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Lossless compression

Data before compression and after decompression are strictly identical.

Lossless compression algorithms exploit data statistical redundancy in two steps :

1) Derive a statistical model for data to compress :
→ Static models : analyze whole data and build model according to it

(Huffman, bzip2...).
→ Adaptive models : start with a trivial model and improve it during com-

pression (adapative Huffman, LZW...).

2) Use statistical model to encode input data :

probable symbol ⇔ short encoding

improbable symbol ⇔ longer encoding

⇒ Super effective on noise-free data (text documents, source codes, synthetic images).
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Lossless compression algorithms

1 RLE compression algorithm
General idea
Example: fax transmission

2 Huffman compression algorithm
General idea
An illustrative example
Properties and limits of Huffman encoding

3 bzip2 compression algorithm
General idea
Burrows-Wheeler transform
Move-to-front transform

4 LZW compression algorithm
General idea
Example of LZW encoding and decoding

Guillaume Tochon (LRDE) CODO - Lossless compression 3 / 21



RLE compression algorithm

What would be the most naive way to compress the following file F?

F =
{

AAAAAABBBBCCCCCCC
}

⇒ F# =
{

6A4B7C
}
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RLE compression algorithm

Run-length encoding

Encode runs of symbols (i.e. when a symbol is repeated several times in a row) as
the number of occurrences in the run followed by the single symbol.

Not suited for text compression: HELLO becomes 1H1E2L1O or HE2LO .

→ The runs must be sufficiently long.

→ Suitable for synthesis/noise-free images. Used in bitmap (.bmp) format.

Problem when encoding numbers: 22231444457
RLE
=⇒ 32314457 .

→ How to decide whether it is a number of occurrence or a symbol?

→ Use a special character # to inform the decompression stage.
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RLE compression algorithm

Run-length encoding

Encode runs of symbols (i.e. when a symbol is repeated several times in a row) as
the number of occurrences in the run followed by the single symbol.

Not suited for text compression: HELLO becomes 1H1E2L1O or HE2LO .

→ The runs must be sufficiently long.

→ Suitable for synthesis/noise-free images. Used in bitmap (.bmp) format.

Problem when encoding numbers: 22231444457
RLE
=⇒ #3231#4457 .

→ How to decide whether it is a number of occurrence or a symbol?

→ Use a special character # to inform the decompression stage.
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Application to fax transmission of binarized documents
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Fax: prehistoric machine that used to send documents by wire trans-
mission (dated circa 1500 BC).

The document is scanned line by line
by the fax. Each line is binarized and
converted into an analog signal (elec-
tric impulses) that is sent through tele-
phone lines.

Rough idea: compress each line independently

1 1 1 1 1 1 1 1 1 1· · · · · · · · · · · · · · · · · · · · · · · · · · ⇒ no text, RLE is super effective.

1 1 · · · 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 · · · 1 1 ⇒ text, but RLE remains effective.

1 1 · · · 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 · · · 1 1

1 1 · · · 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 · · · 1 1

⇒ Very few differences between two
lines.
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Fax: prehistoric machine that used to send documents by wire trans-
mission (dated circa 1500 BC).

The document is scanned line by line
by the fax. Each line is binarized and
converted into an analog signal (elec-
tric impulses) that is sent through tele-
phone lines.

Smarter idea: compress difference between consecutive lines
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Fax: prehistoric machine that used to send documents by wire trans-
mission (dated circa 1500 BC).

The document is scanned line by line
by the fax. Each line is binarized and
converted into an analog signal (elec-
tric impulses) that is sent through tele-
phone lines.

Smarter idea: compress difference between consecutive lines

1 1 1 1 1 1 1 1 1 1· · · · · · · · · · · · · · · · · · · · · · · · · · ⇒ no text, RLE is super effective.

1 1 · · · 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 · · · 1 1 ⇒ text, but RLE remains effective.

li 1 1 · · · 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 · · · 1 1

li+1 1 1 · · · 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 · · · 1 1

li
⊕

li+1 0 0 · · · 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 · · · 0 0

⇒ Compress the line difference in-
stead, RLE is super effective.



