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On data compressibility

Given some data, what kind of information can be compressed, and to which extent?

→ Redundancy : when the same information is repeated throughout the data.

Ex: Bunch of adjacent pixels with the same value in an image.

⇒ 8×

Ex: Keywords (if, while, struct,...) in a programming language.

→ Waste : when some information is given too much encoding support w.r.t.
what would be necessary.

Ex: Grayscale image with only 32 different gray levels
encoded on 1 byte ⇒ waste. ...

000 11010
000 10011
000 01001

...
...

000 01001
000 11010

waste information

Compression ⇔ hunt for waste and redundancy.
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Schematic representation of data

Data = Core information (incompressible) + redundancy/waste (compressible).

?

Core/real
information

Redundancy,
waste

Data to
compress

What can be compressed/removed :

→ is a priori unknown.

→ depends on the file itself.

⇒ Need for an appropriate tool/compass to indicate
to which degree a data can be compressed.

Nope Über-fat

Compression
level
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Shannon’s Information theory
The tool we are looking for
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Information theory provides the entropy, the tool we need to
quantify compressibility of a given file.

The Bell System Technical Journal
Vol. XXVII J Illy, 1948 No.3

A Mathematical Theory of Communication

By c. E. SHANNON

IXTRODUCTION

T HE recent development of various methods of modulation such as reM
and PPM which exchange bandwidth for signal-to-noise ratio has in

tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley"
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the sta tistiral structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selected from a set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen
eralized considerably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:
1. It is practically more useful. Parameters of engineering importance

1 Nyquist, H., "Certain Factors Affecting Telegraph Speed," Belt System Tectmical J OUT

nal, April 1924, p, 324; "Certain Topics in Telegraph Transmission Theory," A. I. E. E.
TI aIlS., v. 47, April 1928, p. 617.

2 Hartley. R. V. L.. "Transmission oi Information.' Belt System Technical Journal, July
1928, p. .'US.

379

→ Proposed by Claude E. Shannon in 1948.

→ Studies the quantification, storage and communication
of information.

→ Based on the notion of uncertainty of some given event.

→ Has found applications in a countless number of (seem-

ingly unrelated) fields, such as cryptography, natural
langages processing, quantum computing or bioinfor-
matics.

A (if not the) cornerstone of today’s digital era.



Shannon’s Information theory
The tool we are looking for

Guillaume Tochon (LRDE) CODO - Information Theory 4 / 18

Information theory provides the entropy, the tool we need to
quantify compressibility of a given file.

The Bell System Technical Journal
Vol. XXVII J Illy, 1948 No.3

A Mathematical Theory of Communication

By c. E. SHANNON

IXTRODUCTION

T HE recent development of various methods of modulation such as reM
and PPM which exchange bandwidth for signal-to-noise ratio has in

tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley"
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the sta tistiral structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selected from a set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen
eralized considerably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:
1. It is practically more useful. Parameters of engineering importance

1 Nyquist, H., "Certain Factors Affecting Telegraph Speed," Belt System Tectmical J OUT

nal, April 1924, p, 324; "Certain Topics in Telegraph Transmission Theory," A. I. E. E.
TI aIlS., v. 47, April 1928, p. 617.

2 Hartley. R. V. L.. "Transmission oi Information.' Belt System Technical Journal, July
1928, p. .'US.

379

→ Proposed by Claude E. Shannon in 1948.

→ Studies the quantification, storage and communication
of information.

→ Based on the notion of uncertainty of some given event.

→ Has found applications in a countless number of (seem-

ingly unrelated) fields, such as cryptography, natural
langages processing, quantum computing or bioinfor-
matics.

A (if not the) cornerstone of today’s digital era.



Compressibility and randomness (1/2)
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How many values are necessary to store all coordinates {(xi , yi )}Ni=1 of N points
randomly generated and uniformly distributed in [0, 1]× [0, 1]?

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(xi, yi)

(x1, y1)

(xN , yN )

All N couples (x1, y1), . . . , (xN , yN) must be stored → 2N values are necessary.Each y-coordinate yi can be deduced from xi following yi = αxi + β .
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How many values are necessary to store all coordinates {(xi , yi )}Ni=1 of N points
that are perfectly aligned?
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How many values are necessary to store all coordinates {(xi , yi )}Ni=1 of N points
that are perfectly aligned?

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

yi = αxi + β

All N couples (x1, y1), . . . , (xN , yN) must be stored → 2N values are necessary.

(x1, . . . , xN , α, β) describes the whole data → N + 2 values are sufficient.



