than 0.4 is considered
correct, while any GT object for which the mapped surface is larger than 0.8 is considered as matched.
This is the most used configuration of DETEVAL as it does not necessitate further tuning. Moreover, it
has been already used during ICDAR 2011, 2013 and 2015 RRCs.

The evaluation method used during ICDAR 2013 RRC (Challenge 1 & 2 - Text Localization) is a re-
implementation of the DETEVAL framework. As the organizers mentioned?, there are “slight differences”

2http://rrc.cvc.uab.es/?ch=2&com=evaluation
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between the scores obtained with ICDAR’13 and the ones obtained with DETEVAL due to an incomplete
documentation of some heuristics in [Wolf and Jolion, 2006].

Comparison to ICDAR’13 protocol. The choice of comparing EVALTEX system to that of ICDAR’13
stands on two reasons. First, it is up-to-date and represents what is commonly done and admitted in text
detection evaluation. Secondly, all results are publicly available through an interface® which provides
for each image the final scores and matchings. The protocol uses the two area Precision and Recall
thresholds, - and ¢, which are set to 0.8 and 0.4 respectively and which control the matching between
the GT and the detections.

Its matching protocol assigns a lower weight to one-to-many matches, since the expected output
is at the word level, while text-line level detections (many-to-one matches) are said not be penal-
ized [Karatzas et al., 2013]. However, we will show later that this last “claim” is frequently violated and
consequently causes misleading scores. In the following, we analyze the differences between EVALTEX
and ICDAR'13 protocols based on the detection results of the TextDetection detector [Fabrizio et al., 2013].
These differences come from, on one hand, the matching strategy, as shown in Figures 5.4-5.7, and
on the other hand, their corresponding global scores, presented in Tables 5.7-5.10. The comparison is

illustrated for each type of matching.

Figures 5.4a and 5.4b illustrate a one-to-one case for which the Recall and the Precision scores are
over-estimated by ICDAR metrics. First, although the detection misses the first letter of the word
“AUSTRALIA’, the Recall rate is set to 1 (Fig. 5.4a). Similarly, even if the area of the detected box for the
word “moto” is considerably larger than the GT one, its Precision rate is 1. The ICDAR 2013 approach
scores a GT text box with a binary Recall (1 or 0), depending on whether the area match ratio respects or
not a threshold. This is not a correct evaluation, since it does not provide a good comparison between
algorithms. For example, if an algorithm detects the whole word “AUSTRALIA”, it would get the same
score as the detection shown in Figure 5.4a leading to an unfair evaluation. Conversely, our metrics give
a more precise and realistic evaluation because they take into account the real overlap match area, that
provides a better comparison between different system outputs.

Tab. 5.7: Detection scores corresponding to Figure 5.4.

Figure 5.4a Figure 5.4b
ICDAR’13  EvaLTEX ICDAR’13  EVALTEX

Recall 1 0.9186 0.5 0.5
Precision 1 1 1 0.5919
F—Score 1 0.9575 0.6667 0.5421

3http://rrc.cvc.uab.es/?com=introduction
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Fig. 5.4: One-to-one matching examples; left: GT (red rectangle) and the detection (solid purple rectan-
gle); center (ICDAR 2013) and right (EVALTEX): mismatched GT objects (solid red rectangles),
one-to-one matched GT areas (solid green rectangles), many-to-one matched GT areas (solid
yellow rectangles), one-to-many matched GT areas (solid blue rectangles).

As shown in Figures 5.5a and 5.5b, the one-to-many case is not treated the same way for all images by
ICDAR metrics. In Figure 5.5b, the word “POSTPAK” is detected by two boxes, both considered as correct
matchings. In Figure 5.5a the same scenario occurs for the word “Yarmouth”, but the two detected
boxes are not considered as valid matches because in both cases the overlap matching area is too small.
Moreover, the two detected boxes are considered as false positives, that unfairly penalizes the final scores.
Firstly, it decreases the Recall rate by not matching the two detected boxes to the GT, and secondly;, it
decreases significantly the Precision rate due to the two detected boxes which are erroneously counted as
false positives. On the contrary, our method correctly recognizes the one-to-many cases and matches the
two detected boxes in both examples, but punishes the fragmented detection by penalizing the Recall, as
seen in Section 3.3.

Tab. 5.8: Detection scores corresponding to Figure 5.5.

Figure 5.5a Figure 5.5b
ICDAR’13  EvALTEX ICDAR’13  EVALTEX
Recall 0.625 0.8102 0.90 0.7806
Precision 0.7143 1 0.8667 1
F—-Score 0.6667 0.8952 0.883 0.8768
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Fig. 5.5: One-to-many matching examples; left: GT (red rectangle) and the detection (solid purple
rectangle); center (ICDAR 2013) and right (EvalTex): mismatched GT objects (solid red
rectangles), one-to-one matched GT areas (solid green rectangles), many-to-one matched GT
areas (solid yellow rectangles), one-to-many matched GT areas (solid blue rectangles).

Figures 5.6a and 5.6b show the problem of inconsistency during the many-to-one matching. In Fig-
ure 5.6a, the detection is at a line level. Only the second and last lines are correctly matched, while
the other detected text lines are associated with the GT text box having the largest surface within that
line (“unauthorized” in the first line, “Permit” in the third one and “operation” in the fourth one). The
unmatched GT text boxes are considered as false positives (“No”, “to”, “work”, “system”, “in”). ICDAR
metrics over punish the many-to-one matches and frequently considers them as one-to-one. On the
contrary, our protocol correctly matches all text lines and leads to a Recall equal to 1. We have a similar
problem when detection boxes cover a multi text-line (Figure 5.6b). The word “Roland” is matched by
ICDAR protocol, while the two other words are discarded. Hence, their Recall is penalized, while their
Precision is not. Our method considers all words detected, hence the Recall rate is set to 1. Nevertheless,

we assign a low Precision rate, due to the presence of the logo in the left part of the detected box.

Tab. 5.9: Detection scores corresponding to Figure 5.6.

Figure 5.6a Figure 5.6b
ICDAR’13  EvaLTEX ICDAR’13  EVALTEX
Recall 0.6667 1 0.3333 1
Precision 1 1 1 0.6245
F—Score 0.8 1 0.5 0.7688
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Fig. 5.6: Many-to-one matching examples; left: GT (red rectangle) and the detection (solid purple
rectangle); center (ICDAR 2013) and right (EvalTex): mismatched GT objects (solid red
rectangles), one-to-one matched GT areas (solid green rectangles), many-to-one matched GT
areas (solid yellow rectangles), one-to-many matched GT areas (solid blue rectangles).

Finally, the many-to-many case is illustrated in Figures 5.7a and 5.7b. The word “COLCHESTER” in
Figure 5.7a corresponds to a many-to-one and a one-to-many match. Nevertheless, the ICDAR matching
protocol rejects it and matches only the word “HEALTHY”, whereas our algorithm validates both text
boxes, but penalizes the Recall due to its split detection. If we look at the second line in Figure 5.7b we
observe that the word “Family” is matched by two detections (one-to-many). Both detections involve a
many-to-one case, the first one corresponding to words “Lifelines” and “Family”, while the second one to
words “Family” and “Support”. The ICDAR matching algorithm considers as matched GT text boxes
those containing the words “Lifelines” and “Support”, and classifies the word “Family” as missed. This
provides again an unfair comparison: if another localization algorithm would have completely missed
the word “Family”, then, both algorithms would have got the same scores, although the first detected
87% of the area of the “Family” GT text box.

Tab. 5.10: Detection scores corresponding to Figure 5.7 using the ICDAR’13 and EVALTEX protocols.

Figure 5.7a Figure 5.7b
ICDAR'13  EvVALTEX ICDAR’13  EVALTEX
Recall 0.6667 0.8404 0.6 0.9032
Precision 0.6667 1 1 1
F-Score 0.6667 0.9132 0.75 0.9491
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Fig. 5.7: Many-to-many matching examples with scores; left: GT (red rectangle) and the detection (solid
purple rectangle); center (I(CDAR’13) and right (EVALTEX): mismatched GT objects (solid red
rectangles), one-to-one matched GT areas (solid green rectangles), many-to-one matched GT
areas (solid yellow rectangles), one-to-many matched GT areas (solid blue rectangles).

Quantitative results

This new set of experiments will show the variety and hence the imbalance between all these protocols
discussed in the previous section. A first experiment will simply target the comparison of evaluation
results on single one-to-one matchings as they capture the best the weaknesses of each protocol. The
second comparison focuses on the opposite: the examination of detection scores on a whole dataset of

images.

Evaluation of partial detections

As already referred in the manuscript, the way one-to-one detections are being treated differs from one
method to another one. To highlight these differences, we propose a simple experiment which consists
in gradually decreasing the quality (coverage area) of a one-to-one detection with a GT text object (see
Figure 5.8a), while maintaining a perfect accuracy level (equal to 1) and analyze the Recall and Precision
measurements at each stage.

Figure 5.8b depicts the evolution of Recall and Precision scores given by the default and “relaxed”
configurations of DETEVAL when dealing with partial one-fo-one matchings. The “relaxed” DETEVAL
maintains the two metrics at 1 despite the diminuation of the coverage area. This is the result of setting
the area thresholds to 0. On the other hand, for the default DETEVAL, we can observe the steep drop of
both metrics from one to zero. This describes a binary evaluation approach of one-fo-one matchings,
which depends on the Recall and Precision area parameters. Unfortunately, such behavior cannot
correctly differentiate total from partial detections, regardless of the area threshold values.
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Fig. 5.8: Recall and Precision plots for a series of one-to-one detections using different evaluation proto-
cols; (a) the detection area is gradually reduced by an offset; (b) default DETEVAL (ICDAR’13)
and relaxed DETEVAL; (c) DETEVAL (AUC); (d) EVALTEX.

In Figure 5.8c we illustrate the evaluation behavior when using the AUC metrics of DETEVAL. One
can observe that the Recall and Precision plots consistently overlap during the whole set of the partial
one-to-one detections. Since the detection coverage area always remains within the boundaries of the
GT text, a good set of measurements should discriminate between the Recall and Precision values. In
such a case, our method (Figure 5.8d), evaluates the Precision to 1, regardless of the partial detection.
This is logical because the detection never exceeds the valid text area. On the contrary, the Recall score
decreases linearly as a result of the progressive diminution of the coverage area between the detection
and the GT boxes.

ICDAR 2013 Robust Reading Competition results

In this section we evaluate the detection results submitted by the ten participants at the ICDAR 2013 RRC
(Challenge 1 and Challenge 2) [Karatzas et al., 2013]. The results of these methods, originally published
on the RRC 2013 competition website page [I[CDAR, 2013], were later made available on the RRC 2015
website*. In Tables 5.11, 5.12 and 5.15 we provide a complete comparison of the performance results of
all participants to Challenge 2 on the RRC’13-SI dataset, while Tables 5.13, 5.14 and 5.16 provide the
detection scores of the participants to Challenge 1 on the RRC’13-BD database.

Note. Initially, the ICDAR’13 metrics were presented as being computed following the default con-
figuration of DETEVAL protocol. However, there were “slight differences” between the performance
results of ICDAR’13 and those obtained by DETEVAL due to a series of undocumented heuristics
in [Wolf and Jolion, 2006], such as the penalization attributed to many-to-one cases or the order of
evaluating certain matching scenarios. To fix this, the organizers “implemented an alternative evaluation
protocol which is consistent to the DETEVAL fool and takes into account all undocumented heuristics”. We
will refer to this last protocol as ICDAR’13pegyal. Figure 5.9 gives a screenshot taken from the ICDAR
webpage showing the option of switching between these two protocols to provide the final performance
results.

4http ://rrc.cvc.uab.es/7com=introduction
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The scores obtained with ICDAR’13 and ICDAR’13pergval could not be reproduced with the DETEVAL
tool. Hence, due to this score difference, we decided to provide the scores obtained by the following
configurations of DETEVAL by directly running the following command lines:

1. Default DETEVAL (DETEVALgefqui;) using the framework’s command line®

> evaldetection det.xml gt.xml > res.xml

2. AUC metrics of DETEVAL (DETEVALAyc) using framework’s command line

> evalplots det.xml gt.xml > res.xml

We compare these four configurations (ICDAR'13 ,ICDAR'13pegyal, DETEVALge £ qui and DETEVALAyC),
with the scores of ICDAR’03 and EVALTEX.

() ICDAR 2013 (=) Deteval
Dereval
hMethod Fecall Frecision Hmean
StradVision 90.61% 95.21% 92.86%

PalTextLocalization BEA3% 9395% 91.11%

USTB_TexStar B5B5% 94.22% 9038%
Sams 90.05% B9.30% B967H
BUCT_YST BE.175% 91.97% BBE9E%
Blindsight2012 BO.47% 90.11% B5.02%
TH-TextLoc Bl.82% B7.28B% B8445%
I2R_MUS_FAR B0.51% B454% B252%
BlockAnalysis B4.63% 7B.73% B1.5E%
Text Detection 83.22% 79.13% 81.13%
I2R_MUS 75.50% B570% B80.27%
Baseline 7099% B517% 77.44%
BDTD_CASIA J0.175% BO.O3% 7497
OTCYMIST 79.81% 6K7.92% 7339%
Inkam 61.73% 58.71% 60.18%

Fig. 5.9: ICDAR interface

Discussion on RR’13-Sl dataset. The first remark we can make by looking at Table 5.11 is that the
DETEVALAyc protocol is the strictest one when computing the Recall score. On the opposite, EVALTEX
protocol seems to be the most permissive one producing the highest Recall values. This is because
EvALTEX validates all types of matchings and hence all coverage area are taken into account. We can
notice that the difference between the scores computed with ICDAR’03 and EVALTEX reaches even 26%,
in the case of the TextDetection method. We can also notice that the values with ICDAR’13(DETEVAL)
are better than those computed with ICDAR’13 which re-enforces the motivation of organizers to correct
some aspects that ICDAR’13 couldn’t deal with, namely the rejection of many many-to-one detections.
The DETEVALgef4y1: S€€mMS to be more penalizing than the ICDAR’13(DETEVAL) but more permissive
than the AUC metrics.