Huffman compression algorithm

→ Proposed in 1952 by David Huffman (during its Ph.D).

→ Exploit the statistical distribution of the symbols to encode.
⇒ entropy encoding.

→ Frequent symbols are given shorter encoding support.
⇒ variable-length code.

David Huffman

Huffman encoding

The encoding is obtained by the following two-steps procedure:

1) Compute a binary tree whose leaves are the symbols, by iteratively merging the
two symbols with lowest probabilities of occurence.

2) Label each left branch by 0 and each right branch by 1 (or the other way
around).

The encoding of each symbol is given by the path from the root to the leaf
corresponding to the symbol.
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Example (1/3)
Computing a binary tree
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Take the following alphabet Σ with known probability distribution:

si pi

0.3

0.06

0.1

0.1

0.4

0.04

Huffman encoding: 1st step

1) Sort table (if necessary).

2) Merge the two symbols with lowest proba-
bility of occurence.

3) Update table.

4) Repeat if more than one symbol remaining.
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Example (2/3)
Retrieving the encoding for each symbol
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0
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Huffman encoding: 2nd step

1) Traverse the tree from the root to the leaves
(the symbols).

2) Always assign 1 to the left child and 0 to
the right one (or the other way around).

3) Read encoding on the whole branch.
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Example (3/3)
Performances of the encoding

The entropy of Σ = { , , , , , } with previously given probability distribution
is H ' 2.144 Sh/symb.
⇒ A theoretically optimal encoding needs an average length of 2.144 bits per symbol.

The average length of Huffman encoding is

L = E[`(si )] =
∑

si∈Σ

pi`(si ) bits/symb.

where `(si ) is the encoding length of symbol si .
⇒ L = 0.3× 2 + 0.06× 5 + 0.1× 3 + 0.1× 4 + 0.4× 1 + 0.04× 5 = 2.2 bits/symb.

Take some file F with NF = 1000 symbols drawn from Σ.

→ 3000 bits are necessary to encode F without compression.

→ The minimal compressed size of F is H × NF = 2144 bits.

→ Huffman encoding allows to reach L × NF = 2200 bits (in
average).
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Properties of Huffman encoding

Huffman encoding is a prefix code (no symbol encoding is a prefix of another symbol encoding).

⇒ it can be decoded on the fly.

Ex: 11001010100 ⇒ |11|0|0|10101|100| ⇒

Huffman encoding is optimal in terms of average encoding length with respect to
any symbol-by-symbol encoding with prefix property.

That is, if L is another encoding strategy at the symbol level with prefix property,
then LHuffman ≤ LL.

H = LHuffman if the probabilities of symbols are natural powers of 1/2, otherwise
H < LHuffman < H + 1.

Huffman encoding reaches the entropy H if ∀si ∈ Σ,pi = (1/2)k , k ∈ N. Otherwise,
Huffman encoding is “close” to the entropy.
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Limits of Huffman encoding

Huffman encoding strategy suffers from two mains drawbacks:

7 It is a symbol-by-symbol encoding → does not handle words (as sequences of
symbols).

Ex: In a piece of code, words such as for, while, end, are likely to frequently appear,

and should directly be encoded at the word scale.

7 It relies (too) strongly on the probability distribution of the symbols to encode.
→ The file to compress must be scanned first to estimate the probability distribution.
→ The frequency table (or the Huffman tree) must be stored with the text for the

decoding stage.

→ ↪→ Classical text statistics can
be used (language-dependent).

0%
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10%

15%

20%

’ ’ a b c d e f g h i j k l m n o p q r s t u v w x y z

French language

English language

→ And what if the frequencies vary with time?

→ ↪→ Adaptive Huffman algorithm.

Huffman encoding alone is nowadays hardly used for text compression, but serves as
the last level of more advanced compression algorithms (bzip2, JPEG, etc).
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bzip2 compression algorithm

→ Created between 1996 and 2000 by Julian Seward.

→ Initially proposed to tackle patenty issues with LZW compression
algorithm.

→ Free and open-source compression algorithm.
Julian Seward

bzip2 encoding

Idea: strenghten the anisotropy of symbol probabilities.