Compressibility and randomness (2/2)
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Random data ⇔ not compressible 7.
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Ordered data ⇔ compressible 3.
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Compression likes order

Compression is posssible whenever there is an underlying order structuring the data.

Ex: yi = αxi + β → no need to store yi .

But the relation structuring the order does not even need to be explicitely known.

Ex: Could you guess which letters have been hidden in the following texts?

1) H�re i� a bu�ch of �ords wit� so�e let�ers hidde� b�hind litt�e bla�k sq�ares.

2) Kg� �g f�ehk �mlajd�i wpd�ib q mpzo�f az lg�j r�utv �azni ghf�osdaq� f�sn.

1) Here is a bunch of words with some letters hidden behind little black squares.

→ The order is implicitely set by the langage structure. Therefore, the previous
piece of text is ordered, and should thus be compressible.

2) Kg? ?g f?ehk ?mlajd?i wpd?ib q mpzo?f az lg?j r?utv ?azni ghf?osdaq? f?sn.

→ Letters were drawn at random, the message is meaningless and the missing bits
are impossible to guess.
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Toward the notion of self-information (1/2)

To build its mathematical theory of Information, Shannon asks himself the question:

What amount of information carries a given message?

As an example, rate the amount of information contained in the following sentences:

? This year, Christmas will be celebrated on December,
25th.

? This year, it will be 15◦C on average on Bastille day.

? Next year, PSG will win the UEFA Champions League.

Amount of
information

0 Over
9000

Meh

Information ≡ Unlikely event ≡ Scoop.
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Toward the notion of self-information (2/2)
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→ From Shannon’s point of view, the more unlikely/surprising a message is, the
higher the self-information (a.k.a, the amount of information) this message
contains.

→ From a probabilistic point of view, the likeliness of a message is defined as
the probability that this message occurs (among the set of all considered
messages).

⇒ A message m that happens with certainty does not contain any information.
⇒ Contrarily, a message m that is very unlikely has a high self-information.

→ The unit of q(m) is the Shannon (abbrv. Sh)

→ The log function is particularly convenient
thanks to its property that log(a × b) =
log(a) + log(b)

p

f(p)

0 1

log2(p)

log2
(

1
p

)
= −log2(p)
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Introducing the entropy (1/2)

Let us consider some alphabet Σ composed of NΣ symbols {s1, s2, . . . , sNΣ
}, where

each symbol si has a probability of occurrence being p(si ) = pi (with
∑NΣ

i=1 pi = 1).

Ex: Classical latin alphabet ⇒ NΣ = 26, s1 = a, s2 = b, and so on. . .

→ The self-information of a symbol si is q(si ) = − log2(pi ) Sh.

Consider also some text file F composed of NF symbols (e.g. a page of text).

→ The symbol si is statistically present NF × pi times in the file F .

→ Thus, the total self-information of si in F is Qtot(si ) = −NFpi log2(pi ) (with

convention that pi log2(pi ) = 0 if pi = 0).

→ And the total self-information of F is

Qtot(F ) =

NΣ∑

i=1

Qtot(si ) = −NF

NΣ∑

i=1

pi log2(pi ) Sh.

But defined as such, Qtot(F ) can be arbitrarily large, and makes pointless the
comparison of self-information of two files of uneven sizes.
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Introducing the entropy (2/2)

Solution: normalizing Qtot(F ) by the size of the file F yields the definition of the
entropy of F .

Entropy

The (Shannon) entropy of the NΣ symbols {s1, s2, . . . , sNΣ
} is defined as

H = −
NΣ∑

i=1

pi log2(pi )

Remarks:

- It no longer depends on the considered file F , but only on the probability
distribution pi , i = 1, . . . ,NΣ of the symbols composing the alphabet Σ.

- It is expressed in Shannon/symbol (abbrv. Sh/symb).

- It can be written as H = E [q(si )], where E[·] is the expected value operator
and q(si ) = − log2(pi ) is the self-information of symbol si → the entropy H is
the average of the self-information of all symbols si in Σ.
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Binary entropy function

Consider a file F built upon a binary alphabet Σ = {0, 1}, where 0 has a probability
of occurrence being p0 = p ∈ [0, 1] (thus 1 having a probability p1 = 1− p).

By definition,

H = −p0 log2(p0)− p1 log2(p1)

= −p log2(p)− (1− p) log2(1− p)

⇒ The entropy is maximal for p = 1/2 and decreases to
0 both for p → 0 and p → 1.

p

H(p)

1/2 1

1

0

What does it mean?

