Lossy Compression

Guillaume TOCHON

guillaume.tochon@lrde.epita.fr

LRDE, EPITA

Guillaume TOCHON (LRDE)

Let's take some (real) image and try to compress it with lossless algorithms:

8-bits grayscale image.

Let's take some (real) image and try to compress it with lossless algorithms:

8-bits grayscale image.

What we would expect if we zoomed in an homogeneous area (the sky, for instance):

Let's take some (real) image and try to compress it with lossless algorithms:

8-bits grayscale image.

What we would expect if we zoomed in an homogeneous area (the sky, for instance):

What we actually get:

 148
 150
 149
 151
 150
 150
 153
 151
 148
 147
 150

- $\rightarrow~$ Variations are imperceptible for the eye. . .
- $\rightarrow \hdots$ but they annihilate lossless compression techniques!

Let's take some (real) image and try to compress it with lossless algorithms:

8-bits grayscale image.

-rw-rr	1	gtochon	lrde	177K	mars	28	18:00	grenoble.tiff.zip
- rw-rr		gtochon	lrde	177K	mars	28	17:58	
- rw - r r		gtochon	lrde	151K	mars	28	17:58	
- rw-rr		gtochon	lrde	264K	mars	28	17:58	grenoble.tiff

What we would expect if we zoomed in an homogeneous area (the sky, for instance):

What we actually get:

 148
 150
 149
 151
 150
 150
 153
 151
 148
 147
 150
 150

- $\rightarrow~$ Variations are imperceptible for the eye. . .
- → ... but they annihilate lossless compression techniques!

Let's take some (real) image and try to compress it with lossless algorithms:

8-bits grayscale image.

	gtochon	lrde	177K	mars	28	18:00	
- rw-rr	gtochon	lrde	177K	mars	28	17:58	
- rw - r r	gtochon	lrde	151K	mars	28	17:58	
	gtochon	lrde	264K	mars	28	17:58	grenoble.tiff
	gtochon	lrde	64K	mars	28	18:00	grenoble.jpg

Non-compressible part of the whole image.

What we would expect if we zoomed in an homogeneous area (the sky, for instance):

What we actually get:

··· 148 150 149 151 150 150 153 151 148 147 150 ···

- $\rightarrow~$ Variations are imperceptible for the eye. . .
- $\rightarrow \ \ldots \$ but they annihilate lossless compression techniques!

Let's take some (real) image and try to compress it with lossless algorithms:

8-bits grayscale image.

	gtochon	lrde	177K	mars	28	18:00	
- rw-rr	gtochon	lrde	177K	mars	28	17:58	
- rw - r r	gtochon	lrde	151K	mars	28	17:58	
	gtochon	lrde	264K	mars	28	17:58	grenoble.tiff
	gtochon	lrde	64K	mars	28	18:00	grenoble.jpg

Non-compressible part of the whole image. What we would expect if we zoomed in an homogeneous area (the sky, for instance):

What we actually get:

··· 148 150 149 151 150 150 153 151 148 147 150 ···

 \rightarrow Variations are imperceptible for the eye... \rightarrow ... but they annihilate lossless compression techniques!

Guillaume TOCHON (LRDE)

Lossy compression

Data before compression and after decompression are not the same.

Lossy compression algorithms:

- irremediably degrades the data by removing some part of the information.
 - $\rightarrow\,$ degradation is expected not to be noticeable by the end-user.
- are more efficient than lossless approaches in terms of compression ratio.
 - $\rightarrow\,$ at the expense of the committed inaccuracies during decompression.
- are most commonly used to compress multimedia data.
 - $\rightarrow\,$ noise is efficiently handled.

Lossy compression

Data before compression and after decompression are not the same.

Lossy compression algorithms:

- irremediably degrades the data by removing some part of the information.
 - $\rightarrow\,$ degradation is expected not to be noticeable by the end-user.
- are more efficient than lossless approaches in terms of compression ratio.
 - $\rightarrow\,$ at the expense of the committed inaccuracies during decompression.
- are most commonly used to compress multimedia data.
 - $\rightarrow\,$ noise is efficiently handled.

Lossy compression \equiv trade-off between performance and degradation.

- A first naive approach
 - Downsampling
 - Upsampling
- 2 Frequency analysis
 - Inaptitude of the spatial representation
 - Changing the representation domain of an image
 - Walsh-Hadamard transform
 - Discrete Fourier transform
 - Discrete Cosine transform
- ③ JPEG compression algorithm
 - Compression scheme
 - Decompression scheme
 - Compression error analysis

A naive compression scheme

Let's take some grayscale image \mathcal{I} with M rows and N columns (that is, some matrix $[\mathcal{I}(m, n)]_{M,N}$) and crudely downsample it by a factor of r ($\mathcal{I}_{\downarrow r} = \mathcal{I}(0:r:M-1, 0:r:N-1)$).

 \mathcal{I}

A naive compression scheme

Let's take some grayscale image \mathcal{I} with M rows and N columns (that is, some matrix $[\mathcal{I}(m, n)]_{M,N}$) and crudely downsample it by a factor of r ($\mathcal{I}_{\downarrow r} = \mathcal{I}(0:r:M-1, 0:r:N-1)$).

 \mathcal{I}

 $\mathcal{I}_{\downarrow 2}$

A naive compression scheme

Let's take some grayscale image \mathcal{I} with M rows and N columns (that is, some matrix $[\mathcal{I}(m, n)]_{M,N}$) and crudely downsample it by a factor of r ($\mathcal{I}_{\downarrow r} = \mathcal{I}(0:r:M-1, 0:r:N-1)$).

A naive compression scheme

Let's take some grayscale image \mathcal{I} with M rows and N columns (that is, some matrix $[\mathcal{I}(m, n)]_{M,N}$) and crudely downsample it by a factor of r ($\mathcal{I}_{\downarrow r} = \mathcal{I}(0:r:M-1, 0:r:N-1)$).

 \mathcal{I}

 $\mathcal{I}_{\downarrow 2}$

A naive compression scheme

Let's take some grayscale image \mathcal{I} with M rows and N columns (that is, some matrix $[\mathcal{I}(m, n)]_{M,N}$) and crudely downsample it by a factor of r ($\mathcal{I}_{\downarrow r} = \mathcal{I}(0:r:M-1, 0:r:N-1)$).

 \mathcal{I}

 $\mathcal{I}_{\downarrow 2}$

 $\mathcal{I}_{\downarrow 4}$

A naive compression scheme

Let's take some grayscale image \mathcal{I} with M rows and N columns (that is, some matrix $[\mathcal{I}(m, n)]_{M,N}$) and crudely downsample it by a factor of r ($\mathcal{I}_{\downarrow r} = \mathcal{I}(0:r:M-1, 0:r:N-1)$).

If compression \equiv downsampling, then decompression \equiv upsampling \equiv interpolation.

If compression \equiv downsampling, then decompression \equiv upsampling \equiv interpolation.

Nearest-neighbor interpolation:

Copy in an unknown pixel the value of the *closest* known pixel (closest \equiv leftmost and upmost closest pixel).

If compression \equiv downsampling, then decompression \equiv upsampling \equiv interpolation.

Nearest-neighbor interpolation:

Copy in an unknown pixel the value of the *closest* known pixel (closest \equiv leftmost and upmost closest pixel).

If compression \equiv downsampling, then decompression \equiv upsampling \equiv interpolation.

Nearest-neighbor interpolation:

Copy in an unknown pixel the value of the *closest* known pixel (closest \equiv leftmost and upmost closest pixel).

If compression \equiv downsampling, then decompression \equiv upsampling \equiv interpolation.

Bilinear interpolation:

Write the pixel value as a bilinear function of its position $\rightarrow \mathcal{I}(x, y) = \alpha x + \beta y + \gamma x y + \delta.$

Use the 4 closest known pixels to determine α,β,γ and δ and plug in previous equation.

If compression \equiv downsampling, then decompression \equiv upsampling \equiv interpolation.

Bilinear interpolation:

Write the pixel value as a bilinear function of its position $\rightarrow \mathcal{I}(x, y) = \alpha x + \beta y + \gamma x y + \delta.$

Use the 4 closest known pixels to determine α,β,γ and δ and plug in previous equation.

If compression \equiv downsampling, then decompression \equiv upsampling \equiv interpolation.

Bilinear interpolation:

Write the pixel value as a bilinear function of its position $\rightarrow \mathcal{I}(x, y) = \alpha x + \beta y + \gamma x y + \delta.$

Use the 4 closest known pixels to determine α,β,γ and δ and plug in previous equation.

 \mathcal{I}

If compression \equiv downsampling, then decompression \equiv upsampling \equiv interpolation.

Bilinear interpolation:

Write the pixel value as a bilinear function of its position $\rightarrow \mathcal{I}(x, y) = \alpha x + \beta y + \gamma x y + \delta.$ Use the 4 closest known pixels to determine α, β, γ and

 δ and plug in previous equation.

blurring effect

 $\tilde{\mathcal{I}}_B$

bilinea

It sure looks bad...