1) Apply Burrows-Wheeler transform to convert frequently-recurring symbol se-
quences into runs of identical symbols.

2) Use Move-to-front (MTF) transform to replace each symbol by its index in a
dynamic table.

3) Encode index sequence with Huffman algorithm.
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Burrows-Wheeler transform
The encoding part

Invented by Michael Burrows and David Wheeler in 1994 to sort strings of characters
into runs of similar characters to ease their compression, in a totally reversible way.

Ex: Consider the file banana$ ($ ≡ EOF)

1st step: Construct a table containing all rotations of the string to transform.
2nd step: Sort rows into lexicographic order.
BWT: row number of initial string + last column of sorted table.

b a n a n a $

$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b

$ b a n a n a

2

a $ b a n a n

3

a n a $ b a n

4

a n a n a $ b

5

b a n a n a $

6

n a $ b a n a

7

n a n a $ b a

lexicographic
sort

⇒ BWT
(

banana$
)

= 5annb$aa
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2nd step: Sort rows into lexicographic order.
BWT: row number of initial string + last column of sorted table.

b a n a n a $
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b

1 $ b a n a n a
2 a $ b a n a n
3 a n a $ b a n
4 a n a n a $ b
5 b a n a n a $
6 n a $ b a n a
7 n a n a $ b a

lexicographic
sort

⇒ BWT
(

banana$
)

= 5annb$aa

Guillaume Tochon (LRDE) CODO - Lossless compression 13 / 21



Burrows-Wheeler transform
The encoding part

Invented by Michael Burrows and David Wheeler in 1994 to sort strings of characters
into runs of similar characters to ease their compression, in a totally reversible way.

Ex: Consider the file banana$ ($ ≡ EOF)

1st step: Construct a table containing all rotations of the string to transform.
2nd step: Sort rows into lexicographic order.
BWT: row number of initial string + last column of sorted table.

b a n a n a $
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b

1 $ b a n a n a
2 a $ b a n a n
3 a n a $ b a n
4 a n a n a $ b
5 b a n a n a $
6 n a $ b a n a
7 n a n a $ b a

lexicographic
sort

⇒ BWT
(

banana$
)

= 5annb$aa

Guillaume Tochon (LRDE) CODO - Lossless compression 13 / 21



Burrows-Wheeler transform
Not convinced?

BWT




How much wood would
a woodchuck chuck if a
woodchuck could chuck
wood?$


 =

dfkdkkwhkaad?d$ udd
uuuu llooooiccccc ccc-
cuu oooowwwwwcHmh-
hhhooo

And that sure looks way better. How much better?

RLE




dfkdkkwhkaad?d$ udd
uuuu llooooiccccc ccc-
cuu oooowwwwwcHmh-
hhhooo


 =

dfkd#2kwhk#2ad?d$
u#2d #4u #2l#4oi
#5c #4c#2u #4o#5
wcHm#4h#3o

Transforming 65 characters into . . . 61 characters!

BWT is applied in practice on much longer strings thanks to some efficient and
optimized implementations ⇒ initial “pre-processing” for the MTF transform.
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Burrows-Wheeler transform
The decoding part

It is easily possible to recover banana$ from 5annb$aa by reconstructing the
sorted table that was constructed during the computation of the BWT.

1st step: Concatenate annb$aa before the last column of the table.

2nd step: Sort the rows in lexicographic order.
⇒ Repeat until the whole table is recreated.
BWT−1: Read the corresponding row in the table.

⇒ BWT−1
(

5annb$aa
)

= banana$
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Move-to-front transform

Idea: encode a flow of symbols by their index in a list. The list is dynamically
updated so that most recently seen symbol is moved to the front of the list.

Ex: BWT
(

banana$
)

= 5annb$aa ⇒ let’s encode annb$aa L0 = [a,b,n,$]

a → 0 first symbol of L0

n → 2 third symbol of L0 L0 → L1 = [n,a,b,$]
n → 0 first symbol of L1

b → 2 third symbol of L1 L1 → L2 = [b,n,a,$]

$ → 3 fourth symbol of L2 L2 → L3 = [$,b,n,a]
a → 3 fourth symbol of L3 L3 → L4 = [a,$,b,n]
a → 0 first symbol of L4

MTF
(

annb$aa
)
⇒ 0202330

0 becomes much more probable than other digits → Huffman likes that!