Shttp://liris.cnrs.fr/christian.wolf/software/deteval/
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There are some differences concerning the Precision scores, shown in Table 5.12. First of all, DETEVALAyc
is the most penalizing protocol. The score difference between ICDAR’13 and ICDAR'13(DETEVAL) is neg-
ligible which confirms the fact that, when many-to-one matchings are not considered by ICDAR’13, the
only impact is on the Recall values and less on the Precision. Also, EVALTEX has the tendency to relax the
Precision penalties applied by the other two methods. On the contrary, it punishes algorithms that pro-
duce detection areas significantly larger than the GT boxes (See Figure 5.10), as in the case of TextSpotter
participant, which obtains a precision 9% smaller than the one produced by ICDAR'13pgrgva. and 10%
lower than with ICDAR’13.

Table 5.15 shows the F—Scores associated to each text detection method and their ranking obtained
with each evaluation protocol. This table provides the best proof that nowadays detections are not being
evaluated accurately. The only two rankings that match are ICDAR'13(DETEVAL) and DETEVAL 4, Fault-
On the contrary, ICDAR’03, ICDAR’13, DETEVALAyc and EVALTEX provide very different rankings. For
example, detector CASIA_NLPR is ranked second by DETEVAL e fquis, third by ICDAR’13, fourth by
ICDAR’13(DETEVAL) and fifth by DETEVALAyc. ICDAR’03 and EVALTEX provide a similar ranking except
for the TextDetection method.

Fig. 5.10: TextSpotter detection examples.

On the other hand, our protocol increases the Precision scores for algorithms such as I2ZR_NUS_FAR,
I2R_NUS and Inkam which have a high number of partial one-to-one detections that are mismatched
by DETEVAL and ICDAR’13 protocols, but correctly matched by our method. The ICDAR and DETEVAL
ranking are relatively similar.

Discussion on RR’13-BD dataset. On the RR’13-BD dataset, the ICDAR’03 is the most penalizing
protocol because ICDAR’03 only deals with one-to-one matchings, while all other mappings are not
considered and hence not scored. The Recall difference on this dataset between EVALTEX and ICDAR’13,
ICDAR’13(DETEVAL) and DETEVALge £ qui; is smaller than for RR’13-SI. We can observe that ICDAR'13
and ICDAR’13(DETEVAL) provide very close scores.

In Tables 5.11 - 5.16 the evaluation with the EVALTEX framework is done using the two-level GT annota-
tion option, discussed in Section 3.2. In order to see the impact of this region tag on the final Precision
scores, in the following section we discuss and analyze the detection results obtained when enabling or
disabling the region option.
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Tab. 5.15: F-Score (Ranking) scores of all participants during the ICDAR 2013 RRC (Challenge 2)
using the ICDAR’03, ICDAR’13, ICDAR'13(DETEVAL) DETEVALge fquir, DETEVALAyc and
EVALTEX evaluation protocols on the RR’13-SI dataset.

Method ICDAR'03 ICDAR’13  ICDAR'13(DETEVAL) DETEVALgeraui; DETEVALAyuc  EVALTEX
USTB_TexStar 0.71 (2) 0.76 (1) 0.78 (1) 0.71 (1) 0.67 (1) 0.82 (1)
TextSpotter 0.59 (6) 0.74 (2) 0.75 (2) 0.69 (2) 0.57 (6) 0.70 (8)
CASIA_NLPR 0.65 (5) 0.73 (3) 0.74 (4) 0.69 (2) 0.61 (5) 0.78 (6)
Text_detector_CASIA 0.66 (4) 0.72 (4) 0.75 (2) 0.67 (5) 0.63 (4) 0.80 (3)
I2R_NUS_FAR 0.72 (1) 0.72 (4) 0.73 (5) 0.68 (4) 0.66 (2) 0.81 (2)
I2R_NUS 0.70 (3) 0.69 (6) 0.72 (6) 0.66 (6) 0.65 (3) 0.80 (3)
TH-TextLoc 0.56 (7) 0.67 (7) 0.70 (7) 0.63 (7) 0.55 (7) 0.73 (7)
Text Detection 0.54 (8) 0.62(8) 0.70 (7) 0.57 (8) 0.55 (7) 0.79 (5)
Baseline 0.42 (9) 0.44 (9) 0.45 (9) 0.42 (9) 0.34 (9) 0.45 (10)
Inkam 0.38 (10) 0.33 (10) 0.36 (10) 0.33 (10) 0.34 (9) 0.55 (9)

Tab. 5.16: F-Score (Ranking) scores of all participants during the ICDAR 2013 RRC (Challenge 2)
using the ICDAR’03, ICDAR’13, ICDAR'13(DETEVAL) DETEVAL g fquis, DETEVALAyc and
EVALTEX evaluation protocols on the RR’13-BD dataset.

Method ICDAR'03 ICDAR'13 ICDAR'13(DETEVAL) DETEVALpefaui; DETEVALAuc ~ EVALTEX
USTB_TexStar 0.64 (2) 0.88 (1) 0.90 (1) 0.84 (1) 0.69 (2) 0.92 (1)
TH-TextLoc 0.62 (3) 0.81 (2) 0.84 (2) 0.77 (2) 0.66 (3) 0.89 (3)
I2R_NUS_FAR 0.53 (6) 0.77 (3) 0.83 (3) 0.74 (4) 0.74 (1) 0.65 (9)
Text Detection 0.39 (9) 0.76 (4) 0.81 (4) 0.67 (8) 0.57 (8) 0.90 (2)
I2R_NUS 0.52 (7) 0.75 (6) 0.80 (5) 0.71 (5) 0.63 (5) 0.87 (4)
Baseline 0.65 (1) 0.76 (4) 0.77 (6) 0.76 (3) 0.65 (4) 0.79 (7)
BDTD_CASIA 0.59 (4) 0.73 (7) 0.75 (7) 0.71 (5) 0.60 (6) 0.80 (5)
OTCYMIST 0.58 (5) 0.71 (8) 0.73 (8) 0.70 (7) 0.60 (6) 0.80 (5)
Inkam 0.42 (8) 0.55 (9) 0.60 (9) 0.52 (10) 0.48 (9) 0.78 (8)

5.1.4 Region annotation impact on global scores

In this section we explain the contribution of using the region tag. We first compare the scores obtained
when the region tag is enabled or disabled. Next, we show the global impact of this option on the
RR’13-BD and RR’13-SI datasets.

Region impact on single images. Figure 5.11 shows the impact on the Precision value (computed
in Section 3.4.2) using different region annotations for three GT objects matched by one detection. One
can observe that the Precision value increases proportionally to the surface of the text region. The logic
behind this is that the more GT objects a region contains, the smaller the non textual area becomes and
the less the Precision is penalized. Table 5.17 summarizes the impact of using the region level annotation
on some key examples illustrated in Figure 5.12. Most of the detections correspond to many-to-one
matchings. Here, the region labeling is done at line level. One can easily observe that if the region
annotation is used, the Precision scores are higher than those obtained when only the objectlevel GT
annotation is considered. On the contrary, Recall scores are not influenced in any way by the region
labeling.
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b: R=1,P=0.60 c: R=1,P=0.62 d: R=1,P=0.65

Fig. 5.11: The impact of the region GT (yellow rectangles) annotation on the Precision; (a) 3 GT objects
(red rectangles), 1 detection (green filled rectangle); (b) 3 GT objects grouped into 3 text
regions; (c) 3 GT objects grouped into 2 text regions; (d) 3 GT objects grouped into one text
region.

We can then see that by attributing a region tag to a group of GT we can evaluate a many-to-one match
without having to penalize the Precision due to the non-textual area assumed by this kind of matching.
Consequently, the EVALTEX protocol is capable of evaluating equitably detectors that produce word or
line level detections. Table 5.17 clearly show that word and line level detections get the same scores. This
is a major advantage of EVALTEX as, instead of imposing a certain granularity level, it permits detectors
to choose their own.

WARNING WARNING

Fig. 5.12: One-to-many detections and the associated region annotation; left: detections (green filled
rectangles); right: object GT annotation (red rectangles) and region annotation (yellow
rectangles).

Region impact on a dataset. Tables 5.18 and 5.19 show the influence of the grouping GT objects
into regions on the Precision scores obtained on the RRC’13-SI and RR’13-BD datasets. For each

5.1 Experimental results using the rectangular representation 109



110

Tab. 5.17: Global scores, Recall and Precision, when enabling and disabling the region GT annotation.

ONE-LEVEL ANNOTATION TWO-LEVEL ANNOTATION

Fig. 5.12 Recall Precision Recall Precision
Top 1 0.96 1 1
Middle 1 0.89 1 1
Bottom 1 0.92 1 1

participant we give both the global Precision value P and the quality Precision value P;4; obtained
when we use a one-level annotation (word) and the proposed two-level annotation (word and line). Text
detection algorithms for which the Precision difference score obtained using these two annotations,
produce more line-level detections that those for which this difference is lower. On the RR’13-SI dataset
(see Table 5.18, three methods stand out: Text_detector_CASIA, TH-TextLoc and Inkam which have the
highest Precision difference, equal to 0.03. A higher score variance between the two annotation levels can
be seen in the scores obtained on the RR’13-BD dataset shown in Table 5.19. Here, the TextDetection
method presents the highest difference of P scores equal to 0.07. This is explicable as many of its
detections are at line level. Similarly, we can deduce that the text detectors for which there is no score
difference between the Precision values, produce detections exclusively at word level. We mention here
the CASIA_NLPR and I2R_NUS_FAR algorithms on the RR’13-SI database. Based on these experiments,
we highlight that the comparison of Precision scores when enabling and disabling the region tag, can
serve as an additional information on the level of detections produced by a text localization method.

Tab. 5.18: Precision scores of all participants during the ICDAR 2013 RRC (Challenge 2) on the RR’13-
SI using both the one-level (only word) and two-level (word and line) annotations.

ONE-LEVEL ANNOTATION TWO-LEVEL ANNOTATION
Method EVALTEX (Pg)  EVALTEX (Pgyuq) EVALTEX (Pg)  EVALTEX (Pgyqp)
USTB_TexStar 0.91 0.94 0.93 0.96
TextSpotter 0.73 0.77 0.74 0.77
CASIA_NLPR 0.83 0.85 0.83 0.86
Text_detector_CASIA 0.86 0.90 0.89 0.93
I2R_NUS_FAR 0.87 0.97 0.87 0.97
I2R_NUS 0.84 0.95 0.85 0.97
TH-TextLoc 0.68 0.82 0.71 0.87
Text Detection 0.80 0.88 0.87 0.95
Baseline 0.60 0.90 0.61 0.91
Inkam 0.53 0.87 0.56 0.92

An example which higlights the importance of this region tag is represented by the Precision scores
obtained by detector TextDetection and illustrated in Table 5.18. The Precision difference of 0.07
obtained by enabling or disabling the region tag can be viewed as a penalization applied to a detector
whose majority of detections are at line level while the output expected by the protocol was at word-line
level. These aspects together with the set of experimental results presented in this section motivate the
valuable impact of assigning the region tags to GT objects, namely allowing detectors, with different

granularity levels to be evaluated in the same manner.
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Tab. 5.19: Precision scores of all participants during the ICDAR 2013 RRC (Challenge 2) on the RR’13-
BD using both the one-level (only word) and two-level annotations (word and line).

ONE-LEVEL ANNOTATION TWO-LEVEL ANNOTATION
Method EVALTEX (Pquant) EVALTEX (Pgyqi)  EVALTEX (Pguant)  EVALTEX (Pgyq)
USTB_TexStar 0.93 0.94 0.96 0.97
TH-TextLoc 0.87 0.90 0.91 0.94
I2R_NUS_FAR 0.89 0.90 0.94 0.96
Text Detection 0.80 0.88 0.87 0.95
I2R_NUS 0.89 0.90 0.95 0.96
Baseline 0.82 0.90 0.83 0.91
BDTD_CASIA 0.84 0.91 0.85 0.93
OTCYMIST 0.75 0.93 0.77 0.96
Inkam 0.82 0.93 0.86 0.98

5.2 Experimental results using the mask representation

In this section we present the evaluation results given by EvalTex on some examples of detections
corresponding to text objects that could not well represented by rectangular boxes. Figure 5.13 shows
the advantage of using a mask based GT representation rather than a rectangular one when dealing with
any of the following categories of text objects: perspectively deformed, tilted, curved, wavy or circular.
Moreover, for each of these examples we illustrate possible detection masks for which the performance
results are given in Table 5.20. Figure 5.13 shows some of the problems posed by the rectangular GT
annotation:

Problem 1 intersection of rectangular boxes in the GT: “ENTIER” with “ALBACORE” (Figure 5.13f),
“FLORANIS” with “FRERES” (Figure 5.13f), “COMPUTATIONAL” with “COMPLEXITY”
(Figure 5.13f);

Problem 2 GT rectangles contain considerably more non-textual areas than textual ones: “KEMA-
KEUR” and “HO3VV-F” (Figure 5.13b), “Enjoy” and “Coffee” (Figure 5.13c), “ENTIER” and
“NATURAL” (Figure 5.13f), “ALAINAFFLELOU” (Figure 5.13e), “COMPUTATIONAL” and
“COMPLEXITY” (Figure 5.13g);

Problem 3 inclusions of GT boxes: “GRAS” into “ANISETTE” (Figure 5.13f).