... but how bad?

$$\epsilon_{NN} = \mathcal{I} - \mathcal{I}_{N}$$

It sure looks bad...

... but how bad?

It is possible to quantitatively assess the compression/decompression error $\epsilon = I - \tilde{I}$ with numerical measures:

- Root mean square error: $\mathsf{RMSE}(\epsilon) = \sqrt{\frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \epsilon(m, n)^2}$
- Signal-to-noise ratio: SNR(ϵ) = 10 log $\left(\frac{\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}\mathcal{I}(m,n)^2}{\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}\epsilon(m,n)^2}\right)$

$$\epsilon_{NN} = \mathcal{I} - \tilde{\mathcal{I}}_{NN}$$

$$\varepsilon_B = \mathcal{I} - \tilde{\mathcal{I}}_B$$

It sure looks bad...

... but how bad?

It is possible to quantitatively assess the compression/decompression error $\epsilon = I - \tilde{I}$ with numerical measures:

-50 -100 -150 -200 -250

- Root mean square error: $\mathsf{RMSE}(\epsilon) = \sqrt{\frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \epsilon(m, n)^2}$
- Signal-to-noise ratio: SNR(ϵ) = 10 log $\left(\frac{\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}\mathcal{I}(m,n)^2}{\sum_{n=0}^{M-1}\sum_{n=0}^{N-1}\epsilon(m,n)^2}\right)$

$$\epsilon_{NN} = \mathcal{I} - \tilde{\mathcal{I}}_{NN}$$

RMSE $(\epsilon_{NN}) = 24.7$
SNR $(\epsilon_{NN}) = 12.9$ dE

$$\epsilon_B = \mathcal{I} - \tilde{\mathcal{I}}_B$$

RMSE(ϵ_B) = 20.7
SNR(ϵ_B) = 14.5 dB

Guillaume TOCHON (LRDE)

Frequency decomposition of an image

Any image \mathcal{I} can be expressed as the superposition of a *low-frequency* term \mathcal{I}_{LF} and a *high-frequency* term \mathcal{I}_{HF} .

 $\mathcal{I}_{LF} \to \mbox{Overall structure of the image: uniform areas, color gradients, slowly-varying components.}$

 $\mathcal{I}_{\textit{HF}} \rightarrow \mbox{ Details: sharp edges, rapidly-varying components, noise.}$

Frequency decomposition of an image

Any image \mathcal{I} can be expressed as the superposition of a *low-frequency* term \mathcal{I}_{LF} and a *high-frequency* term \mathcal{I}_{HF} .

 $\mathcal{I}_{LF} \to \mbox{Overall structure of the image: uniform areas, color gradients, slowly-varying components.}$

 $\mathcal{I}_{\textit{HF}} \rightarrow \text{ Details: sharp edges, rapidly-varying components, noise.}$

<u>Problem</u>: How to discard the useless part of \mathcal{I}_{HF} without removing any important information?

Frequency decomposition of an image

Any image \mathcal{I} can be expressed as the superposition of a *low-frequency* term \mathcal{I}_{LF} and a *high-frequency* term \mathcal{I}_{HF} .

 $\mathcal{I}_{LF} \to \mbox{Overall structure of the image: uniform areas, color gradients, slowly-varying components.}$

 $\mathcal{I}_{\textit{HF}} \rightarrow \text{ Details: sharp edges, rapidly-varying components, noise.}$

<u>Problem</u>: How to discard the useless part of \mathcal{I}_{HF} without removing any important information? \Rightarrow Frequency analysis of the image.

Inaptitude of the spatial representation...

The *spatial* representation is not suited to carry out a frequency analysis of the image:

- \rightarrow high frequencies are disseminated everywhere in the image.
- \rightarrow hard to tell whether a quick variation in terms of pixel intensity is due to an edge (important) or the noise (can be discarded).

Inaptitude of the spatial representation...

The *spatial* representation is not suited to carry out a frequency analysis of the image:

- \rightarrow high frequencies are disseminated everywhere in the image.
- \rightarrow hard to tell whether a quick variation in terms of pixel intensity is due to an edge (important) or the noise (can be discarded).

We need a more suited representation to express the image in terms of frequencies

... and the need for a new one

The image ${\cal I}$ is transformed into another image ${\cal J}$ through some reversible transform Φ such that all further processings to conduct are simpler/more efficient in the transform domain.

... and the need for a new one

The image ${\cal I}$ is transformed into another image ${\cal J}$ through some reversible transform Φ such that all further processings to conduct are simpler/more efficient in the transform domain.

For lossy compression purposes:

$$\mathcal{I} \xrightarrow{\text{Forward} \\ \text{transform } \Phi} \mathcal{J} = \Phi(\mathcal{I}) \xrightarrow{\text{Compression}} \text{scheme } \mathfrak{Q} \xrightarrow{\mathcal{I}} \mathcal{K} = \mathfrak{Q}(\mathcal{J})$$

$$\tilde{\mathcal{I}} \xleftarrow{\text{Inverse} \\ \text{transform } \Phi^{-1}} \underbrace{\tilde{\mathcal{J}} \neq \mathcal{J}} \xleftarrow{\text{Decompression}} \text{scheme } \mathfrak{Q}^{-1} \xrightarrow{\mathcal{I}} \mathcal{I}$$

The compression efficiency depends both on the used transform Φ/Φ^{-1} and the following compression/decompression scheme $\mathfrak{Q}/\mathfrak{Q}^{-1}$.

Guillaume TOCHON (LRDE)

But wait...

What did we exactly mean by spatial representation in the first place?

	227	186	166	127		[<i>I</i> (0,0)		I(0,3)	
-	133	148	138	133	_		•.	:	$= [\mathcal{T}(m, n)]$
-	89	102	115	115	-			:	$ - [\mathcal{L}(m, n)]_{4,4}$
	64	82	148	127		$\mathcal{I}(3,0)$		$\mathcal{I}(3,3)$	

But wait...

What did we exactly mean by spatial representation in the first place?

	227 133 89 64	186 148 102 82	166 138 115 148	127 133 115 127	=	$\begin{bmatrix} \mathcal{I}(0, 0) \\ \vdots \\ \mathcal{I}(3, 0) \end{bmatrix}$	0) . 0) .	··· ·.	I(0, ∶ I(3,	3))]	≡ [1	C(n	n,	n)]	4,4					
$\equiv 2$	227 ×	[1 0 0 0	0 0 0 0 0 0) 0) 0) 0) 0	+13	86 ×	0 0 0 0	1 0 0	0 0 0 0 0 0 0 0		+3	166 ×) 1) 0) 0) 0	0 - 0 0	$\left] + \cdots + 127 \times \right.$	$\begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}$	0 0 0	0 0 0	0 0 0 1
But wait ...

What did we exactly mean by spatial representation in the first place?

But wait ...

What did we exactly mean by spatial representation in the first place?

But wait ...

What did we exactly mean by spatial representation in the first place?

Assume that \mathcal{I} has M rows and N columns and call Φ the *linear* transformation that maps $\mathcal{I} = [\mathcal{I}(m, n)]_{M,N}$ into $\mathcal{J} = [\mathcal{J}(u, v)]_{M,N}$ $\rightarrow \mathcal{J} = \Phi(\mathcal{I}).$

Assume that \mathcal{I} has M rows and N columns and call Φ the *linear* transformation that maps $\mathcal{I} = [\mathcal{I}(m, n)]_{M,N}$ into $\mathcal{J} = [\mathcal{J}(u, v)]_{M,N}$ $\rightarrow \mathcal{J} = \Phi(\mathcal{I}).$

Most classical image transforms Φ are defined such that:

$$\mathcal{J}(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \mathcal{I}(m,n)\phi(m,n,u,v)$$

where

- $\phi(m, n, u, v)$ is called the forward transform kernel,
- the variables u = 0, ..., M 1 and v = 0, ..., N 1 are called the *transform* variables.

Guillaume TOCHON (LRDE)

Assume that \mathcal{I} has M rows and N columns and call Φ the *linear* transformation that maps $\mathcal{I} = [\mathcal{I}(m, n)]_{M,N}$ into $\mathcal{J} = [\mathcal{J}(u, v)]_{M,N}$ $\rightarrow \mathcal{J} = \Phi(\mathcal{I}).$

Most classical image transforms Φ are defined such that:

$$\mathcal{J}(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \mathcal{I}(m,n)\phi(m,n,u,v)$$

where

- $\phi(m, n, u, v)$ is called the forward transform kernel,
- the variables u = 0, ..., M 1 and v = 0, ..., N 1 are called the *transform* variables.

The inverse transform is given by

$$\mathcal{I}(m,n) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \mathcal{J}(u,v)\psi(m,n,u,v)$$

with $\psi(m, n, u, v)$ being the *inverse transform kernel*.