- When p = 1/2, both symbols 0 and 1 are equiprobable. The file F is completely

random, thus incompressible, and the entropy is maximal .

- When p 6= 1/2, one symbol is more likely than the other. Some underlying order

appears in the file F , which becomes compressible, and the entropy decreases .
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Equiprobability ≡ maximal disorder

Say that the file F contains the outcomes of dice rolls (NΣ = {1, 2, 3, 4, 5, 6}).

Fair dice ⇒ outcomes 1, 2, . . . , 6 are equiprobable.

→ F = {26435416542216 . . . } is totally disordered.

→ H is maximal (but how much?).
si

p(si)

−1
6

−

1

−

2

−

3

−

4

−

5

−

6

Loaded dice ⇒ some outcomes are more probable.

→ F = {3225243252232 . . . } is somewhat ordered.

→ H is neither maximal nor minimal.
si

p(si)

−1
2

−1
4

−1
8

−

1

−

2

−

3

−

4

−

5

−

6

Totally loaded dice (is that even possible?)

→ F = {44444444444444 . . . } is totally ordered.

→ H = 0 is minimal.
si

p(si)

−1

−

1

−

2

−

3

−

5

−

6

−

4

Guillaume Tochon (LRDE) CODO - Information Theory 13 / 18



Equiprobability ≡ maximal disorder

Say that the file F contains the outcomes of dice rolls (NΣ = {1, 2, 3, 4, 5, 6}).

Fair dice ⇒ outcomes 1, 2, . . . , 6 are equiprobable.

→ F = {26435416542216 . . . } is totally disordered.

→ H is maximal (but how much?).
si

p(si)

−1
6

−

1

−

2

−

3

−

4

−

5

−

6

Loaded dice ⇒ some outcomes are more probable.

→ F = {3225243252232 . . . } is somewhat ordered.

→ H is neither maximal nor minimal.
si

p(si)

−1
2

−1
4

−1
8

−

1

−

2

−

3

−

4

−

5

−

6

Totally loaded dice (is that even possible?)

→ F = {44444444444444 . . . } is totally ordered.

→ H = 0 is minimal.
si

p(si)

−1

−

1

−

2

−

3

−

5

−

6

−

4

Guillaume Tochon (LRDE) CODO - Information Theory 13 / 18



Equiprobability ≡ maximal disorder

Say that the file F contains the outcomes of dice rolls (NΣ = {1, 2, 3, 4, 5, 6}).

Fair dice ⇒ outcomes 1, 2, . . . , 6 are equiprobable.

→ F = {26435416542216 . . . } is totally disordered.

→ H is maximal (but how much?).
si

p(si)

−1
6

−

1

−

2

−

3

−

4

−

5

−

6

Loaded dice ⇒ some outcomes are more probable.

→ F = {3225243252232 . . . } is somewhat ordered.

→ H is neither maximal nor minimal.
si

p(si)

−1
2

−1
4

−1
8

−

1

−

2

−

3

−

4

−

5

−

6

Totally loaded dice (is that even possible?)

→ F = {44444444444444 . . . } is totally ordered.

→ H = 0 is minimal.
si

p(si)

−1

−

1

−

2

−

3

−

5

−

6

−

4

Guillaume Tochon (LRDE) CODO - Information Theory 13 / 18



Equiprobability ≡ maximal disorder

Say that the file F contains the outcomes of dice rolls (NΣ = {1, 2, 3, 4, 5, 6}).

Fair dice ⇒ outcomes 1, 2, . . . , 6 are equiprobable.

→ F = {26435416542216 . . . } is totally disordered.

→ H is maximal (but how much?).
si

p(si)

−1
6

−

1

−

2

−

3

−

4

−

5

−

6

Loaded dice ⇒ some outcomes are more probable.

→ F = {3225243252232 . . . } is somewhat ordered.

→ H is neither maximal nor minimal.
si

p(si)

−1
2

−1
4

−1
8

−

1

−

2

−

3

−

4

−

5

−

6

Totally loaded dice (is that even possible?)

→ F = {44444444444444 . . . } is totally ordered.

→ H = 0 is minimal.
si

p(si)

−1

−

1

−

2

−

3

−

5

−

6

−

4

Guillaume Tochon (LRDE) CODO - Information Theory 13 / 18



Entropy as a compressibility gauge (1/2)

The binary case showed that the entropy H is maximal when all symbols {si}NΣ

i=1 in
Σ are equiprobables (pi = 1

NΣ
).