Note. The intersection of rectangular boxes (Problem 1) in the GT is a problem because a detection that
matches only one of the GT objects can easily be interpreted as all GT objects were equally detected. The
fact that GT boxes contain more non-text surface than text surface (Problem 2) can produce imprecise
coverage rates (e.g. for example the mapping between a text with a capital letter at the beginning and a
detection that covers all letters but the first one). Finally, using rectangular boxes, a GT object can be
included into another one and hence the evaluation ambiguity that could either consider them both

detected or only one of them.
Table 5.20 summarizes the comparison between the local and global performance scores obtained

when using a rectangular and a mask representation for text detected in images of Figure 5.13. The
rectangular detections are not represented in Figure 5.13 but correspond to boxes surrounding the
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detection masks given in the last column of this figure which will be matched with the GT rectangles
shown in the second column of the figure. One can observe that, when using a rectangular representation,
the matching procedure is disturbed by the text objects that intersect in the GT. Namely, text objects
such as “ALBACORE” in Figure 5.13f, are matched two times: firstly with their corresponding detection
and secondly with detections targeting objects that intersect them in the GT. Hence, the coverage scores
of such GT objects are penalized by the fragmentation parameter invoked during the one-fo-many
matching, which can furthermore impact the global Recall score. Similar cases that imply text object
intersections in the GT, such as “GRAS” and “ANISETTE” (Figure 5.13f), can be successfully avoided
using the filtering procedure, described in Section 3.3.3. However, due to numerous examples involving
GT intersections, the filtering cannot always predict correctly a detector’s choice. For this reason,
using masks to represent text objects could prevent such situations generated by the rectangular text
annotation.

Recall values of Figure 5.13e show another example of differences when using these two representations
in the case of a tilted and perspective deformed text (‘“ALAINAFFLELOU”) only partially matched. The
coverage ratio computed on rectangles is smaller than the coverage ratio computed on masks and
consequently leads to a significant difference of recall values.

Another discrepancy between the rectangular and mask annotations comes from the Precision value
variations that are more accentuated when dealing with many-to-one detections. Such situations can
be seen in Figures 5.13b and 5.13c that illustrate many-to-one detections covering curved text strings
(“KEMA-KEUR”, “3G0.75” and “VDE" in Figure 5.13b, respectively GT objects “Enjoy” and “yours"
in Figure 5.13c). For Figure 5.13b, the precision values vary from 0.48, when using the rectangular
representation to 0.81, in the case of mask annotation. Similarly, the precision scores for the two text
representations in Figure 5.13c range from 0.73 to 0.98. Once again, the rectangle representation shows
its limitation and that it can significantly penalize the performance evaluation of a detector.

In this section we have provided a detailed evaluation for a series of images in order to point out the
interest of having a more accurate representation of curved, arc-form or circular texts, namely using
an annotated with masks. The illustrated images contain eloquent examples of text regions for which
the rectangular annotation is not well-adapted. We have shown that by using bounding boxes, the
accuracy of some detections can be under or over evaluated and that the irregular mask annotation can
successfully be used to avoid such situations.
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Fig. 5.13: Examples of different texts (inclined, curved, perspectively deformed, following a circular
path); left: mask GT annotation (red); center: rectangular GT annotation (red); right: GT
masks (red) overlapped by detection masks (green).
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5.3 Experimental results using the histogram
representation and EMD-based evaluation

In this section we show, through a set of pertinent examples, the motivation of using histograms to
represent text detection results and histogram distances as a reliable tool for computing the final
scores. In a first step, we locally evaluate some detection results on single images to explicitly show
how each detection accurately can be described by a bin interval and a bin value of a histogram. Next,
we use the histograms to represent a set of detections with the goal of illustrating the behavior of a
detector. We also show that this global representation of detections is suitable for successfully comparing
different detectors. Finally, the proposed quality histograms are compared to the performance ROC
plots introduced in [Wolf and Jolion, 2006].

Analysis of single detection results. We have shown in Chapter 4 that through histograms, one
can easily “read” and understand the detection characteristics of a text detector. Figure 5.14 gives three
examples of detections, their corresponding non-normalized coverage (depicted in blue) and accuracy
(depicted in orange) histograms (see Figure 4.3) with B = 10 bins and the resulting global Recall and
Precision scores. The interpretation of these two histograms is straightforward. The first bin of k¢, (in
orange) encloses the total number of non-detected (or poorly detected, Cov < 0.1) GT objects, while
the first bin of h4.. (blue) encloses the number of false positives (or detections with poor precision,
Acc =0.1). The last bin corresponds to very good matchings, while all intermediate bins are correlated
to either partial detections (in h¢,,) or detection areas that are larger than the GT areas, respectively in

hAcc-

. In the top example of Figure 5.14, the scattered coverage values of h¢,, indicate the presence of
either partial (“A120” ([0.3,0.4]) and “A133” ([0.2,0.3[)) or one-to-many (“Yarmouth” ([0.4,0.5[))
detections. On the other hand, all accuracy values are accumulated into the last bin of h 4., which
means that all detections were truthful with respect to the GT.

. By analyzing the histograms in the middle example of Figure 5.14, we observe that the first bin
value of k¢, equals the sum of values of the other bins. This shows that only half of the GT objects
were detected (“INTRODUCTION”, “TO”, “DATABASE”, “SYSTEMS”, “DATE”), while the other half
was missed or poorly detected (“AN”, “C.”, “].”, “SIXTH”, “EDITION”).

o hacc associated to the detection examples in the bottom of Figure 5.14, suggests there are three
possible false positives. The values 1 of bin intervals [0.7,0.8[ and [0.9, 1] correspond to one
detection that exceeds its corresponding GT boundary object (“RIVERSIDE”) and one accurate
detection (“WALK”) respectively.

Comparison of two algorithms. A good advantage of this representation is that, applied on a
dataset, it allows to characterize and compare at a glance text detectors. In Fig. 5.15 we illustrate the
overall detection behavior of two algorithms, Inkam and TextSpotter, based on the detection results
submitted to ICDAR 2013 RRC [ICDAR, 2013].

. The left plot shows coverage values (hcow) of both algorithms. Both normalized coverage his-
tograms illustrate a similar tendency: two high peaks on the first and last bins and a lower peak
around the value 0.5. This means that, for both algorithms, most of the GT objects were either
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Fig. 5.14: GT (red rectangles) and detection (filled green rectangles) examples and their corresponding
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missed, either accurately detected, while only approximately 6% of the GT objects were involved
in partial or one-to-many detections. One can however conclude that from the coverage aspect,
TextSpotter slightly outperforms Inkam: the number of missed GT objects (value of the first bin)

is lower while the last bin’s value is higher.

. The right plot corresponds to accuracy values (h..) of both algorithms. Contrary to the coverage
similarity behavior discussed above, the accuracy profiles of the two detectors are very different.
Inkam produces a significantly higher number of false positives than TextSpotter. The accuracy
histogram of textSpotter has higher bin values in the quality intervals [0.7,0.8[ and [0.8,0.9[. This
is because TextSpotter adds a large border to all its detections [[CDAR, 2013], which decreases the
object-level accuracies. On the other hand, Inkam produces as many false positives as accurate

detections (first and last bin values close to 0.4).
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Fig. 5.15: Coverage and accuracy normalized histograms associated to detector Inkam (R = 0.60,
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Fig. 5.16: Performance plots generated with DETEVAL tool [Wolf and Jolion, 2006] (Recall in purple,
Precision in blue); top: Inkam (Rpy = 0.37, Poy = 0.32); bottom: TextSpotter (Roy = 0.49,
Poy =0.69).

The quality histograms of all participants at the ICDAR 2013 RRC are illustrated in Figure 5.17 for
Challenge I and in Figure 18 for Challenge 2.
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Fig. 5.17: Quality (Coverage and Accuracy) histograms of participating text detection methods at the

ICDAR 2013 RRC on the born-digital image dataset (RR’13-BD).
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Fig. 17 (Cont.): Quality (Coverage and Accuracy) histograms of participating text detection methods

at the ICDAR 2013 RRC on the born-digital image dataset (RR’13-BD).
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Fig. 18: Quality (Coverage and Accuracy) histograms of participating text detection methods at the

ICDAR 2013 RRC on the scene image dataset (RR’13-SI).
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Fig. 18 (Cont.): Quality (Coverage and Accuracy) histograms of participating text detection methods

at the ICDAR 2013 RRC on the scene image dataset (RR’13-SI).
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Fig. 19: Variation of Rg and Pg scores depending on the number of bins B (detection results provided
by [Fabrizio et al., 2013] on the ICDAR 2013 dataset).

Comparison of the histogram representation and DETEVAL plots. We now compare our his-
togram representation with the performance plots generated by the DETEVAL tool [Wolf and Jolion, 2006]
(see Fig. 5.16). The plot representation in [Wolf and Jolion, 2006] is obtained by varying the two quality
constraints (#; for Recall, and £, for Precision) and counting how many objects fall into a certain interval,
whereas our method implies a qualitative local evaluation from the start. Although both approaches
capture the quality and quantity natures of a detection, we introduce a more compact representation
using only two plots for depicting a detection (instead of generating four plots, two for Recall and two
for Precision, as proposed in [Wolf and Jolion, 2006]). Secondly, histograms have the advantage of being
more intuitive and easier to interpret in the given context of text detection. One can easily visualize the
proportion of missed GT objects or false positives, as well as the amount of detections that fall into any
other coverage or accuracy interval. Concerning the overall Recall and Precision scores obtained with
the two approaches, we can observe that the results are different, which is due to the different object
level evaluation used by the two methods.

Impact of tuning the number of bins. By using histograms to represent detections, the generated
global scores will depend on the chosen number of bins (B). Namely, the higher the number of bins,
the more accurate the scores will be. Consequently, if we increase the number of bins, the score will
decrease. For example, a detection that was evaluated to a 0.52 coverage value, will be counted in the
[0.5,0.6 bin interval if B = 10. If we use 20 bins, the same 0.52 coverage value will be quantified in the
0.5,0.55[ bin interval.

Tab. 5.21: Impact of the number of bins on Recall and Precision scores obtained from the detection
results of the TextDetection method during the ICDAR 2013 RRC on the RR’13-SI dataset.

Method Recall Precision
EMDopins 0.7667  0.8799
EMDoygpins 0.7526  0.8713
EMDospins 0.7495  0.8693
EMDsgpins 0.7441  0.8659
EMDigopins 0.7413  0.8642

While a value of 10 bins is mostly appropriate for graphical illustration purposes, when computing final
scores, one should however choose a higher number of bins to produce a more precise evaluation result.
Figure 19 illustrates the variation of R and Pg scores when B varies from 10 to 100 bins. As expected,
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the natural tendency of these two metrics is to decrease when B increases. When B exceeds 50 intervals,
one can observe the stabilization of these two global scores. Scores are reported in Table 5.21.

Links between EVALTEX and EMD scores. Both the EMD-derived scores and the global scores
obtained using EVALTEX (introduced in Section 3.4.2) characterize the overall performance of a detector
and are based on the same local measurements and matching rules. The experimental results conducted
on the two ICDAR datasets (RR’13-SI and RR’13-BD) have shown that the scores obtained using these
two approaches are very close as it can be seen in Tables 5.22 and 5.23. The slight score difference, which
does not exceed 0.064 in Recall and 0.051 in Precision, is mainly due to the fact that the EMD scores
were computed based on 100—bin histograms, making EVALTEX scores a little more accurate. We can
conclude that the close values to scores obtained from the EMD approach corroborate the proposed
overall metrics of EVALTEX. Hence, we can state that both of these two approaches are reliable and

provide an accurate view of the performance of a detector.

Tab. 5.22: Comparison of performance scores of detection methods on the RR’13-SI dataset obtained
using the EVALTEX global metrics and the EMD.

RECALL PRECISION F-SCORE
Method EvALTEX EMD  EvALTEx EMD EvVALTEX EMD
USTB_TexStar 0.7234 0.7264 0.9331 0.9345 0.8150 0.8010
TextSpotter 0.6610 0.6648 0.7388 0.7439 0.6977 0.8549
CASIA_NLPR 0.7339 0.7370 0.8336 0.8383 0.7806 0.8173
Text_detector_CASIA 0.7163 0.7195 0.8938 0.8960 0.7953 0.8094
I2R_NUS_FAR 0.7606 0.7633 0.8718 0.8736 0.8124 0.8054
I2R_NUS 0.7519 0.7546 0.8533 0.8553 0.7994 0.8105
TH-TexLoc 0.7387 0.7416 0.7146 0.7197 0.7264 0.8421
TextDetection 0.7210 0.7241 0.8667 0.8685 0.7872 0.8139
Baseline 0.3618 0.3682 0.6062 0.6113 0.4531 0.4596
Inkam 0.5490 0.5539 0.5553 0.5600 0.5521 0.5569

Tab. 5.23: Comparison of performance scores of detection methods on the RR’13-BD dataset obtained
using the EVALTEX global metrics and the EMD.