Guillaume TOCHON (LRDE)

The transform kernels are said to be separable if

$$\phi(m, n, u, v) = \phi_M(m, u)\phi_N(n, v)$$

$$\psi(m, n, u, v) = \psi_M(m, u)\psi_N(n, v)$$

The transform kernels are said to be separable if

$$\phi(m, n, u, v) = \phi_M(m, u)\phi_N(n, v)$$

$$\psi(m, n, u, v) = \psi_M(m, u)\psi_N(n, v)$$

Ex: 2D discrete Fourier transform kernels:

$$\begin{split} \phi(m, n, u, v) &= e^{-i2\pi (\frac{mu}{M} + \frac{nv}{N})} = e^{-i2\pi \frac{mu}{M}} e^{-i2\pi \frac{nv}{N}} = \phi_M(m, u)\phi_N(n, v) \\ \psi(m, n, u, v) &= \frac{1}{MN} e^{i2\pi (\frac{mu}{M} + \frac{nv}{N})} = \frac{1}{M} e^{i2\pi \frac{mu}{M}} \frac{1}{N} e^{i2\pi \frac{nv}{N}} = \psi_M(m, u)\psi_N(n, v) \end{split}$$

The transform kernels are said to be separable if

$$\phi(m, n, u, v) = \phi_M(m, u)\phi_N(n, v)$$

$$\psi(m, n, u, v) = \psi_M(m, u)\psi_N(n, v)$$

Ex: 2D discrete Fourier transform kernels:

$$\begin{split} \phi(m, n, u, v) &= e^{-i2\pi (\frac{mu}{M} + \frac{nv}{N})} = e^{-i2\pi \frac{mu}{M}} e^{-i2\pi \frac{nv}{M}} = \phi_M(m, u)\phi_N(n, v) \\ \psi(m, n, u, v) &= \frac{1}{MN} e^{i2\pi (\frac{mu}{M} + \frac{nv}{N})} = \frac{1}{M} e^{i2\pi \frac{mu}{M}} \frac{1}{N} e^{i2\pi \frac{nv}{N}} = \psi_M(m, u)\psi_N(n, v) \end{split}$$

When the kernels are separable, the transform and inverse tranform can be compactly written in matrix form:

$$\mathcal{J} = \phi_M \mathcal{I} \phi_N^T$$
 and $\mathcal{I} = \psi_M \mathcal{J} \psi_N^T = \phi_M^{-1} \mathcal{J} \phi_N^{-T}$

The transform kernels are said to be separable if

$$\phi(m, n, u, v) = \phi_M(m, u)\phi_N(n, v)$$

$$\psi(m, n, u, v) = \psi_M(m, u)\psi_N(n, v)$$

Ex: 2D discrete Fourier transform kernels:

$$\begin{split} \phi(m, n, u, v) &= e^{-i2\pi (\frac{mu}{M} + \frac{nv}{N})} = e^{-i2\pi \frac{mu}{M}} e^{-i2\pi \frac{nv}{M}} = \phi_M(m, u)\phi_N(n, v) \\ \psi(m, n, u, v) &= \frac{1}{MN} e^{i2\pi (\frac{mu}{M} + \frac{nv}{N})} = \frac{1}{M} e^{i2\pi \frac{mu}{M}} \frac{1}{N} e^{i2\pi \frac{nv}{N}} = \psi_M(m, u)\psi_N(n, v) \end{split}$$

When the kernels are separable, the transform and inverse tranform can be compactly written in matrix form:

$$\mathcal{J} = \phi_M \mathcal{I} \phi_N^T$$
 and $\mathcal{I} = \psi_M \mathcal{J} \psi_N^T = \phi_M^{-1} \mathcal{J} \phi_N^{-T}$

When M = N, the transform kernels are said to be *symmetric* is they are functionnally equivalent (*i.e.* $\phi(m, n, u, v) = \phi(m, u)\phi(n, v)$ and $\psi(m, n, u, v) = \psi(m, u)\psi(n, v)$), and

$$\mathcal{J} = \phi \mathcal{I} \phi^{\mathcal{T}}$$
 and $\mathcal{I} = \phi^{-1} \mathcal{J} \phi^{-\mathcal{T}}$

Bases \mathcal{E} and \mathcal{B} are obviously linked through the mapping Φ , but how?

Guillaume TOCHON (LRDE)

CODO - Lossy Compresison

The Walsh-Hadamard transform

- $\rightarrow\,$ Named after Joseph Walsh and Jacques Hadamard.
- \rightarrow Only works for square images of size $2^p \times 2^p$.
- $\rightarrow\,$ Can be implemented very efficiently (only requires addition and subtraction).

Joseph Walsh

Jacques Hadamard

The Walsh-Hadamard transform

- $\rightarrow\,$ Named after Joseph Walsh and Jacques Hadamard.
- \rightarrow Only works for square images of size $2^p \times 2^p$.
- $\rightarrow\,$ Can be implemented very efficiently (only requires addition and subtraction).

Joseph Walsh

Jacques Hadamard

Walsh-Hadamard transform

Assuming that $N = 2^p$, a $N \times N$ image \mathcal{I} and its Walsh-Hadamard transform \mathcal{J}_H are linked by

$$\mathcal{J}_{H}(u,v) = \frac{1}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} (-1)^{\sum_{k=0}^{p-1} m_{k} u_{k} + n_{k} v_{k}} \mathcal{I}(m,n)$$

$$\mathcal{I}(m,n) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} (-1)^{\sum_{k=0}^{p-1} u_k m_k + v_k n_k} \mathcal{J}_H(u,v)$$

where
$$\begin{array}{l} m = \langle m_{p-1}, \ldots, m_1, m_0 \rangle_2 = 2^{p-1} m_{p-1} + \cdots + 2m_1 + m_0 \\ n = \langle n_{p-1}, \ldots, n_1, n_0 \rangle_2 = 2^{p-1} n_{p-1} + \cdots + 2n_1 + n_0 \\ u = \langle u_{p-1}, \ldots, u_1, u_0 \rangle_2 = 2^{p-1} u_{p-1} + \cdots + 2u_1 + u_0 \\ v = \langle v_{p-1}, \ldots, v_1, v_0 \rangle_2 = 2^{p-1} v_{p-1} + \cdots + 2v_1 + v_0 \end{array}$$

are the base-2 representation of the indices m, n, u, v.

The Walsh-Hadamard transform $\mathcal{J}_{\mathbf{H}}$ (also called *Walsh-Hadamard spectrum*) of a $N \times N$ image \mathcal{I} can be more conveniently defined thanks to the WHT kernel matrix \mathbf{H}_N whose $(j, k)^{\text{th}}$ entry is

$$\mathbf{H}_{N}(j,k) = rac{1}{\sqrt{N}} (-1)^{\sum_{n=0}^{p-1} j_{n}k_{n}}$$

The Walsh-Hadamard transform $\mathcal{J}_{\mathbf{H}}$ (also called *Walsh-Hadamard spectrum*) of a $N \times N$ image \mathcal{I} can be more conveniently defined thanks to the WHT kernel matrix \mathbf{H}_N whose $(j, k)^{\text{th}}$ entry is

The Walsh-Hadamard transform $\mathcal{J}_{\mathbf{H}}$ (also called *Walsh-Hadamard spectrum*) of a $N \times N$ image \mathcal{I} can be more conveniently defined thanks to the WHT kernel matrix \mathbf{H}_N whose $(j, k)^{\text{th}}$ entry is

$$\mathsf{H}_{\mathsf{N}}(j,k) = \frac{1}{\sqrt{\mathsf{N}}} (-1)^{\sum_{n=0}^{p-1} j_n k_n}$$

And more generally

$$\forall N = 2^{p}, \ \mathbf{H}_{2N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf{H}_{N} & \mathbf{H}_{N} \\ \mathbf{H}_{N} & -\mathbf{H}_{N} \end{bmatrix}$$

The Walsh-Hadamard transform $\mathcal{J}_{\mathbf{H}}$ (also called *Walsh-Hadamard spectrum*) of a $N \times N$ image \mathcal{I} can be more conveniently defined thanks to the WHT kernel matrix \mathbf{H}_N whose $(j, k)^{\text{th}}$ entry is

$$\mathbf{H}_{N}(j,k) = \frac{1}{\sqrt{N}}(-1)^{\sum_{n=0}^{p-1} j_{n}k_{n}}$$

And more generally

$$\forall N = 2^{p}, \ \mathbf{H}_{2N} = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} \mathbf{H}_{N} & \mathbf{H}_{N} \\ \mathbf{H}_{N} & -\mathbf{H}_{N} \end{array} \right]$$

Hadamard matrices are symmetric $(\mathbf{H}_N = \mathbf{H}_N^T)$ and orthogonal $(\mathbf{H}_N^{-1} = \mathbf{H}_N^T)$.

$$\Rightarrow \text{ All put together } \begin{cases} \mathcal{J}_{H} = H_{N}\mathcal{I}H_{N} \\ \mathcal{I} = H_{N}\mathcal{J}_{H}H_{N} \end{cases}$$

Guillaume TOCHON (LRDE)

The Walsh-Hadamard transform for N = 8

The Walsh-Hadamard transform can be considered as a kind of Fourier transform \rightarrow suited to perform the frequency analysis of an image.