L ≡ the alphabet Σ from which are drawn the symbols (in general the ASCII table).
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)
⇒ 0202330

0 becomes much more probable than other digits → Huffman likes that!

L ≡ the alphabet Σ from which are drawn the symbols (in general the ASCII table).
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Move-to-front transform

Idea: encode a flow of symbols by their index in a list. The list is dynamically
updated so that most recently seen symbol is moved to the front of the list.
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a → 0 first symbol of L4
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(
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)
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0 becomes much more probable than other digits → Huffman likes that!

L ≡ the alphabet Σ from which are drawn the symbols (in general the ASCII table).
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Final overview of bzip2 compression algorithm

1st step: BWT → sort data to create runs of similar symbols.

2nd step: MTF → encode sorted data into digits with high anisotropy.

3rd step: Huffman → 0 gets a short encoding ⇒ huge compression.

3 Most of the time more efficient than other compression algorithms (.zip and
.gz, based on DEFLATE algorithm).

7 Notably slower for the compression stage (but not for decompression).
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LZW compression algorithm

→ Improvement of the LZ78 algorithm proposed by
Abraham Lempel and Jacob Ziv in 1978.

→ Published by Terry Welch in 1984.

→ Can be considered with LZ78 as the first unsuper-
vised dictionary learning algorithms. Abraham Lempel Jacob Ziv

LZW encoding

Idea: Create a dictionary D based on the sequences of symbols encountered in the
data, and replace known sequences of symbols by their address in D.

F = {si}NF

i=1
si si−1si ∈ D?

D = D ∪ {si−1si}
si → @D[si ]

D = D ∪ {si−2si−1si}
si−1si → @D[si−1si ]

nope

yup
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Example
LZW encoding
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O TO

TO

B

B E BE 270 258

E $ @D [E]
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O TO

TO

B

B E BE 270 258

E $ @D [E]

What is happening?

1. T is the first read character.

2. Buffer is empty

3. T is already in D.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O TO

TO

B

B E BE 270 258

E $ @D [E]

What is happening?

1. T is put in the buffer.

2. O is read.

3. The sequence TO is created and
tested to belong to D.

4. TO is not in D yet→ it is inserted
at the next available address, i.e.
256.

5. T is encoded by its address in D.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]
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E $ @D [E]

What is happening?

1. O is put in the buffer.

2. . is read.

3. The sequence O is created and
tested to belong to D.

4. O is not in D yet→ it is inserted
at the next available address, i.e.
257.

5. O is encoded by its address in D.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]
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O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O TO

TO

B

B E BE 270 258

E $ @D [E]

What is happening?

1. . is put in the buffer.

2. B is read.

3. The sequence B is created and
tested to belong to D.

4. B is not in D yet→ it is inserted
at the next available address, i.e.
258.

5. . is encoded by its address in D.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.
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E $ @D [E]

What is happening?

It keeps adding in D new sequences of
two symbols that were never encountered
before...
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What is happening?

It keeps adding in D new sequences of
two symbols that were never encountered
before...

Note that some sequences should come
back pretty often, such as TO, BE, OR...
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What is happening?

It keeps adding in D new sequences of
two symbols that were never encountered
before...

Note that some sequences should come
back pretty often, such as TO, BE, OR,
NO...



Example
LZW encoding

Guillaume Tochon (LRDE) CODO - Lossless compression 19 / 21
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O TO

TO

B

B E BE 270 258

E $ @D [E]

What is happening?

It keeps adding in D new sequences of
two symbols that were never encountered
before...

Note that some sequences should come
back pretty often, such as TO, BE, OR,
NO...

And surely enough...



Example
LZW encoding

Guillaume Tochon (LRDE) CODO - Lossless compression 19 / 21

Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O TO

TO

B

B E BE 270 258

E $ @D [E]

What is happening?

1. T is put in the buffer.

2. O is read.

3. The sequence TO is created and
tested to belong to D.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]
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B

B E BE 270 258

E $ @D [E]

What is happening?