Assuming that NΣ = 2m. Then

H = −
NΣ∑

i=1

pi log2(pi ) = −
2m∑

i=1

2−m log2(2−m) = −2m × 2−m × (−m) = m

Therefore, H < m if all symbols are not equiprobable (in general H < log2(NΣ) if NΣ 6= 2m).

The entropy of a file F gives an idea of “how compressible” is the file F :

→ Maximum entropy ⇔ complete randomness ⇔ incompressible file.

→ Lower entropy ⇔ underlying order ⇔ compressible file.

A random file has maximum information according to Shannon.
⇒ Information︸ ︷︷ ︸

Mathematics

6= Signification︸ ︷︷ ︸
semantic meaning
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Entropy as a compressibility gauge (2/2)
Example

Take Σ = {A,B,C ,D} (hence NΣ = 4) with pA = pB = pC = pD = 1
4 .

⇒ Equiprobability⇔ maximum entropy H = 2 Sh/symb

⇔ each symbol has to be encoded on 2 bits.

⇔ incompressible file (a priori).

Now keep the same alphabet Σ, but with pA = 1
2 ,pB = pC = 1

4 ,pD = 0.

H = − 1
2 log2

(
1
2

)
− 2× 1

4 log2

(
1
4

)
= 3

2 Sh/symb < 2

⇒ Lower entropy⇔ compressible file.

⇔ each symbol can be encoded on 3/2 bits (on average).

Take some file F with NF = 1000 symbols drawn from Σ.

→ 2000 bits are necessary to encode F with the first probability distribution.

→ But it can be encoded on 1000× 3
2 = 1500 bits with the second distribution.

The value of H does not say anything on the most efficient way to attain
this bound.
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A quick link with thermodynamics and statistical physics

Carnot entropy Boltzmann entropy

Thermodynamics (macroscopic point of view) Statistical physics (microscopic point of view)

dS =
δQ

T
incremental

entropy
heat transfers

temperature

Second law of thermodynamics

dS ≥ 0 ⇒ the entropy of a system always
increases.

T1 T2

Sinit

time

diffusion
T2 < Teq < T1

Seq > Sinit

S = kB ln(Ω)

kB: Boltzmann constant (1.38× 10−23J.K−1)

Ω: Number of microscopic configurations
yielding the current macroscopic one.

Boltzmann entropy is actually a particular case
of Gibbs entropy

S = −kB

∑
i

pi ln(pi )

when all microstates i of the system have the
same probability pi .

The entropy of a thermodynamic system is a measure of the disorder of this system.
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Exercise

How many bits are necessary to encode the file F =
{

ACABBDDBAAABCAAA
}

uncompressed?
Assuming that the probability of occurrence of the symbols in F is equal to their
relative frequency, what would be the smallest compressed size of the file F?

→ F is composed of 4 different symbols {A,B,C ,D}, so a support of 2 bits/symbols
is necessary to encode the 4 symbols. In addition, F is composed of NF = 16

symbols, hence a total uncompressed size of 16× 2 = 32 bits .

→ Let’s first retrieve the probability of occurence of the symbols: pA = 8
16 = 1

2 ,
pB = 4

16 = 1
4 , pC = 2

16 = 1
8 and pD = 2

16 = 1
8 .

It allows to compute the entropy:

H = − 1
2 log2

(
1
2

)
− 1

4 log2

(
1
4

)
− 1

8 log2

(
1
8

)
− 1

8 log2

(
1
8

)

= 1
2 + 1

2 + 3
8 + 3

8 = 7
4 Sh/symb.

Thus a minimal compressed size of 16× 7

4
= 28 bits .

But again, it does not say anything on the optimal encoding scheme...
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N-gram entropy for text compression

Consider two files F1 =
{

ABCDABCD
}

and F2 =
{

AABCBADA
}

.

You can easily check that H1 = 2 Sh/symb and H2 = 1.75 Sh/symb. Thus, H1 > H2

even though F1 appears more ordered than F2.

Paradox?

Actually, no!

The problem comes from a notion of scale: in its classical definition, the entropy
considers symbols to be single characters (1-gram entropy).

But if you define the metasymbol ABCD , composed of 4 characters, then the
4-gram entropy of F1 drops to 0, which is more in line with the intuition we have of
it being a totally ordered file.

However, two limitations naturally arise for text compression purposes:

1) The best order to consider depends on the langage.

2) If the alphabet has size NΣ (hence, there are NΣ 1-grams), there are
(NΣ

k

)

different k-grams ⇒ combinatorial explosion.
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