The Walsh-Hadamard transform for N = 8

The Walsh-Hadamard transform can be considered as a kind of Fourier transform \rightarrow suited to perform the frequency analysis of an image.

For that, we must rearrange the rows of H_N in increasing number of sign changes.
The Walsh-Hadamard transform can be considered as a kind of Fourier transform \rightarrow suited to perform the frequency analysis of an image.

The Walsh-Hadamard transform can be considered as a kind of Fourier transform \rightarrow suited to perform the frequency analysis of an image.

The Walsh-Hadamard transform can be considered as a kind of Fourier transform \rightarrow suited to perform the frequency analysis of an image.

The Walsh-Hadamard transform can be considered as a kind of Fourier transform \rightarrow suited to perform the frequency analysis of an image.

Walsh-Hadamard basis images for N = 8

Walsh-Hadamard basis images \mathcal{B}_{uv} for N = 8. $\Box = 1$, and $\blacksquare = -1$. The origin of each basis image is at its top-left corner.

... finally!

Let's take this 8 \times 8 image $\mathcal{I} =$ \mathbf{A} and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

... finally!

Let's take this 8 × 8 image $\mathcal{I} = \square$ and compute its Walsh-Hadamard spectrum by $\mathcal{J}_H = H_8 \mathcal{I} H_8$.

 $\Rightarrow \mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{bmatrix} 8291 & -1 & 1905 & -3 & 1827 & 3 & 265 & 1 \\ 291 & 3 & 1801 & 1 & -925 & -1 & -1167 & -3 \\ 559 & -1 & -1215 & 1 & -1197 & -1 & 1853 & 1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 & 321 & 1 \\ 339 & -1 & 317 & 1 & -977 & -1 & 321 & 1 \\ 559 & -1 & -1215 & 1 & 339 & -1 & 317 & 1 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 & -3 \\ 611 & -1 & 369 & -3 & -1245 & 3 & 265 & 1 \end{bmatrix}$

... finally!

JH.

Let's take this 8×8 image $\mathcal{I} = \square$ and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathsf{H}} = \mathsf{H}_{8}\mathcal{I}\mathsf{H}_{8}$.

1905 -3 3 265 1827 1 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{bmatrix} 2.391 & -1 & 1903 & -3 & 1021 & 3 & 203 \\ 2.91 & 3 & 1801 & 1 & -925 & -1 & -1167 \\ 559 & -1 & -1215 & 1 & -1197 & -1 & 1853 \\ -1197 & -1 & 1853 & 1 & -977 & -1 & 321 \\ 339 & -1 & 317 & 1 & -977 & -1 & 321 \\ 559 & -1 & -1215 & 1 & 339 & -1 & 317 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 \\ 611 & -1 & 369 & -3 & -1245 & 3 & 265 \end{bmatrix}$ -3 1 1 1 -3 1 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$ ightarrow approximate $ilde{\mathcal{I}}$ using the leading coefficients of

... finally!

Let's take this 8 \times 8 image $\mathcal{I}=$ \blacksquare and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 —3

1827

3

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of JH.

Guillaume TOCHON (LRDE)

 \mathcal{T}_{\cdot}

265

1

1

... finally!

Let's take this 8 \times 8 image $\mathcal{I}=$ \blacksquare and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 -3

1827

3

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of JH.

Guillaume TOCHON (LRDE)

265

1

1

... finally!

by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 0.591 & -1 & 1503 & -3 & 1021 & 0 \\ 291 & 3 & 1801 & 1 & -925 & -1 & -1167 \\ 559 & -1 & -1215 & 1 & -1197 & -1 & 1853 \\ -1197 & -1 & 1853 & 1 & -977 & -1 & 321 \\ 339 & -1 & 317 & 1 & -977 & -1 & 321 \\ 559 & -1 & -1215 & 1 & 339 & -1 & 317 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 \\ \end{vmatrix}$ 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 -3

1827

3

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of JH.

 \mathcal{T}_{\cdot}

265

1

1

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum

... finally!

Let's take this 8×8 image $\mathcal{I} = \square$ and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathsf{H}} = \mathsf{H}_{8}\mathcal{I}\mathsf{H}_{8}$.

8291

 $\mathcal{J}_{H} = \frac{1}{8} \begin{bmatrix} 291 & 3 & 1801 & 1 & -925 & -1 & -1167 \\ 559 & -1 & -1215 & 1 & -1197 & -1 & 1853 \\ -1197 & -1 & 1853 & 1 & -977 & -1 & 321 \\ 339 & -1 & 317 & 1 & -977 & -1 & 321 \\ 559 & -1 & -1215 & 1 & 339 & -1 & 317 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 \\ 611 & -1 & 369 & -3 & -1245 & 3 & 265 \end{bmatrix}$ Theory gives $\mathcal{I} = \sum_{v=0}^{7} \sum_{v=0}^{7} \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}.$

1905 -3

1827

3

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of $\mathcal{J}_{\text{H}}.$

Ŗ

265

1

1

-3

... finally!

by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

 $^{-1}$ -1167291 1801 1 -925 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 251 & 0 & 1 & 1 & 0 & 1 \\ 559 & -1 & -1215 & 1 & -1197 & -1 & 1853 \\ -1197 & -1 & 1853 & 1 & -977 & -1 & 321 \\ 339 & -1 & 317 & 1 & -977 & -1 & 321 \\ 559 & -1 & -1215 & 1 & 339 & -1 & 317 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 \end{vmatrix}$ 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 -3

1827

3

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of JH.

 \mathcal{T}_{\cdot}

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum

Guillaume TOCHON (LRDE)

265

1

1

-3

... finally!

Let's take this 8×8 image $\mathcal{I} = \square$ and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathsf{H}} = \mathsf{H}_{8}\mathcal{I}\mathsf{H}_{8}$.

8291

 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{bmatrix} 0.591 & -1 & 1500 & -3 & 1201 & 3 & 1207 \\ 291 & 3 & 1801 & 1 & -925 & -1 & -1167 \\ 559 & -1 & -1215 & 1 & -1197 & -1 & 1853 \\ -1197 & -1 & 1853 & 1 & -977 & -1 & 321 \\ 339 & -1 & 317 & 1 & -977 & -1 & 321 \\ 559 & -1 & -1215 & 1 & 339 & -1 & 317 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 \\ 611 & -1 & 369 & -3 & -1245 & 3 & 265 \end{bmatrix}$ Theory gives $\mathcal{I} = \sum_{u=0}^{7} \sum_{v=0}^{7} \mathcal{J}_{\mathsf{H}}(u, v) \mathcal{B}_{uv}.$

1905 – 3

1827

3

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of $\mathcal{J}_{\text{H}}.$

265

1

1

... finally!

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 0.291 & -1 & 1905 & -3 & 1027 & 53 \\ 291 & 3 & 1801 & 1 & -925 & -1 \\ 295 & -1 & -1215 & 1 & -1197 & -1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 \\ 339 & -1 & 317 & 1 & -977 & -1 \\ 559 & -1 & -1215 & 1 & 339 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \end{vmatrix}$ 1853 321 321 317 369 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 – 3

1827

3

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of

JH.

265

1

-3

1

-1167

1 -31 1 1

... finally!

by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 0.591 & -1 & 1500 & -3 & 1001 \\ 291 & 3 & 1801 & 1 & -925 & -1 & -1167 \\ 559 & -1 & -1215 & 1 & -1197 & -1 & 1853 \\ -1197 & -1 & 1853 & 1 & -977 & -1 & 321 \\ 339 & -1 & 317 & 1 & -977 & -1 & 321 \\ 559 & -1 & -1215 & 1 & 339 & -1 & 317 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 \\ \end{vmatrix}$ 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 – 3

1827

3

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of

JH.

265

1

1

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum

... finally!

Let's take this 8×8 image $\mathcal{I} = \square$ and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathsf{H}} = \mathsf{H}_{8}\mathcal{I}\mathsf{H}_{8}$.

8291

 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{bmatrix} 0.591 & -1 & 1500 & -3 & 1201 & 3 & 1207 \\ 291 & 3 & 1801 & 1 & -925 & -1 & -1167 \\ 559 & -1 & -1215 & 1 & -1197 & -1 & 1853 \\ -1197 & -1 & 1853 & 1 & -977 & -1 & 321 \\ 339 & -1 & 317 & 1 & -977 & -1 & 321 \\ 559 & -1 & -1215 & 1 & 339 & -1 & 317 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 \\ 611 & -1 & 369 & -3 & -1245 & 3 & 265 \end{bmatrix}$ Theory gives $\mathcal{I} = \sum_{u=0}^{7} \sum_{v=0}^{7} \mathcal{J}_{\mathsf{H}}(u, v) \mathcal{B}_{uv}.$

1905 – 3

1827

3

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of $\mathcal{J}_{\text{H}}.$

A

265

1

1

 $\begin{array}{r}
 -3 \\
 1 \\
 1 \\
 1 \\
 -3
\end{array}$

... finally!