1. T is put in the buffer.

2. O is read.

3. The sequence TO is created and
tested to belong to D.

4. TO is already in D, at the address
256 → it is not inserted in D again.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O 7

TO

B

B E BE 270 258

E $ @D [E]

What is happening?

1. T is put in the buffer.

2. O is read.

3. The sequence TO is created and
tested to belong to D.

4. TO is already in D, at the address
256 → it is not inserted in D again.

5. T is not encoded by its address

(nothing is output), but TO is put
in the buffer instead.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O

TO TO 269 @D [TO]

B

B E BE 270 258

E $ @D [E]

What is happening?

1. TO is in the buffer.

2. . is read.

3. The sequence TO is created and
tested to belong to D.

4. TO is not in D yet → it is in-
serted at the next available address,
i.e. 269.

5. TO is encoded by its address in
D.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]
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N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]
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T O
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B

B E BE 270 258

E $ @D [E]

What is happening?

1. TO is in the buffer.

2. . is read.

3. The sequence TO is created and
tested to belong to D.

4. TO is not in D yet → it is in-
serted at the next available address,
i.e. 269.

5. TO is encoded by its address in
D, i.e., 256.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O @D [%]

TO TO 269 256

B

B E BE 270 258

E $ @D [E]

What is happening?

1. TO is in the buffer.

2. . is read.

3. The sequence TO is created and
tested to belong to D.

4. TO is not in D yet → it is in-
serted at the next available address,
i.e. 269.

5. TO is encoded by its address in
D, i.e., 256.

6. But wait, 256 requires 9 bits to be
encoded (instead of 8 bits so far).
→ needs to emit a special character

% to prevent the decompressor
that it shall read further addresses
on 9 bits and no longer on 8 bits.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T
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O O 257 @D [O]
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N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O @D [%]

TO TO 269 256

B

B E BE 270 258

E $ @D [E]

What is happening?

1. . is put in the buffer.

2. B is read.

3. The sequence B is created and
tested to belong to D.

4. . is already in D, at the address
258 → it is not inserted in D again.

5. Nothing is output, and B is put
in the buffer.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O @D [%]

TO TO 269 256

B

B E BE 270 258

E $ @D [E]

What is happening?

1. B is in the buffer.

2. E is read.

3. The sequence BE is created and
tested to belong to D.

4. BE is not in D yet→ it is inserted
at the next available address, i.e.
270.

5. B is encoded by its address in D,
i.e., 258.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O @D [%]

TO TO 269 256

B

B E BE 270 258

E $ @D [E]

What is happening?

1. E is put in the buffer.

2. The EOF character $ is read.

3. The dictionary update stops, and

E is encoded by its address in D.
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O @D [%]

TO TO 269 256

B

B E BE 270 258

E $ @D [E]

Compression performance:

- Without compression → 18× 8 =
144 bits.

- With compression→ 14×8+3×9 =
139 bits.

OK, it is not so impressive for this exam-
ple...
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Let’s encode F = TO BE OR NOT TO BE with D ≡ ASCII table.

Buffer Input D∪{·} @D[·] Output

T

T O TO 256 @D [T]

O O 257 @D [O]

B B 258 @D [ ]

B E BE 259 @D [B]

E E 260 @D [E]

O O 261 @D [ ]

O R OR 262 @D [O]

R R 263 @D [R]

N N 264 @D [ ]

N O NO 265 @D [N]

O T OT 266 @D [O]

T T 267 @D [T]

T T 268 @D [ ]

T O @D [%]

TO TO 269 256

B

B E BE 270 258

E $ @D [E]

Compression performance:

But on longer strings, when the dictio-
nary D has sufficiently grown, the gain
becomes really significant.

Ex:
How much wood would a wood-
chuck chuck if a woodchuck could
chuck wood?

- Without compression → 70× 8 =
560 bits.

- With compression → 14× 8 + 9×
31 = 391 bits (check it yourself).
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

TO @D [ B]

B @D [E] BE 270 B

E $ E
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

1. @D [T] is received by the decoder.