RECALL PRECISION F-SCORE
Method EvALTEX EMD EvVALTEX EMD EVALTEX EMD
USTB_TexStar 0.8795 0.8811 0.7593 0.7642 0.8150 0.8038
TH-TexLoc 0.8585 0.8602 0.7980 0.8027 0.8271 0.8006

I2R_NUS_FAR 0.8604 0.8620 0.8824 0.859 0.8712 0.7860
TextDetection 0.9015 0.9027 0.8252 0.8287 0.8616 0.7887

I2R_NUS 0.8066 0.8088 0.8879 0.8913 0.8453 0.7940
Baseline 0.7533 0.7558 0.8270 0.8309 0.7884 0.8150
BDTD_CASIA 0.7583 0.7608 0.8529 0.8551 0.8028 0.8094
OTCYMIST 0.8354 0.8373 0.6562 0.6620 0.7351 0.8334
Inkam 0.6993 0.7027 0.8245 0.8274 0.7567 0.7600

Computational time. Generally, the evaluation protocols are not submitted to any computational
time constraints. This means that, in theory, an evaluation process could take as long time as it needs to
accurately analyze the performance of a detector. In practice however, we want evaluation frameworks
that are able to deal with large datasets and hence to have a fair time complexity. The computational

5.3 Experimental results using the histogram representation and EMD-based evaluation
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complexity needed for computing the EMD on N-bin histograms is O(N3logN). Recent works have
shown that the computational cost of EMD can reasonably reach ~ 0.03s (see [Pele and Werman, 2009])
with a complexity equal to O(min(#2 N, N?)), where ¢ is a distance threshold. In our experiments, the
average computational time needed for evaluating a detection set using the histogram representation
and the EMD is approximately 0.01s for an image.

In the following section we will synthesize the results obtained from the experiments presented in this
chapter.

Conclusion

In this chapter we have conducted a series of experiments to validate our proposed evaluation framework.
This is not an easy task, as the goal here is to evaluate an evaluation protocol. To do so we proposed a
visual evaluation of the EVALTEX protocol by comparing the scores obtained from some key detection
scenarios.

In a first stage, we have provided a detailed comparison of EVALTEX with commonly used evaluation
protocols in the literature, namely ICDAR’03 and three different configurations of DETEVAL. We pro-
vided the scores obtained with these evaluation methods on individual images and an analysis of the
corresponding matching strategies. We emphasized the obvious drawbacks of ICDAR’03 method and
why it should not be used anymore for evaluating text detectors. First, it provides a poor matching
strategy as it can only deal with one-to-one mappings even for the challenging scenarios in which texts
are often split by detections (one-to-many) or merged into single detections (many-to-one). Secondly,
the provided metrics do not differentiate clearly and accurately the different aspects of the detection
and hence, in many cases the obtained scores are unrepresentative. In the same way, we compared
EVALTEX with the complex DETEVAL evaluation protocol. Due to its numerous parameters and metric
diversity, this framework can be used with different configurations that provide distinct results. The
first configuration, denoted in this work “relaxed” DETEVAL, consists of relaxing all area constraints.
In this way, we attempted a closer approach to our evaluation protocol that does not imply any area
constraints to provide a fair comparison between it and DETEVAL. We then showed that the scores are
highly permissive and consequently not representative. The second configuration relies on the AUC
metrics that take into account, as stated by the authors in [Wolf and Jolion, 2006], both the quality and
quantity aspects of a detection. Hence, due to the concept of quantity-quality detection relationship
proposed both by DETEVAL and in this work, we analyzed the differences of scores obtained for different
matching strategies. Although the AUC metrics solve some of the problems of ICDAR’03 or even the
“relaxed” DETEVAL, it still fails to discriminate the characteristics of the Recall and Precision. The third
set of comparisons with DETEVAL relies on its default configuration that was used during ICDAR 2013
RRC competitions. The detection results of the participants at these competitions allowed, not only to
compare the performance scores, but also to provide a visual comparison of the matching processes
used by the two protocols. In this way we have highlighted many problems of the default DETEVAL (or
ICDAR 2013 metrics) such as the inconsistencies related to one-to-many and many-to-one matchings.
To emphasize once again the inconsistencies between existing evaluation protocols we provided the
overall results of all participants at the ICDAR 2013 RRC on RR’13-SI and RR’13-BD datasets using
each of the protocols discussed above.
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The experiments discussed above were exclusively done on texts represented by horizontal bounding
boxes. However, one of the advantages of EVALTEX consists of its ability of coping with free-form
representations of texts. We have illustrated a series of images where the GT and detection objects were
annotated using masks. We have shown the advantage of using a free-form labeling of texts by providing
the associated scores obtained when using the rectangular and the mask annotations on key examples
containing curved, inclined or deformed texts.

In Section 5.3 we focused on presenting the interest of using histograms to represent text detection
results and the EMD to compute global scores. First, single images were used to explain the different
detection aspects that are captured at a glance with the two quality histograms (based on the coverage
and accuracy local measurements), such as the number of False Positives and True Positives, or the
percentage of partial or missed detections. Next, we showed that the quality histograms are also useful
tools to compare two sets of detections. To illustrate this we have compared the coverage and accuracy
histograms generated from the detection results of two text localization algorithms on the RR’13-SI
dataset. We have successfully demonstrated that we can capture essential information that could not
be otherwise derived by simply analyzing the final scores. To prove the intuitiveness of the histogram
representation, we compared it to the ROC plots generated by DETEVAL framework. We showed that
compared to the ROC curves, our approach is less confusing and provides an immediate view of the
global structure of a detection set, without relying on any area thresholds. Next, we have analyzed the
variations of the EMD-derived Recall and Precision scores when increasing the number of bins. If a
sufficiently large number of bins is used to represent the quality histograms, then the scores tend to
stabilize and converge to the the scores obtained with EVALTEX. This last assumption was confirmed by
comparing the Recall, Precision and F—Scores obtained with the EMD with the ones obtained with the
EVALTEX protocol.

5.4 Conclusion
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In this chapter we explain the role of a text rectification step in the global framework of a text
understanding system. First, we detail the different deformations that texts present in born-digital and
natural scene images are often subject to. Next, we focus on the works done in this research area and
finally we draw some conclusions and list our contributions.

Introduction

Retrieving the textual information from born-digital and real-scene images can often be a challenging
task due to the variety of text properties (color, size, font, orientation) but also due to external causes,
such as difficult lighting conditions (shadows, specularity, reflections, etc.), cluttered backgrounds,
possible occlusions, poor image resolution and quality, or situations where the the text plane is not
parallel to the camera one. These circumstances do not only affect the text detection process but also the
text recognition stage. Unfortunately, most of the current OCRs have low performances on recognizing
curved, inclined, vertical or perspective distorted texts. Such text examples are illustrated in Figures 1
and 2.

Fig. 1: Examples of real scene images with deformed text from the ICDAR 2015 Competition Scene
Text Rectification dataset.

In order to obtain a high recognition accuracy rate, the detected texts need to be corrected and adjusted
to a front-parallel view. Text rectification methods usually target oriented, sheared or texts in perspective
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Fig. 2: Examples of born-digital images with deformed text taken from the ICDAR RRC Born-Digital
dataset.

present in natural or born-digital images. Text strings can be classified with respect to their orientation
in the following way:

vertical: the characters within the text line are positioned in a vertical configuration.
inclined text: the text line is inclined.

curved text: the characters within the text line follow a curve.

irregular orientation the characters within the text line follow an irregular path.

Focyw

Fig. 3: An example of sheared text.

The shear transform, usually linked to italic text fonts, maps a set of coordinates such that one coordinate
remains fixed, while the other ones are shifted creating a skew effect. A sheared text example is given in
Figure 3. Finally, texts in perspective are usually subject to foreshortening, which is an optical illusion
that makes objects appear shorter than they actually are because they are angled towards the camera
view. Based on this angle, the foreshortening can be classified into horizontal or vertical foreshortening,
as illustrated in Figure 4.

VWELcoMe Z£LCON

Fig. 4: Types of foreshortening transformations': (a) horizontal foreshortening; (b) vertical foreshorten-
ing.

The recognition of such texts (subject to rotation, shearing or perspective transformations) is vital for
many text understanding systems. However, due to severe distortions, traditional OCRs have difficulties
in providing truthful transcriptions. Most of the OCRs require text regions to be horizontal and taken
from a front-parallel view in order to be correctly recognized. The increasing popularity of natural scene
acquisitions for text detection purposes has re-enforced the need of introducing an intermediate stage,

to correct (or rectify) text, and then ameliorate the performance of existing OCRs.

LCredit http://ocrserv.ee.tsinghua.edu.cn/icdar2015_str/
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6.2 Related work

In the literature, the problem of distorted text has been handled in different manners. Some works
tackled this by proposing powerful recognition stages capable of managing distorted characters. On the
opposite, many works first rectify the distortions, then the recognition. The first category of approaches
relies on feature learning. However, when texts are severely distorted, these methods fail to provide a
correct transcription. In such cases, the rectification procedure is a better alternative. Special types of
text rectification target multi-oriented, italic or text in perspective.

Orientation rectification. Several approaches for correcting curved text strings have been proposed
in the literature. Authors in [Vasudev et al., 2007] described a method based on an ellipse drawing algo-
rithm that rectifies arc-form text strings. Later, in [Kasar and Ramakrishnan, 2013] a different technique
has been proposed that invokes the spacial regularity properties of a text and the characteristics of
its adjacent components. The authors in [Roy et al., 2008] proposed a recognition method of English
characters invariant to orientation or scale. The recognition is based on the extraction of a set of fea-
tures (angular information, circular ring and convex hull) from each character and on the use of a SvMm
classifier.

ltalic rectification. Some works have proposed methods to rectify italic texts to enhance the perfor-
mance of OCRs that have difficulties in providing accurate transcription of sheared texts. The authors
in [Zhang et al., 2004] proposed an approach based on the statistical analysis of stroke patterns extracted
from the wavelet decomposition of text images. In [Fan and Huang, 2005] authors introduced a method
that rectifies italic texts using a shear transform. First, the characters are classified into three classes of
angles. Then, the shear angle is determined differently for each character based on its corresponding
italic class.

Perspective rectification. Perspective recovery needs to be applied when the camera axis is not
perpendicular to the text plane. When a text is in perspective, the characters change their original
structure. This makes OCRs perform poorly and produce low accuracy scores. However, a series of works
proposed recognition modules capable of identifying oriented characters or texts in perspective. The
authors in [Lu and Tan, 2006] proposed a recognition technique capable of recognizing characters in
perspective by extracting perspective invariant features such as character ascenders and descenders or
number of centroid intersections. Cross ratio spectrum and Dynamic Time Wrapping techniques were
employed during the recognition process in [Li and Tan, 2008a, Li and Tan, 2008b, Zhou et al., 2009].
In [Phan et al., 2013] SIFT features were extracted to recognize texts in perspective in different ori-
entations. To correct the perspective distortion, many works rely on the homography transforma-
tion [Myers et al., 2005, Ye et al., 2007, Cambra and Murillo, 2011, Kiran and Murali, 2013]. In [Ye et al., 2007],
the rectification is done based on a correlation between a set of feature points and a plane-to-plane
homography transformation. The extension of this work, presented in [Cambra and Murillo, 2011], con-
sists of an optimization of parameters of the homography. The method in [Kiran and Murali, 2013]
implied a first stage where text borders are captured using geometry based segmentation and then
corner points are selected using the Harris corner detector. The authors in [Merino-Gracia et al., 2013]
implied parallel rectification using an homography and a shearing transform. The method first proposes
a horizontal foreshortening by detecting the upper and lower lines bounding the text region. Next, the
vertical foreshortening and shearing are done by using a linear regression based on the variation of shear
characters.
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The authors in [Chen et al., 2004b] used an affine transformation to correct the perspective deforma-
tions, but the method requires the camera parameters to be known. Such an assumption was also
required in the work in [Clark et al., 2001]. The borderline analysis was implied in [Ferreira et al., 2005,
Liu et al., 2008]. The main problem of these approaches is that they rely on the hypothesis that text
regions were previously bounded by rectangles.

Work in [Zhang et al., 2013] used the Transformed Invariant Low-rank Textures (TILT) algorithm to rectify
English, Chinese and digit characters. The method presented in [Busta et al., 2015] proposed a skew text
rectification in real scene images based on five skew estimators used for character segmentation (or
polygon approximation): Vertical Dominant (VD), Vertical Dominant on Convex Hull (VC), Longest Edge
(LE), Thinnest Profile (TP) and Symmetric Glyph (SG). In [Myers et al., 2005], the authors use a projective
transformation to correct text in perspective. The parameters used for the rectification are derived from
a series of features extracted from each text line, such as top and baselines of a text or the dominant
vertical direction of character strokes. In [Yonemoto, 2014] a correction method based on quadrangle
estimation is proposed, which supposes that the text contains a sufficient number of horizontal and
vertical strokes. Authors in [Hase et al., 2001] proposed a generic method to correct inclined, curved
and distorted texts. Text is first classified with respect to the alignment and distortion of its characters,
then different types of corrections are applied. A rectification approach for license plate images was
proposed [Deng et al., 2014] using the Hough transform and different types of projections. The method,
based on finding parallel lines, consists of two transformations: a horizontal tilt and a vertical shear
transform.

Many of the approaches discussed above correct the text of individual text lines. Some works proposed
rectification algorithms on whole documents. The work in [Stamatopoulos et al., 2011] targets the
rectification of distorted documents. It performs a curved surface projection, a word baseline fitting and
an horizontal alignment. The authors in [Liang et al., 2008] proposed a rectification method for planar

and curved documents by estimating 3D document shapes from texture flow information.