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

291

 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 5.71 & 5.100 & 1 & -1.00 & -1 \\ 559 & -1 & -1215 & 1 & -1197 & -1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 \\ 339 & -1 & 317 & 1 & -977 & -1 \\ 559 & -1 & -1215 & 1 & 339 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \end{vmatrix}$ 321 321 317 369 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 – 3

1801 1

1827

-925

3

 $^{-1}$

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of

JH.

265

-1167

1853

1

1

1

1

1

-3

1

-3

... finally!

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

291

1801 1 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 5.71 & 5.120 & 1 & 1 & 120 & 1 \\ 559 & -1 & -1215 & 1 & -1197 & -1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 \\ 339 & -1 & 317 & 1 & -977 & -1 \\ 559 & -1 & -1215 & 1 & 339 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \end{vmatrix}$ 1853 321 321 317 369 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 -3

1827

-925

3

 $^{-1}$

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of

JH.

265

-1167

1

1

1

1

1

-3

1

-3

... finally!

by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 0.291 & -1 & 1905 & -3 & 1627 & 53 \\ 291 & 3 & 1801 & 1 & -925 & -1 \\ 2959 & -1 & -1215 & 1 & -1197 & -1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 \\ 339 & -1 & 317 & 1 & -977 & -1 \\ 559 & -1 & -1215 & 1 & 339 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \end{vmatrix}$ 321 317 369 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 -3

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of JH.

1827

3

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum

Guillaume TOCHON (LRDE)

 \mathcal{T}_{\cdot}

265

-1167

1853

321 1

1

1

1

1

-3

1

-3

... finally!

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 531 & 51 & 101 & 1 & 107 & 1 \\ 559 & -1 & -1215 & 1 & -1197 & -1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 \\ 339 & -1 & 317 & 1 & -977 & -1 \\ 559 & -1 & -1215 & 1 & 339 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \end{vmatrix}$

369 -3 -1245 3 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$ \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of

1905 -3

1801 1

1827

-925

 $^{-1}$

JH.

8291

291

611

265

-1167

1853

321 1

321 1

317 1

369 -3

265

1

1

1

-3

... finally!

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

291

 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 531 & 51 & 101 & 1 & -1197 & -1 \\ 559 & -1 & -1215 & 1 & -1197 & -1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 \\ 339 & -1 & 317 & 1 & -977 & -1 \\ 559 & -1 & -1215 & 1 & 339 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \end{vmatrix}$ 369 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 -3

1801 1

1827

-925

 $^{-1}$

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of JH.

 \mathcal{T}_{\cdot}

265

-1167

1853

321

321

317

-3

1

1 -31 1 1 1

... finally!

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

 $^{-1}$ 291 1801 1 -925-1167 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 511 & 512 & 1 & 1 & 1 & 1 & 1 \\ 559 & -1 & -1215 & 1 & -1197 & -1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 \\ 339 & -1 & 317 & 1 & -977 & -1 \\ 559 & -1 & -1215 & 1 & 339 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \end{vmatrix}$ 1853 321 321 317 369 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 -3

1827

3

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of

JH.

265

1

1

1

1

1

1

-3

-3

... finally!

Let's take this 8×8 image $\mathcal{I} = \square$ and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathsf{H}} = \mathsf{H}_{8}\mathcal{I}\mathsf{H}_{8}$.

8291

-925 $^{-1}$ 291 1801 1 -1167 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 531 & 51 & 101 & 1 & -1197 & -1 \\ 559 & -1 & -1215 & 1 & -1197 & -1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 \\ 339 & -1 & 317 & 1 & -977 & -1 \\ 559 & -1 & -1215 & 1 & 339 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \end{vmatrix}$ 1853 321 321 317 369 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 -3

1827

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of

 $\mathcal{J}_{\mathbf{H}}$

265

1

1

1

1

1

-3

1

-3

... finally!

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

8291

291

1801 1 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 531 & 51 & 101 & 1 & 107 & -1 \\ 559 & -1 & -1215 & 1 & -1197 & -1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 \\ 339 & -1 & 317 & 1 & -977 & -1 \\ 559 & -1 & -1215 & 1 & 339 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \end{vmatrix}$ 1853 321 321 317 369 369 <u>-3</u> <u>-1245</u> 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 -3

1827

-925 $^{-1}$

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of

JH.

265

-1167

1

1

1

1

1

1

-3

-3

... finally!

Let's take this 8×8 image $\mathcal{I} = \square$ and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathsf{H}} = \mathsf{H}_{8}\mathcal{I}\mathsf{H}_{8}$.

8291

 $^{-1}$ 291 1801 1 -925-1167 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 531 & 51 & 101 & 1 & 107 & 1 \\ 559 & -1 & -1215 & 1 & -1197 & -1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 \\ 339 & -1 & 317 & 1 & -977 & -1 \\ 559 & -1 & -1215 & 1 & 339 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \end{vmatrix}$ 1853 321 321 317 369 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 -3

1827

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of \mathcal{I}

 $\mathcal{J}_{\mathbf{H}}$

265

1

1

1

1

1

1

-3

-3

... finally!

Let's take this 8×8 image $\mathcal{I} = \square$ and compute its Walsh-Hadamard spectrum by $\mathcal{J}_{\mathsf{H}} = \mathsf{H}_{8}\mathcal{I}\mathsf{H}_{8}$.

1905

8291

 $^{-1}$ 291 1801 1 -925-1167 $\mathcal{J}_{\mathsf{H}} = \frac{1}{8} \begin{vmatrix} 521 & 51 & 100 & 1 & 100 & 1 \\ 559 & -1 & -1215 & 1 & -1197 & -1 \\ -1197 & -1 & 1853 & 1 & -977 & -1 \\ 339 & -1 & 317 & 1 & -977 & -1 \\ 559 & -1 & -1215 & 1 & 339 & -1 \\ 291 & 3 & -1271 & 1 & 611 & -1 \end{vmatrix}$ 1853 321 321 317 369 369 -3 -1245 3 611 265 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

-3

1827

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of \mathcal{I}

 $\mathcal{J}_{\mathbf{H}}$

265

1

1

1

1

1

-3

1

-3

... finally!

by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

1905 -3 $\mathcal{J}_{\mathbf{H}} = \frac{1}{8} \begin{bmatrix} 0.991 & -1 & 1900 & -3 & 1001 & 0 \\ 291 & 3 & 1801 & 1 & -925 & -1 & -1167 \\ 559 & -1 & -1215 & 1 & -1197 & -1 & 1853 \\ -1197 & -1 & 1853 & 1 & -977 & -1 & 321 \\ 339 & -1 & 317 & 1 & -977 & -1 & 321 \\ 559 & -1 & -1215 & 1 & 339 & -1 & 317 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & 3 & -1271 & -1271 & -1271 & -1271 \\ 201 & -1271 & -1271 &$ -1 369 -3 -1245 3 611 291 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of

JH.

291

1

1

1827

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum

... finally!

by $\mathcal{J}_{\mathbf{H}} = \mathbf{H}_{8}\mathcal{I}\mathbf{H}_{8}$.

 $\mathcal{J}_{\text{H}} = \frac{1}{8} \begin{bmatrix} 0.571 & 1 & 1750 & 3 & 1601 & 3 & 1601 \\ 291 & 3 & 1801 & 1 & -925 & -1 & -1167 \\ 559 & -1 & -1215 & 1 & -1197 & -1 & 1853 \\ -1197 & -1 & 1853 & 1 & -977 & -1 & 321 \\ 339 & -1 & 317 & 1 & -977 & -1 & 321 \\ 559 & -1 & -1215 & 1 & 339 & -1 & 317 \\ 291 & 3 & -1271 & 1 & 611 & -1 & 369 \\ 611 & -1 & 369 & -3 & -1245 & 3 & 291 \end{bmatrix}$ -31 1 7 7 Theory gives $\mathcal{I} = \sum \sum \mathcal{J}_{H}(u, v) \mathcal{B}_{uv}$. $\mu = 0 \ \nu = 0$

1905 -3

1827

 \rightarrow approximate $\tilde{\mathcal{I}}$ using the leading coefficients of

JH.

291

1

1 1

-3 1

Let's take this 8 \times 8 image $\mathcal{I} =$ \square and compute its Walsh-Hadamard spectrum

Summary on the Walsh-Hadamard transform

The Walsh-Hadamard transform was used in practice in the 60's in several space missions to compress images of:

- \rightarrow the far side of the moon (*Luna 3* Soviet probe).
- \rightarrow Jupiter, Saturn, Uranus, Neptune and their moons (*Mariner* and *Voyager* space probes).

Summary on the Walsh-Hadamard transform

The Walsh-Hadamard transform was used in practice in the 60's in several space missions to compress images of:

- \rightarrow the far side of the moon (*Luna 3* Soviet probe).
- \rightarrow Jupiter, Saturn, Uranus, Neptune and their moons (Mariner and Voyager space probes).