2. T is recognized by looking up in
D .
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

1. T is put in the buffer.

2. O is recognized from @D [O].

3. The sequence TO is created and
tested to belong to D.

4. TO is not in D yet→ it is inserted
at the next available address, i.e.
256.

5. T is output.
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

1. O is put in the buffer.

2. . is recognized from @D [ ].

3. The sequence O is created and
tested to belong to D.

4. O is not in D yet→ it is inserted
at the next available address, i.e.
257.

5. O is output.
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

And so on, as long as no special character
is encountered.

The sequences that are recreated by this
process are strictly identical to those that
were generated during the encoding stage.
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

1. . is put in the buffer.

2. The special character % is recog-
nized from @D [%] → all following
addresses will have to be decoded
on 9 bits instead of 8.
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

1. . is in the buffer.
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

256

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

1. . is in the buffer.

2. 256 is received.
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

256

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

1. . is in the buffer.

2. 256 is received, that is, @D [TO].
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

@D [TO] T

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

1. . is in the buffer.

2. 256 is received, that is, @D [TO].

3. The sequence T is created using
. in the buffer and the first letter

of the received sequence TO .
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E
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O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

@D [TO] T 268

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

1. . is in the buffer.

2. 256 is received, that is, @D [TO].

3. The sequence T is created using
. in the buffer and the first letter

of the received sequence TO .

4. T is not in D yet→ it is inserted
at the next available address, i.e.
268.
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

@D [TO] T 268

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

1. . is in the buffer.

2. 256 is received, that is, @D [TO].

3. The sequence T is created using
. in the buffer and the first letter

of the received sequence TO .

4. T is not in D yet→ it is inserted
at the next available address, i.e.
268.

5. . is output.
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

@D [TO] T 268

TO 258

B @D [E] BE 270 B

E $ E

What is happening?

1. TO is put in the buffer.

2. 258 is received.
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

@D [TO] T 268

TO @D [ B]

B @D [E] BE 270 B

E $ E

What is happening?

1. TO is put in the buffer.

2. 258 is received, that is, B .
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

@D [TO] T 268

TO @D [ B] TO 269 TO

B @D [E] BE 270 B

E $ E

What is happening?

1. TO is put in the buffer.

2. 258 is received, that is, B .

3. The sequence TO is created us-

ing TO in the buffer and the first

letter . of the received sequence

B .

4. TO is not in D yet → it is in-
serted at the next available address,
i.e. 269.

5. TO is output.
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

@D [TO] T 268

TO @D [ B] 269 TO

B @D [E] BE 270 B

E $ E

What is happening?

1. B is put in the buffer.

2. E is recognized from @D [E].

3. The sequence BE is created and
tested to belong to D.

4. BE is not in D yet→ it is inserted
at the next available address, i.e.
270.

5. B is output.
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The LZW decoding scheme reconstructs the dictionary D from the ASCII table in
a very symmetric fashion.

Buffer Input D∪{·} @D[·] Output

@D [T]

T @D [O] TO 256 T

O @D [ ] O 257 O

@D [B] B 258

B @D [E] BE 259 B

E @D [ ] E 260 E

@D [O] O 261

O @D [R] OR 262 O

R @D [ ] R 263 R

@D [N] N 264

N @D [O] NO 265 N

O @D [T] OT 266 O

T @D [ ] T 267 T

@D [%]

@D [TO] T 268

TO @D [ B] 269 TO

B @D [E] BE 270 B

E $ E

What is happening?

1. E is put in the buffer.

2. The EOF character $ is read.

3. The dictionary update stops, E
is recognized from @D [E] and is
output.



Concluding remarks on LZW

The dictionaries generated by the encoding and the decoding stages are strictly
identical.

The dictionary D cannot grow indefinitely.

→ Most of the time limited to 12 bits, i.e., 4096 entries.

→ Can be reset with another special character if needed.

LZW is used in the GIF (Graphics Interchange Format) encoding format for images.

→ Pixel values are between 0 and 255, hence all 8 bits combinaisons are required.

→ Directly mapped to 9 bits encoding (also to accomodate for special characters).

→ Dictionary size is precisely limited to 12 bits.
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