Contributions

We have presented in this chapter a short survey of the methods to rectify texts before their transcription
by an OCR. Our contributions, that will be described in the next chapters, concern a rectification method
that can simultaneously correct rotation, shearing and perspective deformations. It uses an homography
that maps the image coordinates onto the world coordinate system and brings the deformed texts
to a front-parallel view. Contrary to other works that use the same approach and which imply an
affine transformation for perspective correction followed by a shearing rectification that corrects the
perspective correction, the proposed method uses a single affine transformation computed from a
precise quadrangle estimation of the distorted text. The validation of this method will be done on
a recent dataset, used during the ICDAR 2015 Competition on Scene Text Rectification. It contains a
very large amount of challenging texts, from synthetic and real scenes, with different transformations.
Moreover, we will show that some stages of the rectification procedure can be used as a simple and
efficient approach to correct multi-oriented texts, adapted to curved, arc-form or irregularly oriented
texts. It relies on the properties of the local neighborhood of each character of an oriented text. Some
preliminary results are given to show the potential of rectification of our proposed method.
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The entire rectification procedure is detailed in Chapter 7, while the experimental results are presented
in Chapter 8.
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In this chapter we describe a text rectification method dedicated to text strings in perspective and
curved texts. The proposed approach relies on a well-known projective transformation that maps the
coordinates of the deformed text onto the world coordinate system, which requires a very accurate
approximation of the boundaries of the text. This approximation represents one of the main
contributions of this chapter for which we propose a complex solution that can be used to rectify highly
distorted texts. This chapter also proposes a simple and efficient method to correct some curved text
strings. It consists in approximating the orientation of a character with respect to the location of its
neighbors.

The rectification is a challenging stage in a text understanding system due to the diversity of text defor-
mations. Texts can be distorted by the perspective view (fore-shortening), have different orientations
(e.g. inclined, vertical or multi-oriented) or present shearing effects (e.g. italic format). Moreover, the
varying direction of the characters of a text string can also affect the rectification process. A character
is said to be upright if it is orthogonal to the horizontal direction and consequently does not need any
correction. Otherwise, the character is said to be rotated. In some cases the orientation of the characters
does not follow the direction of the text string. Figure 1 gives different text string types.

Our proposed rectification method is dedicated to two types of deformations: text strings in perspective
and curved texts. The perspective correction approach, described in Section 7.1, is the main contribution
of this part and concerns the correction of one-directional texts, namely texts that follow a straight line.
On the other hand, we show that we can use an extension of this work to easily rectify curved texts. Final
conclusions are provided in Section 7.2. In the following, we introduce some notations that will be used
for the description of the proposed approach.

Notations. Let us consider a text string as a set of N characters defined as € = {C;};=1.n, where C; is
the individual CC corresponding to the i'h character. We define ¢ = {G;};~;_n as the set of centroids
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Fig. 1: Different types of texts.

corresponding to each CC in €. Similarly, we denote by #" = {W;};=1.n the set of weighted centroids
that belong to each CC in 6. We classify the CCs into two categories:

extremity CCs: CCs corresponding to the first or last characters of the text string (in the order
of reading). The two extremities will be referred to as C,; and C,,, where
el,e2€[1,N].

inner CCs: CCs corresponding to any of the characters that are located between the two
extremity CCs.

Note. A weighted centroid is calculated by considering each pixel intensity as a weight inside the
CC bounding box, whereas the traditional one is the center of the rectangular bounding box, i.e. the
intersection of its two diagonals. Generally, for symmetrical characters, such as“0”, “I”, these two
centroids are the same. However, when dealing with asymmetrical characters, especially ascender and
descender ones, the weighted centroids provide better references for the text orientation approximation.
The difference of the two centroids is illustrated in Figure 2.

Text rectification process
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Fig. 2: Classical (blue) and weighted (red) centroids of the characters in the text string of Figure 5.

n

7.1.1 Overview of the text rectification process

Generally, the perspective rectification process relies on the availability of extrinsic camera parameters.
If these parameters are known, they can be used to compute the homography matrix that maps the
camera coordinates onto the world coordinate system. Otherwise, as in our case, we need to compute
this homography differently. To find the homography matrix and produce the rectified text image we
imply several stages, listed below and illustrated in Figure 3.

¢ The method first relies on a CC filtering, described in Section 7.1.2 during which punctuation

signs and point over some characters are temporarily removed.

o The filtering is followed by an extremity CC identification procedure, discussed in Section 7.1.3,

which targets the identification of the first and last characters of a text string.

« The process then estimates a precise quadrangle (see Section 7.1.4) that bounds the distorted
text. The four points that define the quadrangle will be used to compute the homography matrix.
Finally, this homography transformation is used to map all the points of the deformed text onto a
parallel-front plane, as explained in Section 7.1.5.

Finally, we show how we can use some of the information acquired during this rectification process to
propose an efficient technique to correct multi-oriented text strings. This is presented in Section 7.1.6.

The rectification approach relies on a series of hypotheses on text:

o the text needs to be upward;
o each character needs to be a separate CC;

+ text needs to have a single orientation.

7.1 Text rectification process 137
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Fig. 3: Proposed rectification process.

Connected component filtering

Before applying the rectification, we need to filter the CCs and remove the small punctuation marks

w» wn» “w,»

such as “.”, “,” or “:” or points over some characters such as

ws» »
1 .

and “j”. Such a removal is needed because
the entire text correction is based on the relative position of a CC with respect to the other ones. We

define l; as the length of the diagonal of the box bounding of C; computed as:

Ly =/ hg +w?, (7.1)

where hc, and wc, are respectively the height and width of the bounding box of C;. We also define [{" as
the average of all diagonals lengths such that:
N
15" = == 7.2
d N (7.2)

Hence, C; is kept during the filtering procedure as long as its diagonal satisfies the following constraint:
1> 19" Ty, (7.3)

where Ty, is a threshold that was experimentally set to 0.35. This constraint removes all CCs whose
diagonal is considerably smaller than the average diagonal. Figure 4 gives an example of filtering.

Extremity connected components

After the CC filtering, we need to find the two extremity CCs, i.e. corresponding to the first and to the last
characters. This requires several steps. First, we compute the weighted centroids of each CC. Next, we
deduct the text orientation by approximating the reference line that best fits all centroids. Following this,
we search for the left and right neighbors of each CC. The angle between each pair of neighbors is then
computed in order to obtain the extremity CCs. Finally, we decide which of the two extremities is the
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Fig. 4: A distorted text string: (a) before filtering; (b) after filtering.

first and which one is the last characters based on some pre-defined assumptions. The entire procedure

is illustrated in Figure 6.

Fitting the reference line. An approximation of the text orientation is obtained by using the LSM,
that can fit a reference line to the set of weighted centroids #'. The slope of this line, called Lg.f gives an
approximation of the text orientation. Figure 5 shows examples of centroids and a reference line for the

text string “International”.

a

Fig. 5: Centroids and reference line fitting using LSM: (a) classical centroids are in blue, while weighted
centroids are in red; (b) the reference line that best fits the weighted centroids in yellow.

Identifying the two extremity CCs. First we identify its two closest neighbors for each CC C;,
denoted as C lf“ and C l.”z. If C; is the first extremity, then its two nearest neighbors will be the two following
characters. If C; is the last extremity, its two nearest neighbors will be its two preceding characters. If
C; is not an extremity, but an inner CC, then its two closest neighbors will be its predecessor and its
successor. Let Wl.”1 and Wi”2 be the weighted centroids of the two neighbors of C;. We then define li”1
and [ l.”z the lines passing through W; to its two neighbors:

= wwy) (7.4)

7.1 Text rectification process
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1% = (W, W) (7.5)

Then, we introduce ; as the orientation angle of C; computed as:
0; = angle(™,1/"%) (7.6)

All CCs for which this angle is smaller than 45° are selected as extremity CC candidates. If more than
two CCs satisfy this constraint, we compute the largest distance between each pair of candidate CCs.
The pair of CCs for which the distance between their centroids is the largest are identified as the two
extremities C,1 and C,y, with el, e2 € [1, N]. This stage is illustrated in Figures 6a, 6b and 6c.

Fig. 6: The procedure for finding the extremity CCs: (a)-(b) the angles between the lines (in green)
passing through the centroids of the two extremities and the centroids of their two closest
neighbors; (c) the angle between the lines (in magenta) passing through the centroid of an inner
CC (“@”) and the centroids of its two closest neighbors (“n” and “t”); (d) the distance (in green)
between the weighted centroids of the two extremities and the left upper origin in magenta.

Identifying the first and last extremities. Once the two extremity CCs have been localized, we
need to identify which one is the first character and which is the last one, and then determine the order
of reading of the text string. Namely, we determine which one of C,; or C,, corresponds to C; and which
one corresponds to Cy. Depending on the orientation, an upward text string can have the first and last
characters situated in different locations, as listed below.
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1. For an horizontal text, the first character is the left-most one, while the last character is the
right-most one (see Figure 7a).

2. For an inclined text in which the first character is in the upper left corner, the last character is in
the bottom right corner (see Figure 7b).

3. For an inclined text in which the first character is in the bottom left corner, the last character is in

the upper right corner (see Figure 7c).

gy
MAPRL Yo%s | N

a: Left to right reading order. ~ b: Top-left to bottom-right read-c: Bottom-left to top-right read-
ing order. ing order.

Fig. 7: Reading order of a text string depending on its orientation.

If the text is vertical, we rotate the text to the horizontal and then apply the rectification procedure.

To determine the verticality of the text line the angle of the reference line needs to be in the interval
[80°,100°]. The correct rotation angle is difficult to determine, as better explained at the end of in

Section 7.1.6. In our experiments, we have however set this angle to —90°.

Note. These assumptions are valid only for texts containing upward characters. When a text contains
downward characters, we use the opposite of the previous rules. Figure 8 shows two inclined strings with

upward and downward characters.

o7 Z S

a b

Fig. 8: Character orientation in a text string: (a) upward characters; (b) downward characters.

Given two points P = (x1, y1) and P2 = (x2, y2) belonging to reference line Lg. s, we denote m(Lg.y) its

slope given by:
Y2—n
X2 — X1

M(Lpes) = 7.7

Depending on the orientation of the text line, the slope can be positive, negative, zero or undefined.

positive: the orientation of the line is from bottom-left to top-right;
negative: the orientation of the line is from top-left to bottom-right;
Zero the line is horizontal;

undefined P; and P, have the same x-coordinates: the line is vertical.

Based on these assumptions and on the slope m(Lg, ), we can find the two extremities C; and Cy. If the
slope m(r) € [-0.1,0.1], the text is considered as horizontal and hence we determine the first and last

7.1 Text rectification process
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characters depending on the y-coordinates of the weighted centroids of the two CCs. If m(r) < -0.1, the
text is inclined following a bottom-left to top-right direction. In this case we choose the CC closer to the
bottom origin point defined as Oy, = (0, yinax). If m(r) > 0.1, the text follows a top-left to bottom-right
direction and the first and last characters are chosen based on the smallest distance between the upper
origin point O, = (0,0) and the two centroids W,; and W,,. This procedure is detailed in Algorithm 1.

Algorithm 1 Algorithm for identifying the first and last extremities.

procedure FINDFIRSTLASTEXTREMITIES(Ge,, Ge,)
if [m(r)] < 0.1 then
if ye, < ye2 then
Cl = Cel and CN = Cez
else
C1=Ce, and Cy = Cg,
end if
else
if m(r) < —0.1 then
dy =distance(Op, Ge,)
do =distance(Op, G,)
if d, < d, then
C1 = Cel and CN = Ce2
else
C] = C82 and CN = C61
end if
else
dy =distance(Oy, Ge,)
dy =distance(Oy, Ge,)
if d, < d, then
C1=Ce, and Cy =C,,
else
C,=C,, and Cy = Cq,
end if
end if
end if
end procedure

Quadrangle approximation

In this stage we are interested in finding the quadrangle that best fits a text string. This consists in
identifying the four lines that bound the text, referred here as the bottom (Ly), the upper (L,,), the left
(Ly) and the right (L,) lines.

Bottom and up boundary line fitting. Let us consider 2% = {P}'} and opb = {Pf} the sets containing
the upper and lower extremity points of C; respectively. In order to find these points we use the slope of

the reference line as a guideline in the following manner:

1. We plot lines parallel to the reference line Lg, in two directions (positive and negative) corre-

sponding to the upper and bottom points, at different distances. We denote such a line as L? ,

Chapter 7 Proposed text rectification method



where d is the distance to Lg.y and s the direction sign. The procedure consists in, for each
direction sign, plotting lines, parallel to Lg.f, by incrementing the distance by 1 until we find
aline L? that intersects any CC C; and L?*! does not. Then, we retrieve all intersection points
between the line L?, situated at the distance d from L,, 1 and C; and store them in 2% and opb
(see Figures 9a and 9b).

2. The LSM is then used on the set of points 22 to get an approximation of the upper line L, and
on 2" to get and approximations of the bottom line L;, (see Figure 9c).

3. Finally, we check iflines L, and Lj correctly bound the text string. If L,, or Lj intersects the set of

CCs €, the lines are shifted (parallel to L, or L;,) until they perfectly bound the text string (see
Figure 9d).

Fig. 9: Lower and upper boundary line fitting procedure: (a) parallels to the reference line in both
directions: upper (blue) and bottom (magenta); (b) extremity points: upper (blue) and bottom
(magenta); (c) LSM line fitting of the lower and bottom extremity points; (d) shifting of the initial
upper and lower lines.