- \checkmark Suited to perform the frequency analysis of an image.
- \checkmark Very fast, only requires addition and subtraction.
- X Image dimensions must be a power of 2.
- ✓ Very efficient FFT-like implementation possible.
- $\pmb{\times}$ Not so good to compact the image energy in a very few coefficients.

The discrete Fourier transform $_{\rm In\ 1D}$

In the continuous setting.

If $f : \mathbb{R} \to \mathbb{R}, t \mapsto f(t)$ is a continuous and integrable function, and $\hat{f} : \mathbb{R} \to \mathbb{C}$, $\nu \mapsto \hat{f}(\nu)$ is its Fourier transform, then f and \hat{f} are linked by:

$$\hat{f}(
u)=\int_{-\infty}^{+\infty}f(t)e^{-i2\pi
u t}dt$$
 and $f(t)=\int_{-\infty}^{+\infty}\hat{f}(
u)e^{i2\pi
u t}d
u$

The discrete Fourier transform $_{\rm In\ 1D}$

In the continuous setting.

If $f : \mathbb{R} \to \mathbb{R}, t \mapsto f(t)$ is a continuous and integrable function, and $\hat{f} : \mathbb{R} \to \mathbb{C}$, $\nu \mapsto \hat{f}(\nu)$ is its Fourier transform, then f and \hat{f} are linked by:

$$\hat{f}(
u)=\int_{-\infty}^{+\infty}f(t)e^{-i2\pi
u t}dt$$
 and $f(t)=\int_{-\infty}^{+\infty}\hat{f}(
u)e^{i2\pi
u t}d
u$

In the discrete setting.

Let $f = \{f(0), f(1), \dots, f(M-1)\}$ be a discrete function of length M. Its discrete Fourier transform is the complex-valued function $\hat{f} = \{\hat{f}(0), \hat{f}(1), \dots, \hat{f}(M-1)\}$ of length M defined as:

$$\hat{f}(u) = \sum_{m=0}^{M-1} f(m) e^{-i2\pi \frac{mu}{M}}$$
 and $f(m) = \frac{1}{M} \sum_{u=0}^{M-1} \hat{f}(u) e^{i2\pi \frac{mu}{M}}$

An alternative definition uses a $\frac{1}{\sqrt{M}}$ normalizing coefficient in front of the forward and inverse definitions.

The discrete Fourier transform $_{\mbox{\sc ln 2D}}$

Straightforward extension from 1D to 2D:

If $\mathcal{I} = \mathcal{I}(m, n)$ is a $M \times N$ image, then its 2D discrete Fourier transform \mathcal{J}_{F} is the $M \times N$ complex matrix defined as:

$$\mathcal{J}_{\mathsf{F}}(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \mathcal{I}(m,n) e^{-i2\pi \left(\frac{mu}{M} + \frac{nv}{N}\right)}$$

 \rightarrow The forward DFT kernel is $\phi(m, n, u, v) = e^{-i2\pi(rac{mu}{M} + rac{nv}{N})}$

The discrete Fourier transform $\ln 2D$

Straightforward extension from 1D to 2D:

If $\mathcal{I} = \mathcal{I}(m, n)$ is a $M \times N$ image, then its 2D discrete Fourier transform \mathcal{J}_{F} is the $M \times N$ complex matrix defined as:

$$\mathcal{J}_{\mathsf{F}}(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \mathcal{I}(m,n) e^{-i2\pi \left(\frac{mu}{M} + \frac{nv}{N}\right)}$$

ightarrow The forward DFT kernel is $\phi(m, n, u, v) = e^{-i2\pi(rac{mu}{M} + rac{nv}{N})}$

The image ${\mathcal I}$ can be retrieved from ${\mathcal J}_F$ by the 2D inverse discrete Fourier transform:

$$\mathcal{I}(m,n) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \mathcal{J}_{\mathsf{F}}(u,v) e^{i2\pi \left(\frac{mu}{M} + \frac{nv}{N}\right)}$$

ightarrow The inverse DFT kernel is $\psi(m,n,u,v) = rac{1}{MN} e^{i2\pi (rac{mu}{M}+rac{nv}{N})}$

The discrete Fourier transform $\ln 2D$

Straightforward extension from 1D to 2D:

If $\mathcal{I} = \mathcal{I}(m, n)$ is a $M \times N$ image, then its 2D discrete Fourier transform \mathcal{J}_{F} is the $M \times N$ complex matrix defined as:

$$\mathcal{J}_{\mathsf{F}}(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \mathcal{I}(m,n) e^{-i2\pi \left(\frac{mu}{M} + \frac{nv}{N}\right)}$$

ightarrow The forward DFT kernel is $\phi(m, n, u, v) = e^{-i2\pi(rac{mu}{M} + rac{nv}{N})}$

The image ${\mathcal I}$ can be retrieved from ${\mathcal J}_F$ by the 2D inverse discrete Fourier transform:

$$\mathcal{I}(m,n) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \mathcal{J}_{\mathsf{F}}(u,v) e^{i2\pi \left(\frac{mu}{M} + \frac{nv}{N}\right)}$$

ightarrow The inverse DFT kernel is $\psi(\textit{m},\textit{n},\textit{u},\textit{v}) = rac{1}{MN} e^{i2\pi(rac{mu}{M}+rac{nv}{N})}$

 $\Rightarrow \text{ Forward and inverse DFT kernels are separable.} \\ \Rightarrow \mathcal{J}_{\mathsf{F}} = \mathsf{F}_{M} \mathcal{I} \mathsf{F}_{N}^{\mathsf{T}} \text{ and } \mathcal{I} = \mathsf{F}_{M}^{-1} \mathcal{J}_{\mathsf{F}} \mathsf{F}_{N}^{-\mathsf{T}}.$

Guillaume TOCHON (LRDE)

For a $N \times N$ image, the (j, k)-th entry of the Fourier kernel matrix \mathbf{F}_N is $\mathbf{F}_N(j, k) = e^{-i2\pi \frac{jk}{N}}$

For a $N \times N$ image, the (j, k)-th entry of the Fourier kernel matrix \mathbf{F}_N is $\mathbf{F}_N(j, k) = \left(e^{-j\frac{2\pi}{N}}\right)^{jk}$

For a $N \times N$ image, the (j, k)-th entry of the Fourier kernel matrix \mathbf{F}_N is $\mathbf{F}_N(j, k) = \omega_N^{jk}$ with $\omega_N = e^{-i\frac{2\pi}{N}}$ is a primitive Nth root of unity.

For a $N \times N$ image, the (j, k)-th entry of the Fourier kernel matrix \mathbf{F}_N is $\mathbf{F}_N(j, k) = \omega_N^{jk}$ with $\omega_N = e^{-i\frac{2\pi}{N}}$ is a primitive Nth root of unity.

$$\Rightarrow \mathbf{F}_{N} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_{N} & \omega_{N}^{2} & \omega_{N}^{3} & \dots & \omega_{N}^{N-1} \\ 1 & \omega_{N}^{2} & \omega_{N}^{4} & \omega_{N}^{6} & \dots & \omega_{N}^{2(N-1)} \\ 1 & \omega_{N}^{3} & \omega_{N}^{6} & \omega_{N}^{9} & \dots & \omega_{N}^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{N}^{N-1} & \omega_{N}^{2(N-1)} & \omega_{N}^{3(N-1)} & \dots & \omega_{N}^{(N-1)(N-1)} \end{bmatrix}$$

For a $N \times N$ image, the (j, k)-th entry of the Fourier kernel matrix \mathbf{F}_N is $\mathbf{F}_N(j, k) = \omega_N^{jk}$ with $\omega_N = e^{-i\frac{2\pi}{N}}$ is a primitive Nth root of unity.

$$\Rightarrow \mathbf{F}_{N} = \begin{vmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_{N} & \omega_{N}^{2} & \omega_{N}^{3} & \dots & \omega_{N}^{N-1} \\ 1 & \omega_{N}^{2} & \omega_{N}^{4} & \omega_{N}^{6} & \dots & \omega_{N}^{2(N-1)} \\ 1 & \omega_{N}^{3} & \omega_{N}^{6} & \omega_{N}^{9} & \dots & \omega_{N}^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{N}^{N-1} & \omega_{N}^{2(N-1)} & \omega_{N}^{3(N-1)} & \dots & \omega_{N}^{(N-1)(N-1)} \end{vmatrix}$$

Clearly, $\mathbf{F}_N = \mathbf{F}_N^T \Rightarrow$ Fourier kernel matrices are symmetric. But it can also be shown that $\mathbf{F}_N^{\dagger} \mathbf{F}_N = \mathbf{F}_N \mathbf{F}_N^{\dagger} = N \mathbf{I}_N \Rightarrow \mathbf{F}_N^{-1} = \frac{1}{N} \mathbf{F}_N^{\dagger}$ with $\mathbf{F}_N^{\dagger} = (\overline{\mathbf{F}_N})^T = \overline{\mathbf{F}_N^T}$ being the conjugate transpose of \mathbf{F}_N .