7.1 Text rectification process 143



Left and right boundary line fitting. We call 2’ = {Pf } the set containing the left extremity points
and 2" = {P]} the set containing the right extremity points. To obtain the left and right boundary lines,
the positions of the first and last CCs are used, following the stages described below:

1. Find the left and right extremity points following the same reasoning used to find the upper and
lower extremity points. The difference here is that these extremity points are detected only with
respect to the extremity CCs C; and Cy. Let us define Lge f
procedure consists of tracing parallels to Lge ’ with a distance of 1 until the CC extremities are not

the line normal to Lg.f in W;. The

crossed anymore by the parallel lines. All border points that belong to both the last parallel line
and the extremity CC are stored into the two sets 22! and 2" (see Figures 10a and 10b).

2. For each of the two sets 2! and 2" average left point Pclw and right point P}, are computed:

I _
Pav_

e |21 r r
L7 Xpr X Ypl le‘-@ xpr le‘-@ ypr
J J ro_ J J (7.8)

) ) Pay_ )
|21 |2 | 2r | | 2r |

3. Given the point Pclw (respectively P} ,) we look for the line passing through this point that best
fits the extremity C; (respectively Cy). Let us consider Lp the line, normal to L, rin P,lw. The
best fitting left line is obtained by rotating the line Lp (see Figures 10c and 10c) until it covers the
maximum number of border points. Algorithm 2 describes the procedure used to find the rotation
angle of the line Lp that best fits the CC borders. This step is also illustrated in Figures 10e and 10f.

4. Finally, we check if the lines L; and L, correctly bound the text string. If L; or L, intersects the set
of CCs ¥, the lines are shifted (parallel to L; or L,) until they perfectly bound the text string (see
Figure 101).

7.1.5 Homography

In general, in order to rectify a perspective distorted image, one needs to rely on the extrinsic camera
parameters. However, in many situations these parameters are not known and hence other correction
approaches need to be used. For example, by using a perspective projection matrix, the image coordi-
nates can be mapped onto a parallel-frontal plane. This type of transformation is also known as the
homography. The relationship that maps a point (x, y) from the perspective plane onto point (x/, y")
from the normalized plane is defined as:

X X
cly|=H|y (7.9)
1

Hy  Hip His
where c is any non-zero constantand H = | Hy; Hj, Hyz | is the homographhy matrix. In order to

Hsy Hsy Hsg
compute H we need eight points: four points from the image plane and their corresponding four points
from the real world plane. The perspective distortion is then corrected by applying Equation 7.9 to all
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Fig. 10: Left and right boundary line fitting procedure: (a)-(b) Finding the left and right extremity points;
(c)-(d) line variation to find the best fitting left and right lines; (e) left and right boundary lines;
(f) the left and right boundary lines after shifting.
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Algorithm 2 Algorithm for identifying the left or right line boundaries.

procedure FINDLEFTRIGHTBOUNDINGLINE(P,)
for 6 = —88°; step < 88° step+ =0.05° do
m' = m(Lp) + tan(0)
I' is the line with the slope m’ passing though P,
if m' — m, > 0.05 then
for all points P on [’ that belong to CC do
I}, is the parallel line to I at a distance = 6
cr is the number of points on ll’g that belong to CC
cr is the number of points on l;g that do not belong to CC
end for
end if
if c; =0 then
if cp > ¢y then
Cmax = CF
me = m(Lp) — tan(6)
end if
end if
end for
return 6
end procedure

points (x, y) in the image plane to get the real world coordinates (x, '). In our case, we use the four
corners of the quadrilateral that bounds the distorted text and provide the coordinates of the rectangular
plane onto which we want to map this text string. We will refer to these four coordinate pairs as the input
and output points.

Input point set detection. By using approximations of lines L,, Ly, L; and L, we can get the four
corners (P, P,, P3 and Py) as their intersections. To form the input quadrilateral, we determine the
order of its corners in a clockwise way, depending on the orientation of the text string as described in
Algorithm 3.

Algorithm 3 Algorithm for determining the order of corners of the quadrangle that bounds
the text.

procedure DECIDEORDEROFPOINTS(Ge,, Ge,)
if |[m(r)| = 0.1 then
A=PsandB=Ps;andC=Pyand D= P,
else
if m(r) < -0.1 then
A=PsandB=P;andC=Py,and D= P,
else
A=PiandB=P,andC=Ps;and D= P,
end if
end if
end procedure
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Fig. 11: Perspective distortion rectification: (a) bounding quadrangle estimation; (b) rectified text.

Output point set detection. The output quadrangle is set such that the text proportion is pre-
served.
widtho =max(dist(Py,Py),dist(Ps,Py)) (7.10)

heighto = max(dist(P,, P3),dist(Py, P1)) (7.11)

The output quadrangle is defined by the set of points P, P}, P} and P; such that:
Py =(0,0)
Py =2 x widtho,0)

Py =(2x widtho,2 x heightp)

P, = (0,2 x heighto)
Then, for each point P; belonging to the input quadrilateral we get a corresponding point P} of the
output quadrangle using Equation (7.9):

P;=HP; i=1,.,4 (7.12)

Using the orientation angle to correct irregular oriented texts

In this section we show that we can use the orientation angle of each CC, introduced in Section 7.1.3, to

correct a curved text.

A text can be straight or curved. The text line type can be determined based on the relative positions of
the inner CCs with respect to the extremity CCs. Namely, by plotting a line between the centroids of
the two extremities C; and C,p, we can compute the variance of the distance from all inner character
centroids to that line. If the variance is small, then the text string follows a straight line. Otherwise, the
text string follows a curved line, as shown in Figure 12.

7.1 Text rectification process
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Fig. 12: Text line type estimation based on the distance from the inner characters to the line (Ce1, Ce2)

For curved text our rectification can not be based on only one orientation, since each CC can have a
different direction. The chosen approach estimates the orientation of a character based on its local
neighborhood. Namely, each C; is assigned a different orientation angle, 6;, defined from its two nearest
neighbors, C l.”l and C ;’2.

Fig. 13: Inner character orientation. The character “t” needs to be rotated by the angle 6

For inner CCs C; the orientation is given by the slope of the line linking the centroids of its two closest
neighbors, i.e. passing through (W, Wl."l) and (W;, Wl."z). The value of the slope indicates the rotation
angle. A positive slope implies a clockwise direction, while a negative one involves an anti-clockwise
direction for the rotation. If the slope is equal to zero, the character is aligned horizontally and does not
need to be rectified. We can therefor rectify the text by rotating each character such that its neighborhood
line is aligned horizontally.

For extremity characters, the orientation cannot be estimated in the same way. Several directions can be
taken into consideration:

1. assign to each extremity the orientation of its nearest neighbor;

2. assign to each extremity the orientation based on the slope of the line linking the centroid of the

extremity with the centroid of its nearest neighbor;

3. predict for each extremity a possible orientation based on its two following neighbors.

This orientation rectification stage still remains challenging due to a number of problems related to
vertical texts: the uncertainty of using a rotation or a translation transformation and the choice of the

orientation angle sign that can directly affect the reading order of a text string.

Rotation versus Translation. Figure 14a depicts the case of a vertical line text with upright charac-
ters. Figures 14b and 14c on the other hand, show two vertical text lines with characters that follow the
direction of the line. If we would use the orientation estimation stage seen in Section 7.1.6, for the text
strings in Figures 14a and 14b, the characters would be rotated 90° clockwise in both cases, but would
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Fig. 14: Vertical text lines with different character orientations.

correctly rectify only the text in the second case. Indeed, the rectification for the first case should only
consist in transposing the characters into an horizontal line, as upright characters situated on oriented

text lines do not need a rotation transformation.

To determine if a text should be rectified by rotating or translating the characters a possibility would be
to take into account the geometric properties of characters. The majority of characters in a text string
are higher than larger. Hence, for a given text line, two rectification transformations can be applied:
a rotation transformation, ., with respect to the line direction, and a translation transformation,
R ransi, which simply translates the characters onto a horizontal line. By comparing the widths of the
two rectified text strings we choose the rectified text string that has the smaller width. This is illustrated
in Figure 15. For Figure 14a the correct rectification is done by a translation of the characters on a
horizontal line, while the text string in Figure 14b needs to undergo a rotation. However, this assumption
is not always true, namely for strings containing multiple occurrences of characters such as “m” or “w”,
for which the width size is larger than the height size.

> =~ O3 VERTTICATL

a: Rroy for Figure 14a; b: % ;qnsi for Figure 14a; width = 158.
width=194.
N,
VERTICAL
A d
C: Zror for Figure 14b; width = 338. d: R ans for Figure 14b; width = 388.

Fig. 15: Rotation versus translation.

Logical order of characters (reading order). In the context of latin alphabet, the order of reading
horizontal texts is from left to right. While in horizontal, inclined or even curved texts, we can suppose
that the first character is located somewhere in the left part, for a vertical text string, where the order
of reading depends on whether the characters are rotated or straight, the first character can be located
at the bottom or at the top. Moreover, Figure 14c shows a vertical text string with characters that need
to be rotated by an angle og —90°, and for which the logical order of reading is from top to bottom, the
same as in Figure 14a. No method has been implemented for differentiating the two cases represented
by Figures 14b and 14c. If text strings are composed of lower case letters, a possible solution could be to
use the ascender and descender frequencies to estimate the rotation angle and hence to determine the
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reading order. However, if we deal with capital letter strings, the rotation angle estimation remains a
challenging task.

Conclusion

In this chapter we have presented a perspective rectification method that accurately corrects highly
deformed text strings. Moreover, we showed that some of the stages implied during the perspective
correction can be used as an efficient way to correct curved texts. The proposed perspective rectification
relies on a homographic transformation that maps the camera coordinates onto a parallel-front plane.
The homographic transformation is powerful as it handles both rotation and perspective projections,
including shearing effects. Hence, it can correct oriented or perspective deformed texts, as well as texts
that are subject simultaneously to both an orientation and a perspective deformation. The performance
of the homographic transformation depends on how accurate is the estimation of the quadrangle that
bounds the distorted text. We proposed to use a two-stage procedure. First, we approximate the up and
bottom boundary lines based on a reference line computed using the LSM. Secondly, we provide a precise
estimation of the lines bounding the extremity characters by iterating all possible lines until finding the
one that best bounds the two CCs. If an accurate approximation of the bounding quadrangle is provided,
only one affine transformation can be sufficient to correct the transformations that contribute to the
distortion of text. The techniques used in this method imply however some limitations. Namely, the
deformed text should be in latin alphabet, each character of a string should be represented by a single CC
and moreover the text should be upward only (rotated or not). Both the advantages and disadvantages of
the rectification method are detailed in Chapter 8 through a set of experimentations performed on a
large dataset.

In this chapter we have explained how the neighborhood information can be used as a precise estimation
of a character’s orientation. Texts that follow arc-form or curve line paths are challenging cases for which
the traditional rectification techniques often fail, due to the existence of multiple orientations within
a same string. Hence, our proposition relies on the hypothesis that the orientation of each character
is given by the direction of the line passing through its two closest neighbors (i.e. its left and right
neighbors). Some preliminary results of this hypothesis are presented in Section 8.2.3 of Chapter 8.
Finally, in this chapter we have raised the challenges of rectifying vertical text lines. In this sense we
have discussed some future perspectives regarding the problem of discriminating texts with upright
characters from those with oriented characters. Moreover, we have exhibited the difficulty of identifying
the logical reading order of characters when text lines are vertical.
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This chapter is dedicated to the experimental results obtained using the rectification method described
in Chapter 7 on two datasets proposed during the ICDAR 2015 Competition on Scene Text Rectification.
The advantages and the weaknesses of the method are both quantitatively and qualitatively evaluated.

In this chapter we give the experimental results of the proposed rectification method, tested on text in
perspective. We present the two datasets used during the experiments in Section 8.1. Next, we present the
rectification results in Section 8.2. First, a visual evaluation is provided to demonstrate the efficiency of
the method to rectify many cases (see Section 8.2.1). The accuracy performance scores on both datasets
are provided and discussed in Section 8.2.2. Finally, preliminary results on irregular text orientation

correction are shown in Section 8.2.3.

Datasets

The experimental results of the perspective rectification method are conducted on the two datasets used
for two tasks during the ICDAR 2015 Competition on Scene Text Rectification.

Task 1: Synthetic text rectification competition (STRC’15). The first dataset contains synthetic
texts obtained by applying on 1000 text samples random deformation types, such as rotation, shearing,
horizontal fore-shortening and vertical fore-shortening with different parameters. Multiple deformations
can be applied to an individual text block. 500 images contain Times New Roman font texts, while the
other 500 samples contain Arial font texts. The synthetic dataset contains 2500 English and 2500 Chinese
word samples. Figure 1 gives some examples of synthetically generated deformations applied to a text

string.

Task 2: Real scene text rectification competition (RSTRC’15). The second task targets the
rectification of real-scene texts and proposes a dataset derived from MSRA-TD500 (see Section 2.3)
which contains many texts that are subject to orientation and perspective distortions. The real-scene
dataset contains a subset of 60 image samples with English texts and a subset of 60 images with Chinese
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Fig. 1: Examples of synthetic deformations applied on the text string “Tourist” from the ICDAR 2015
dataset.

texts. For each image, a segmentation of text in connected components is also given, as illustrated in
Figure 2.

SPU3AT, Zhangjiajie 479

MSRAFY12 KICKOFE

Sep13417, Zhangjiajie

MSRAFYL2 KICKOEF

Fig. 2: An example of image from the Real scene text rectification competition of ICDAR 2015 and its
associated ground truth.