For a $N \times N$ image, the (j, k)-th entry of the Fourier kernel matrix \mathbf{F}_N is $\mathbf{F}_N(j, k) = \omega_N^{jk}$ with $\omega_N = e^{-i\frac{2\pi}{N}}$ is a primitive Nth root of unity.

$$\Rightarrow \mathbf{F}_{N} = \begin{vmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_{N} & \omega_{N}^{2} & \omega_{N}^{3} & \dots & \omega_{N}^{N-1} \\ 1 & \omega_{N}^{2} & \omega_{N}^{4} & \omega_{N}^{6} & \dots & \omega_{N}^{2(N-1)} \\ 1 & \omega_{N}^{3} & \omega_{N}^{6} & \omega_{N}^{9} & \dots & \omega_{N}^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{N}^{N-1} & \omega_{N}^{2(N-1)} & \omega_{N}^{3(N-1)} & \dots & \omega_{N}^{(N-1)(N-1)} \end{vmatrix}$$

Clearly, $\mathbf{F}_N = \mathbf{F}_N^T \Rightarrow$ Fourier kernel matrices are symmetric. But it can also be shown that $\mathbf{F}_N^{\dagger} \mathbf{F}_N = \mathbf{F}_N \mathbf{F}_N^{\dagger} = N \mathbf{I}_N \Rightarrow \mathbf{F}_N^{-1} = \frac{1}{N} \mathbf{F}_N^{\dagger}$ with $\mathbf{F}_N^{\dagger} = (\overline{\mathbf{F}}_N)^T = \overline{\mathbf{F}}_N^T$ being the conjugate transpose of \mathbf{F}_N . At the end of the day, the DFT matrix $\mathcal{J}_{\mathbf{F}}$ of a $N \times N$ image \mathcal{I} is given by $\mathcal{J}_{\mathbf{F}} = \mathbf{F}_N \mathcal{I} \mathbf{F}_N$ and the inverse DFT is $\mathcal{I} = \frac{1}{N^2} \mathbf{F}_N^{\dagger} \mathcal{J}_{\mathbf{F}} \mathbf{F}_N^{\dagger}$

DFT basis images for N = 8

Real and imaginary parts of DFT basis images \mathcal{B}_{uv} for N = 8. $\Box = \frac{1}{64} = -\blacksquare$. The origin of each basis image is at its top-left corner.

Let's take again our 8×8 image $\mathcal{I} = \square$ and compute its DFT spectrum by $\mathcal{J}_{F} = F_{8}\mathcal{I}F_{8}^{T}$.

Let's take again our 8×8 image $\mathcal{I} = \square$ and compute its DFT spectrum by $\mathcal{J}_{F} = F_{8}\mathcal{I}F_{8}^{T}$.

Let's take again our 8×8 image $\mathcal{I} = \square$ and compute its DFT spectrum by $\mathcal{J}_{\mathbf{F}} = \mathbf{F}_8 \mathcal{I} \mathbf{F}_8^T$.

Let's take again our 8×8 image $\mathcal{I} = \square$ and compute its DFT spectrum by $\mathcal{J}_{\mathbf{F}} = \mathbf{F}_8 \mathcal{I} \mathbf{F}_8^{\mathcal{T}}$.

The DFT is widely used for general spectral analysis applications. But it suffers from two drawbacks for image compression purposes:

- Complex-valued transformed \rightarrow requires double memory for storage.
- Energy compaction is not optimal (spread in both the real and imaginary coefficients of the resulting spectrum).

The discrete cosine transform

- → Published in 1974 by N. Ahmed, T. Natarajan, and K. R. Rao (Discrete cosine transform. *IEEE transactions on Computers*, vol. 100, no 1, pp. 90–93).
- \rightarrow Real-valued transform, but strongly related to the DFT. (DCT(*signal*) \equiv DFT(*symmetrized signal*)).
- \rightarrow Several definitions (*types*) exist, depending on the chosen boundary conditions.

Type-II DCT and its inverse transform (Type-III DCT)
A
$$M \times N$$
 image \mathcal{I} and its $M \times N$ DCT spectrum $\mathcal{J}_{\mathbf{D}}$ are linked by:

$$\mathcal{J}_{\mathbf{D}}(u, v) = \alpha(u)\alpha(v) \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \mathcal{I}(m, n) \cos\left(\frac{\pi(2m+1)u}{2M}\right) \cos\left(\frac{\pi(2n+1)v}{2N}\right)$$

$$\mathcal{I}(m, n) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \alpha(u)\alpha(v)\mathcal{J}_{\mathbf{D}}(u, v) \cos\left(\frac{\pi(2m+1)u}{2M}\right) \cos\left(\frac{\pi(2n+1)v}{2N}\right)$$

with $\alpha(u) = \begin{cases} \sqrt{\frac{1}{M}} & \text{if } u = 0\\ \sqrt{\frac{2}{M}} & \text{if } u = 1, \dots, M-1 \end{cases}$, $\alpha(v) = \begin{cases} \sqrt{\frac{1}{N}} & \text{if } v = 0\\ \sqrt{\frac{2}{N}} & \text{if } v = 1, \dots, N-1 \end{cases}$

Take some *M*-points real signal sequence $\{f(0), \ldots, f(M-1)\}$

Take some *M*-points real signal sequence $\{f(0), \ldots, f(M-1)\}$

1. Create a symmetric 2*M*-point sequence $f_2(m) = \begin{cases} f(m) & (0 \le m \le M - 1) \\ f(-m-1) & (-M \le m < -1) \end{cases}$.

Take some *M*-points real signal sequence $\{f(0), \ldots, f(M-1)\}$

- 1. Create a symmetric 2*M*-point sequence $f_2(m) = \begin{cases} f(m) & (0 \le m \le M 1) \\ f(-m-1) & (-M \le m \le -1) \end{cases}$.
- 2. Right-shift the resulting sequence by $\frac{1}{2}$.

Take some *M*-points real signal sequence $\{f(0), \ldots, f(M-1)\}$

- 1. Create a symmetric 2*M*-point sequence $f_2(m) = \begin{cases} f(m) & (0 \le m \le M 1) \\ f(-m-1) & (-M \le m \le -1) \end{cases}$.
- 2. Right-shift the resulting sequence by $\frac{1}{2}$.

Then $DCT(f(m)) = DFT(f_2(m-\frac{1}{2})).$

Take some *M*-points real signal sequence $\{f(0), \ldots, f(M-1)\}$

- 1. Create a symmetric 2*M*-point sequence $f_2(m) = \begin{cases} f(m) & (0 \le m \le M 1) \\ f(-m-1) & (-M \le m \le -1) \end{cases}$.
- 2. Right-shift the resulting sequence by $\frac{1}{2}$.

Then $DCT(f(m)) = DFT(f_2(m-\frac{1}{2})).$

Same goes for images:

The (j, k)-th entry of the $N \times N$ DCT matrix is $\mathbf{D}_N(j, k) = \alpha(j) \cos\left(\frac{\pi(2k+1)j}{2N}\right)$ with $\alpha(j) = \begin{cases} \sqrt{\frac{1}{N}} & \text{if } j = 0, \\ \sqrt{\frac{2}{N}} & \text{otherwise.} \end{cases}$

$$\mathbf{D}_8 = \frac{1}{2} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cos(\frac{\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{4\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{4\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{4\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{4\pi}{16}) & \cos(\frac{$$

The (j, k)-th entry of the $N \times N$ DCT matrix is $\mathbf{D}_N(j, k) = \alpha(j) \cos\left(\frac{\pi(2k+1)j}{2N}\right)$ with $\alpha(j) = \begin{cases} \sqrt{\frac{1}{N}} & \text{if } j = 0, \\ \sqrt{\frac{2}{N}} & \text{otherwise.} \end{cases}$

- \mathbf{D}_N is not symmetric $\rightarrow \mathcal{J}_{\mathbf{D}} = \mathbf{D}_N \mathcal{I} \mathbf{D}_N^T$
- But \mathbf{D}_N is orthogonal $(\mathbf{D}_N \mathbf{D}_N^T = \mathbf{D}_N^T \mathbf{D}_N = \mathbf{I}_N)$ $\rightarrow \mathcal{I} = \mathbf{D}_N^T \mathcal{J}_{\mathbf{D}} \mathbf{D}_N$

$$\mathbf{D}_8 = \frac{1}{2} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cos(\frac{\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{1\pi}{16}) & \cos(\frac{11\pi}{16}) & \cos(\frac{13\pi}{16}) & \cos(\frac{15\pi}{16}) \\ \cos(\frac{2\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{16\pi}{16}) & \cos(\frac{14\pi}{16}) & \cos(\frac{14\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) \\ \cos(\frac{3\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{15\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) \\ \cos(\frac{4\pi}{16}) & \cos(\frac{12\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{5\pi}{16}) \\ \cos(\frac{5\pi}{16}) & \cos(\frac{12\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{5\pi}{16}) \\ \cos(\frac{5\pi}{16}) & \cos(\frac{12\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{4\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16$$