We have manually created the transcription GT corresponding to the two datasets as it was not pro-
vided by the competition organizers. This GT was used to compute the accuracy performance of the

rectification method as seen in Section 8.2.2.

Rectification results

The rectification results are evaluated based on the text recognition accuracy obtained using the Tesseract
OCR engine [Smith, 2007]. The validation of the proposed rectification approach is exclusively done
based our own results, as no result of any participants at the ICDAR 2015 Competition on Scene Text
Rectification were made public. The implementation of the rectification procedure was done in C++
using the Olena image processing library [Levillain et al., 2014].

Qualitative results

To show the ability of the proposed rectification method, we provide in this section a qualitative evalu-
ation, by visually exemplifying rectified synthetic and real-scene text strings together with their OCR
transcription.
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Synthetic dataset

The ICDAR 2015 synthetic dataset [Liu and Wang, 2015] contains different text length distributions: 7
strings of 2 characters; 29 strings of 3 characters, 67 strings of 4 characters; 67 strings of 5 characters; 82
strings of 6 characters; 86 strings of 7 characters; 57 strings of 8 characters; 41 strings of 9 characters; 34
strings of 10 characters and 30 strings of more than 10 characters. For each length distribution we provide
five examples of distorted text strings together with the corresponding rectification result. Figures 3-12
illustrate text correction results for which the OCR transcription using Tesseract [Smith, 2007] is most of
the time correct with regards to the GT.

ONJQI = tiNe

Fig. 3: Rectification results on text strings of two characters: original image (top), text rectification
result (middle) and OCR transcription using Tesseract (bottom).

F CA the

Fig. 4: Rectification results on text strings of three characters: original image (top), text rectification
result (middle) and OCR transcription using Tesseract (bottom).
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ONLY Tyre PUSH Call LIFE

Fig. 5: Rectification results on text strings of four characters: original image (top), text rectification
result (middle) and OCR transcription using Tesseract (bottom).

SN T

ESSEX Dixon Kenco Royal group

Fig. 6: Rectification results on text strings of five characters: original image (top), text rectification result
(middle) and OCR transcription using Tesseract (bottom).
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tands lnm'_

Stands School savers London orange

Fig. 7: Rectification results on text strings of six characters: original image (top), text rectification result
(middle) and OCR transcription using Tesseract (bottom).

W
g

mﬁlﬁ@mﬁ

BAGGAGE Co\ga\e UPGRADE Bostock FREEDOM

M

Fig. 8: Rectification results on text strings of seven characters: original image (top), text rectification
result (middle) and OCR transcription using Tesseract (bottom).
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AZ/TI0\SS

VEHICLES

LODGINGS RESERVED CONCEPTS Oversas VEHICLES

Fig. 9: Rectification results on text strings of eight characters: original image (top), text rectification
result (middle) and OCR transcription using Tesseract (bottom).

1

081013 Beardell el g um—

Relations Beardwell Lifelines inhabited clearance

Fig. 10: Rectification results on text strings of nine characters: original image (top), text rectification
result (middle) and OCR transcription using Tesseract (bottom).
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Protakabin Multimedia Electrolux Manchestet D O U BLE\\NT

Fig. 11: Rectification results on text strings of ten characters: original image (top), text rectification
result (middle) and OCR transcription using Tesseract (bottom).

M ofessionalH

Deutschland professional Hypertension SportsCenter INVESTMENTS

Fig. 12: Rectification results on text strings of more than ten characters: original image (top), text
rectification result (middle) and OCR transcription using Tesseract (bottom).
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Real-scene dataset

To show the performance of the rectification process on real-scene images, we have chosen a subset of
nine examples from the RSTRC’15 dataset illustrated in Figure 13.

WAIDIAN Middle St

D AMIN G 07 ’"C M. MARK YOUR CALENDARS "MNAN Middle 5t

S'. m p Iex Conference Room 14-18 Persons Watson

Simplex Conference Room WIS/’75
14-18 Persons

i n

bossINICITIZENIienom

bossml CITIZEN lenov

Fig. 13: Rectification example results on the real-scene dataset: original image (top), text rectification
result (middle) and OCR transcription using Tesseract (bottom).
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8.2.2 Performance results

Metrics. We evaluate the performance of the rectification method using the performance measure-
ments proposed during the ICDAR 2015 Competition on Scene Text Rectification [Liu and Wang, 2015].
The two metrics used to compute the scores are based on the OCR results obtained from the original and
rectified text images. The first metric is the OCR accuracy between the recognition result R of a rectified
text string and its corresponding GT transcription G defined as:

1-L(R,G)

—_—, 8.1
max(|R|,|Gl)

accuracy(R,G) =

where |R| and |G| represent the length of the two strings. L(R, G) is the Levenshtein distance between R
and G, measuring the dissimilarity between these two text sequences.

The second metric is the rectification performance which considers the OCR results before and after the
rectification and is defined as:

rectification_per formance(R,D,G) = accuracy(R,G) —accuracy(D,G), (8.2)

where D is the recognition result of the distorted text before applying the rectification. The rectification
performance reflects on one hand the impact of the rectification method on the final OCR result but
also the difficulty of the text recognition process.

The performance results obtained using the two metrics rely, not only on the rectification efficiency, but
also on the OCR performance. In our experiments we used the Tesseract OCR engine [Smith, 2007] to

obtain the recognition results.

We now define Aj; and A, as the overall accuracy performance before and after the rectification over a
dataset of N text strings, computed as:

Y Naccuracy(D;,G;)

Ap="=t 8.3
b N (8.3)
N
Y accuracy(R;, G;)
A, = Zl = Y, Gy 8.4)

Similarly, we define the overall rectification performance RP as:

ZNrecti ication_per formance(R;,D;, G;)
Rp_ i ! pr i»Di, Gi ©5)

Tab. 8.1: Rectification evaluation results on the ICDAR 2015 Competition on Scene Text Rectification
datasets.

Dataset Aq RP Ap

SYNTHETIC 0.721979 0.637037 | 0.0849421
REAL-SCENE (EN) | 0.65149 0.187165 | 0.464326

Discussion on the results obtained on the synthetic dataset. Table 8.1 contains the perfor-
mance results obtained using our rectification method on the synthetic and real-scene datasets. The
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Quality-quantity histogram for Quality-quantity histogram for

synthetic text rectification W Accuracy real-scene text rectification W Accuracy
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Fig. 14: Quality-quantity histograms for text rectification. Accuracy values for: (a) synthetic text; (b)
real-scene text.

accuracy of the rectified method is evaluated to approximately 0.72. On the other hand, the accuracy
before the rectification is very low, approximately 0.08, which indicates the difficulty to deal with text
string deformations and also the efficiency of our method. Hence, the rectification performance RP is
equal to 0.64. Figure 14a illustrates the quantity-quality 10-bins histograms containing the distributions
of accuracy values. By looking at the frequency in the last bin of the histogram, one can notice that
half of the rectified texts have obtained a nearly perfect recognition accuracy (i.e. accuracy values in
the intervals [0.8,0.9[ and [0.9, 1]). Approximately 10% of the texts got a low accuracy rate, belonging to
interval [0, 0.1[: the rectification process has then probably failed.

While some problems come from the performance of the OCR, the proposed rectification procedure has
also some weaknesses that directly affect the recognition accuracy. In some cases, the rectification fails if
the filtering procedure does not correctly remove punctuation marks. However, most of the drawbacks
mainly come from an incorrect approximation of the quadrangle that bounds the deformed text. The
left and right bounding lines, introduced in Section 7.1.4, do not always find the best orientation of the
extremity CC. The procedure to determine the left or right boundary lines does not well approximate the
direction of characters such as “A” or “T”. The procedure searches the line that maximizes the number
of border points. In the case of capital letters “A” or “T” this line does not correspond to the direction
of the character, as seen in Figure 15. Similarly, we can have an inaccurate quadrangle approximation
when texts have as last extremity the capital letter “L” or small letter “r”. Rectification examples and
corresponding OCR transcriptions of texts containing these extremity characters are illustrated in

ATL T

Fig. 15: Left and right bounding lines for capital letters “A”, “T”, “L” and small character “r”: incorrect
approximation (red) versus correct approximation (blue).

Figure 16.
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Fig. 16: Success and failures (in red) of OCR transcription of text strings containing extremity char-
acters “A”, “T”, “L” and/or “r”: original image (top), text rectification result (middle) and OCR
transcription using Tesseract (bottom).

Furthermore, the imprecise approximation of the upper and/or bottom bounding lines can also de-
teriorate the rectification process and possibly the text transcription. This usually happens in case of
severe perspective deformations, when some small characters look larger than the capital letters as it
can be seen in Figure 17. Despite the imperfect correction, the text is still successfully recognized by
the Tesseract OCR. On the contrary, the disproportion of character sizes is even more visible for texts
containing one capital and one small letter. Here, the upper and lower lines are not approximations, but
the unique lines passing through the upper and bottom extremity points which produces wrong lines
(i.e. not parallel to the real direction of the text). In Figure 18 we show three examples of texts of two

characters, where one of the letters is a capital letter (“To”), a descender (“go”) and an ascender (“at”).
When the deformed text is upward, the rectification successfully transforms the text into an horizontal
configuration but cannot correct the upside down orientation of the characters. Hence, the OCR

produces erroneous text transcriptions. This is illustrated in Figure 19.

One of the advantages of the proposed rectification method is its ability to correct very challenging

deformations, that make text strings unreadable. Although the rectification is not always very accurate,

8.2 Redcitification results
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Osborne when Education Rostanin

Fig. 17: Successful recognition of rectified text strings with disproportionate character sizes due to
inaccurate upper and lower line approximations: original image (top), text rectification result
(middle) and OCR transcription using Tesseract (bottom).

TO 00 a!

Fig. 18: Recognition failures (in red) due to inaccurate upper and lower line approximations for text
strings of two characters (containing one ascender or one descender): original image (top), text
rectification result (middle) and OCR transcription using Tesseract (bottom).

: NﬂO m

39N001 N\O0’1 \enueg I00HGS

Fig. 19: Recognition failures (in red) due to upward rectified text strings: original image (top), text
rectification result (middle) and OCR transcription using Tesseract (bottom).

which consequently leads to imprecise OCR transcriptions, the visual results remain notable. From
a visual point of view, we succeed to transform illegible texts into readable ones. Such examples are
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depicted in Figure 20. The recognition performance of Tesseract when dealing with inclined texts varies
from case to case. The first part of the word “Warehouse” was missed, while its last six characters were
correctly recognized. Similarly, the OCR performed better on the last part of the sequence “Gt. Yarmouth”

(“mouth”) than on the apparently easier to read part “Gt. Ya”.

. Qi

SIDE BISON Sha/vé LAMS Wmouth

Nighfl’me \Mehouse

Fig. 20: Rectification result of challenging unreadable texts: original image (top), text rectification result
(middle) and OCR transcription using Tesseract (bottom).

Discussion on the results obtained on the real-scene dataset. The accuracy score obtained
on the real-scene datasets is slightly lower than the one obtained on the synthetic dataset (approximately
0.65). The rectification performance is very low, equal to 0.19. This is due to many reasons, listed
below.

1. The fonts of natural scene texts are more challenging than the synthetic text ones (Times New
Roman and Arial) and are then sometimes not correctly handled by the OCR (see examples in
Figures 21a, 21b and 21c);

2. Natural scene texts can have complex designs in which characters are composed of multiple CCs,
as in the example in Figure 21e. In such cases, the rectification method fails, as it can only handle

characters represented by one CC.

3. The text distortion transformations are not as challenging as for the synthetic dataset, which
explains the low value of RP in Table 8.1. The real-scene dataset contains mainly oriented texts
and only few text strings in perspective. Such examples are provided in Figure 22.

8.2 Redcitification results
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4, Text in natural scene images can contain very small characters, which can affect the rectification
process, as seen in Figure 21d.

5. The scores on the real-scene dataset are less representative because the dataset contains only 60
images, versus 2000 images in the synthetic dataset.

PRIT
at90 --

A0t -_

men F PLAN WIS/’75 .
a b c d e

Fig. 21: OCR recognition failures due to (a-c) challenging fonts, (d) small text size and (e) complex

design: original image (top), text rectification result (middle) and OCR transcription using
Tesseract (bottom).

BANK OF HANGZHOU

E[NNDIAN Middle Stfgank oF HANGZHOU

suANYUAN JIE HAW/V Middle 5t BANK OF HANGZHOU
SHANYUAN JIE ‘““MNAN Middle 5t BANK OF HANGZHOU

Referral
public Telephone

Public Telephonelnmmmmmmmm— o fo 113 |

Public Tel|eph©‘‘e  Houghton United Global Education REferra\
Public Telephone  Houghton United Global Education Referral

Fig. 22: Similarity of OCR recognition before and after the rectification process: original image (top),
text rectification result (middle), OCR transcription before the rectification and OCR transcrip-
tion after the rectification using Tesseract (bottom).

Moreover, by looking at the accuracy histogram in Figure 14b, we can observe that approximately

the same number of deformed texts have been incorrectly rectified, as this was the case for the syn-

thetic dataset. On the other hand, the distribution of accuracy values is compacted into the intervals
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[0.3,0.5[, [0.8,0.9] and [0.9, 1], whereas the values computed on the synthetic dataset were more scattered.
Nonetheless, both histograms in Figure 14 present a similar behavior which validates the fact that the

proposed rectification method is independent of the text type, i.e. synthetic or natural.

Preliminary results on irregular text orientation correction

In Section 7.1.6, we have shown an extension of the rectification procedure that can correct multi-
oriented texts. This work has not yet been validated on larger datasets designed specifically for irregular
oriented texts. We show however some representative examples of different types of oriented text
strings and their corresponding rectification results. Figure 23 illustrates that we can successfully rectify
challenging curved (Figures' 23a and 23b) and arc-form (Figures 23c and 23d) text strings.

0\'\;6'& = ENG/
< Q?p
® ,
W z
a (]

PE S COLLEGE OF ENGINEERING

> ¢ VENLONSYSTEMS

O yucs fle urs d e Mmontsour

ASc¢r' P yavagerap

Fig. 23: Rectification results (right) of multi-oriented text string examples (left).

mages taken from [Vasudev et al., 2007]
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Conclusion

In this chapter we have presented the experimental results obtained using the text rectification method
proposed in Chapter 7. Two series of experiments were conducted on two different datasets proposed
during the ICDAR 2015 Competition on Scene Text Rectification. A first dataset consists of 2500 generated
synthetic texts with different transformations, such as rotation, shearing, horizontal and vertical fore-
shortening. The second dataset is composed of 60 images containing natural scene text regions taken
from the MSRA-TD500 dataset.

We have shown that the rectification procedure gives similar performances on both datasets. A slightly
lower recognition accuracy was obtained on the real-scene dataset due to a number of reasons, such
as the low performance of Tesseract OCR on texts with complex fonts or designs. On the other hand,
many texts in this dataset present only rotation or slight perspective deformations, compared to the
synthetic dataset, which contains more challenging texts that are subject to multiple transformations at
the same time. The difficulty of the synthetic dataset is also proven by the high rectification performance
score. We have demonstrated that the proposed rectification method can successfully correct oriented,
sheared or perspective distorted texts. We have also shown that we could rectify unreadable texts and
obtain satisfactory OCR accuracy scores.

The weaknesses of the proposed approach have also been identified, namely the situations where the
rectification procedure fails to properly bring a text in a perfect front-parallel view. This is most of the
time due to a wrong approximation of the lines bounding the distorted text. For example, the proposed
quadrangle approximation approach fails when the text extremities are the capital letters “A”, “L” or “T”
or when dealing with two character strings containing one ascender or descender. Nevertheless, we
have shown that, in many cases, although the rectification is not perfect, the OCR still provides a correct
transcription of the corrected text.

The rectification procedure is evaluated based on the recognition accuracy performance. This is however
influenced by the OCR. In our experiments, the Tesseract engine was used to produce the recognition
results. Tesseract expects a very accurate text rectification and often fails when the characters are slightly
inclined. For example, the letter “t” is often interpreted as “t”, “1” as the symbol “\”, “L” as “Z".

Finally, we have illustrated some preliminary rectification results on multi-oriented texts such as arc-form

or curved ones, that proves that the approach can be adapted to any irregular oriented text. However,
further experiments on larger datasets need to be conducted before making any further conclusions.
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General discussion and future works

To reach a port we must set sail —
Sail, not tie at anchor
Sail, not drift.

— Franklin D. Roosevelt

In this chapter we draw our conclusions and present future perspectives. We review the main aspects
and the contributions of this work.

In this thesis we have presented our contributions in the Document Image Analysis field. The presented
work follows two directions. The first one, exposed in Part I, pointed out the improvement of the
accuracy level of evaluation protocols designed for text detection tasks. This consist of proposing a
complex evaluation method that handles the diversity of text detection algorithms. The second direction,
presented in Part II, focuses on the improvement of the text recognition performance by proposing a
rectification method capable of correcting highly distorted texts that cannot be handled by common
OCRs.

Discussion on performance evaluation. We have analyzed and explained the numerous problems
that text detectors are facing during the evaluation process (see Chapter 2). Unrepresentative scores
due to matching failures between the detection results and the ground truth often under evaluate or
over evaluate the performance of a detector. Most detection algorithms are complying to the rules
imposed by different evaluation protocols and adapt their result outputs to not be penalized. Moreover,
inconsistent comparisons between algorithms are very often performed as the obtained detection
results are evaluated using different protocols. This is a crucial problem in the literature that has been
frequently neglected. Accepting such inaccuracies can lead to a progress slowdown in the domain of Text
Understanding Systems. Filtering the growing number of works proposed in this field is often difficult
due to the lack of a reference evaluation protocol that could provide a reliable ranking between all these

works.

Our contributions concern an alternative interpretation of how evaluation protocols should be designed.

Hence, in this thesis we proposed a unified evaluation framework, EVALTEX, that can analyze the

performance of various text detectors regardless of the detection type. This was introduced in Chapter 3.

Our objective was to provide a protocol with general rules that do not impose any output restrictions to
text detectors but which takes into consideration different text granularities and representations. In this

sense, we showed that EVALTEX can be adapted to both well-defined and irregular text representations.

Namely, it can evaluate text detectors that output detections represented by bounding boxes but also
represented by irregular shapes, such as masks.
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The matching protocol, which represents the core of an evaluation method, contrary to many protocols,
was designed to handle all scenarios that can occur for matching the ground truth to a set of detections.
An ideal matching happens when one detection is matched to a single ground truth object. However,
due to the variability of texts present in natural scene and born-digital images, other scenarios, which
imply more than just one ground truth object and one detection object are very frequent. There are three
others matching cases. The one-to-many consists of matching one GT object to multiple detections, the
many-to-one matches one detection to multiple GT objects and the many-to-many that matches many
GT objects to many detections. The way these cases are evaluated are based on some hypothesis: a GT
object should be detected only once, otherwise the detection should be penalized; a partial detection is
still better than no detection which motivates our choice of a qualitative and non-binary local evaluation;
detections covering multiple GT objects should not be penalized as long as they are not abusive (i.e.
detecting a whole image).

Another novelty consists in the definition of a set of new rules and of the re-interpretation of standard
metrics at object level, namely coverage and accuracy, for each of the scenarios discussed above. Hence,
a one-to-one matching is evaluated qualitatively with respect to the true coverage area between the
two objects. For a one-to-many case, we apply a fragmentation penalty. To robustly deal with many-
to-one detections, we introduced a new GT granularity level, the region tag, that relaxes the precision
penalization and allows a fair evaluation between text detectors having different output levels (i.e.
word and line-level detections). Many-to-many scenarios are further categorized and their evaluation
assumed a complex and particular adaptation of the local metrics. To provide a global evaluation we
proposed to derive two quality and two quantity metrics from the well-known Recall and Precision
measurements. Hence, we introduced a Recall and a Precision quality value that reflect the accuracy of
the detections with regard to the GT. Moreover, we included quantitative Recall and Precision metrics to
represent, respectively, the proportion of GT objects that have been correctly detected and the number
of detections having a correspondence in the GT. We then showed that using these additional metrics
we could obtain more information on the detection results and hence provide a detailed evaluation of a
set of detections.

Based on a series of experiments, we successfully proved that the scores obtained with our evaluation
protocol, not only are more representative, but also provide more realistic scores than commonly used
protocols such as ICDAR’03, ICDAR’13 or DETEVAL. This statement is based on many comparisons
between the scores obtained with EVALTEX and the protocols mentioned above on both single images
and larger datasets. Moreover, the scores were computed for several text detectors, which allowed us to
highlight the existing variations of rankings produced by the different protocols.

One of the main characteristics of this protocol is its ability to simultaneously deal with two granularity
levels. In our experiments, this was illustrated on word and line level detections. However, the two-level
annotation could be equally applied to character and word-line detections or to line and region-level
outputs. An interesting perspective would be to add a third annotation level. Then we could handle
equally, for example, word, line and paragraph level detections. This could represent a convenient choice
for the evaluation of text detection in documents. Another perspective targets the region tagging, con-
sisting of grouping GT objects, when using a mask annotation, which assumes that texts are represented
with irregular shapes. Automatically generating regions for such objects is difficult because there are no
simple rules as for the case of rectangular bounding boxes. Nonetheless, possible solutions exist. An idea
would be the use of meta-balls to connect different masks together. Another idea, which necessitates
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more time and a higher user interaction, would be to manually annotate all region configurations for a
set of GT objects.

The EVALTEX protocol was designed for text detection tasks. However, its framework could also serve
as a base for other tasks. If the mask annotation is applied to characters instead of words, we could
then use EVALTEX to evaluate the text segmentation or binarization performance. In such a case, the
GT objects are represented by characters and all matching rules and metrics would remain valid. The
evaluation protocol could be used for text recognition purposes as well. The ability of the protocol of
correctly identifying all matchings between the GT objects and a set of detections, could also be used to
automatically match their OCR transcriptions. All these aspects represent perspectives that will be taken

into consideration during our future works.

Performance scores are good indicators of a detector’s performance. They can provide a ranking of
different text detection algorithms but cannot justify it. This is why we enhanced our evaluation protocol
by proposing a visual tool, based on quality histograms, capable of describing both the advantages and
the drawbacks of a detector, features that could otherwise not be observed from the global scores. More
intuitive than the ROC curves, the quality histograms provide at a glance the distribution of quality
scores (for example coverage and accuracy) obtained on a whole dataset. This characterization is very
powerful as it can also be used as a comparison tool between different detectors by showing in which
cases one detector outperforms another one. Following this representation, we proposed an alternative
set of scores obtained using the Earth Mover’s Distance which can be easily applied to histograms and
has the property of being a true metric. Each quality histogram was then compared to a GT histogram
(called the optimal histogram) and their distance was used to compute two global scores (Recall and
Precision). Our experiments showed that the scores obtained using the EMD are not only representative
but also that they are similar to the scores obtained with EVALTEX which reinforced the fact that the
proposed evaluation methods accurately describe the detection results.

In this work, the histogram representation was applied exclusively to illustrate text detection results.

However, this approach could be equally extended to represent various results in the object detection
domain, such as face or vehicle detection. Generally, all applications producing common detection
scenarios with the ones in the text detection field could be evaluated using the histogram representation
and its associated metrics. In the same way, other local measurements than the coverage or the accuracy,
could be used to populate the quality histograms. For example, the fragmentation level (applied in this
work to one-to-many matchings for the computation of the coverage) could be used to represent an
independent measurement. We have shown in this manuscript that we could derive global scores by
computing the EMD between a detection histogram and an optimal one. An interesting perspective
would be to exploit the histogram distances to compute the difference between two detection sets and

analyze if the obtained results provide any useful information for their comparison.

The implementation of the EVALTEX and histogram visualization tools was done in C++. In the near
future, the two tools will be publicly available online such that they can be used by the community.

Discussion on text rectification. The second part of this thesis was focused on presenting the
challenges of text variations in born-digital and natural scene images and their impact on the recognition
stage. Since most of the OCRs expect as input horizontal texts taken from a parallel-frontal view in order
to provide an accurate result, many texts, not conform to this configuration, are often bad transcript.
We then have proposed a rectification process as an intermediate stage, able to enhance the OCR
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performance. We have tested our method on a challenging dataset, recently proposed during the ICDAR
2015 Competition on Scene Text Rectification. The main characteristic of this dataset is the fact that it

contains highly perspective distorted texts that has allowed a fair evaluation of our proposed approach.

The proposed rectification method mainly targets texts with perspective, orientation and shearing
deformations. The process of the method relies on a homographic transformation that maps the camera
coordinates onto a parallel-front plane. Since we do not know the camera parameters, the core of this
rectification method relies entirely on the determination of the four coordinates that bound the deformed
text. These coordinates were then used to compute a homography matrix that was later applied to each
pixel of the text images to obtain its rectification. Finding the exact quadrangle formed by the four points
is not an easy task. As described in Chapter 7, the quadrangle estimation procedure was divided into two
stages. During the first step, the upper and lower bounding lines are approximated, following the generic
Least Square Method approach. During the second stage, a series of strong hypothesis are used to rectify
many challenging texts.

This work, being still recent, present some weaknesses exposed in Chapter 8, for which we here contour
some future perspectives. One of the cases in which the rectification produces unsatisfactory results
is the situation in which the extremity characters are capital letters “A” and “T”. For these letters, the
estimated border line rarely coincides with the direction line. To improve this, a deeper analysis on the
shape of characters is needed, namely a study of their symmetry. Sometimes, this could be difficult,
due to the severe deformation. Another possibility would be to make this analysis during an additional
correction stage after the rectification.

Another future work consists in merging the orientation refinement stage and the perspective rectifica-
tion process. Namely, if a text is only oriented we should apply the orientation correction procedure,
if more deformations are involved, then the homographic transformation should be applied. This
would assume a clear identification of the text’s deformation. Once again, this is not an obvious task.
While estimating a text’s orientation is easy, determining its perspective or shearing transformation is
more complicated, especially when a text is subject to more than one deformation. These remain open

perspectives on which we will concentrate our work in the future.

Regardless of the limitations of the rectification process, we have still illustrated the fact that the used
OCR does not always need a perfect correction in order to provide accurate transcriptions. However,
the recognition accuracy evaluates two components: the rectification ability and the OCR recognition
performance. Still, in our experiments, we have used the Tesseract OCR engine, which is known not to
be the most reliable one, but has the advantage of being free. More performant OCRs, that could be
tested on the rectified text images, are CuneiForm', ABBYY? or OmniPage®.

Ihttp://cognitiveforms.com/products_and_services/cuneiform
2http://www.abbyy.com/finereader/
3http://www.nuance.fr/for-individuals/by-product/omnipage/index.htm
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