The (j, k)-th entry of the $N \times N$ DCT matrix is $\mathbf{D}_N(j, k) = \alpha(j) \cos\left(\frac{\pi(2k+1)j}{2N}\right)$ with $\alpha(j) = \begin{cases} \sqrt{\frac{1}{N}} & \text{if } j = 0, \\ \sqrt{\frac{2}{N}} & \text{otherwise.} \end{cases}$

- \mathbf{D}_N is not symmetric $\rightarrow \mathcal{J}_{\mathbf{D}} = \mathbf{D}_N \mathcal{I} \mathbf{D}_N^T$
- But \mathbf{D}_N is orthogonal $(\mathbf{D}_N \mathbf{D}_N^T = \mathbf{D}_N^T \mathbf{D}_N = \mathbf{I}_N)$ $\rightarrow \mathcal{I} = \mathbf{D}_N^T \mathcal{J}_{\mathbf{D}} \mathbf{D}_N$

$$\mathbf{D}_8 = \frac{1}{2} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cos(\frac{\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{9\pi}{16}) & \cos(\frac{11\pi}{16}) & \cos(\frac{13\pi}{16}) & \cos(\frac{15\pi}{16}) \\ \cos(\frac{2\pi}{16}) & \cos(\frac{7\pi}{16}) & \cos(\frac{10\pi}{16}) & \cos(\frac{14\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) \\ \cos(\frac{3\pi}{16}) & \cos(\frac{9\pi}{16}) & \cos(\frac{15\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{4\pi}{16}) \\ \cos(\frac{4\pi}{16}) & \cos(\frac{12\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{4\pi}{16}) \\ \cos(\frac{4\pi}{16}) & \cos(\frac{15\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{4\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{5\pi}{16}) \\ \cos(\frac{5\pi}{16}) & \cos(\frac{15\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{7\pi}{16}) \\ \cos(\frac{5\pi}{16}) & \cos(\frac{13\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{4\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{7\pi}{16}) & \cos(\frac{9\pi}{16}) \\ \cos(\frac{7\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{4\pi}{16}) & \cos(\frac{5\pi}{16}) & \cos(\frac{9\pi}{16}) \\ \cos(\frac{7\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{9\pi}{16}) & \cos(\frac{9\pi}{16}) \\ \cos(\frac{7\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{9\pi}{16}) \\ \cos(\frac{7\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{9\pi}{16}) \\ \cos(\frac{7\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{9\pi}{16}) \\ \cos(\frac{7\pi}{16}) & \cos(\frac{2\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) & \cos(\frac{3\pi}{16}) \\ \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) \\ \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) \\ \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) \\ \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) \\ \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16}) \\ \cos(\frac{\pi}{16}) & \cos(\frac{\pi}{16$$

 $\mathsf{DCT} \equiv \mathsf{decomposition}$ over the set of DCT basis functions.

DCT basis functions

Г

DCT basis images for M = N = 8

DCT basis images \mathcal{B}_{uv} for M = N = 8. $\Box = \frac{1}{4} \cos(\frac{\pi}{16})^2$, and $\blacksquare = -\Box$. The origin of each basis image is at its top-left corner.

Guillaume TOCHON (LRDE)

Let's take again our 8 × 8 image
$$\mathcal{I} = \mathbf{A}$$
 and compute its DCT spectrum by $\mathcal{J}_{\mathsf{D}} = \mathsf{D}_{8}\mathcal{I}\mathsf{D}_{8}^{\mathsf{T}}$.

New bottle, same old wine

Let's take again our 8 × 8 image
$$\mathcal{I} = \mathbf{P}_{\mathbf{A}}$$
 and compute its DCT spectrum by $\mathcal{J}_{\mathbf{D}} = \mathbf{D}_{8}\mathcal{I}\mathbf{D}_{8}^{T}$.

	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02
$\Rightarrow \mathcal{J}_{D} =$	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34
	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03
	6.87	0.32	-99.53	-0.19	127.82	-0.13	-8.59	-0.41
	47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85	0.01

Let's take again our 8×8 image $\mathcal{I} = \mathbf{P}_{8} \mathcal{I} \mathbf{D}_{8}^{T}$.							8	and	cor	mpute its DCT spectrum by $\stackrel{0}{\longrightarrow} v^{-1} \stackrel{2}{\longrightarrow} v^{-1} \stackrel{2}{\longrightarrow} v^{-1} \stackrel{3}{\longrightarrow} $
									<i>u</i>	
[1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02	1	
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28	2	
7	-74.41	-0.20	75.28	0.03	-68.36	-0.02	82.06	0.02	3	
50 -	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17	4	
	6.87	0.32	-99.53	-0.02 -0.19	127.82	-0.13	-8.59	-0.03		
l	47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85	0.01	5	
									6	
									7	

Let's take $\mathcal{J}_{\mathbf{D}} = \mathbf{D}_{\mathbf{o}}\mathcal{J}_{\mathbf{o}}$	again $\mathbf{D}_{\mathbf{D}}^{T}$	our 8	8 × 8	image	$\mathcal{I} =$	8	and compute its	DCT	spect	rum	by 7
00 -8-	-8.										
F 4005 00								WN.	MM	188	W
1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02	N ANA N	66,66	6.866	848

	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28	
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02	
π	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34	
JD =	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17	
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03	
	6.87	0.32	-99.53	-0.19	127.82	-0.13	-8.59	-0.41	
	47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85	0.01	

Let's take again our 8 \times 8 image $\mathcal{I} =$	٦,	and compute its DCT spectrum by
$\mathcal{J}_{D} = D_{8} \mathcal{I} D_{8}^{T}.$		0 1 2 3 4 5 6 7

	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02
7	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34
JD =	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03
	6.87	0.32	-99.53	-0.19	127.82	-0.13	-8.59	-0.41
	47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85	0.01

New bottle, same old wine

Let's take again our 8×8 image $\mathcal{I} = \mathbf{A}$ $\mathcal{J}_{\mathbf{D}} = \mathbf{D}_{8} \mathcal{I} \mathbf{D}_{8}^{T}$. and compute its DCT spectrum by

	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02
7	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34
D =	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03
	6.87	0.32	-99.53	-0.19	127.82	-0.13	-8.59	-0.41
	47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85	0.01

Guillaume TOCHON (LRDE)

New bottle, same old wine

Let's take again our 8×8 image $\mathcal{I} = \square_{\mathbb{R}}$ and compute its DCT spectrum by $\mathcal{J}_{D} = D_{8}\mathcal{I}D_{8}^{\mathcal{T}}$.

	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02
7	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34
/D =	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03
	6.87	0.32	-99.53	-0.19	127.82	-0.13	-8.59	-0.41
	47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85	0.01

Let's take again our 8 $ imes$ 8 image $\mathcal{I} =$	A,	and compute its DCT spectrum by
$\mathcal{I}_{D} = D_{v} \mathcal{I} D_{v}^{T}$		0 1 2 3 4 5 6 7

	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02
7	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34
$\mathcal{J}_{\mathbf{D}} = [$	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03
	6.87	0.32	-99.53	-0.19	127.82	-0.13	-8.59	-0.41
	47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85	0.01

New bottle, same old wine

Let's take again $\mathcal{T}_{\mathbf{D}} = \mathbf{D}_{0} \mathcal{T} \mathbf{D}_{0}^{T}$	our 8×8	image 2	$\mathcal{I} =$	A,	and co	mpute i	ts DC	CT sp	ectr 5	um	by 7
00 0,208.					0						
[<u>1036.38</u> −0.26	232.68 -0.03	228.38	0.49	-60.52	0.02		<u>00</u>	VW	M	W.	M

	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28	
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02	
π	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34	
JD =	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17	
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03	
	6.87	0.32	-99.53	-0.19	127.82	-0.13	-8.59	-0.41	
	47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85	0.01	

 $\mathcal{I} - \tilde{\mathcal{I}}_{6}$

-150
New bottle, same old wine

Let	s take	agair	our 8	8 × 8	image	$\mathcal{I} =$	A.	and	cor	npute its DCT spectrum by
\mathcal{J}_{D}	$= \mathbf{D}_{8}\mathcal{I}$	ζ D ⁷ ₈ .							0	
	_								1 1	=200000000
	1036.38 -14.65	-0.26 0.24	232.68 243.27	-0.03 -0.13	228.38 -181.82	0.49 -0.14	-60.52 -224.28	0.02 -0.28	2	
-	78.48 -74.41	0.09 -0.20	-97.16 75.28	0.03 0.17	-109.01 -68.36	-0.21 -0.02	290.97 82.06	0.02 0.34	3	

21.91

56.39

-8.59

19.85

0.17

-0.03

-0.41

0.01

5

6

42.38 -0.03

6.87

47.59

162.51

-0.02

-0.28

0.32

51.96

52.52

-163.91

-99.53

0.10

-0.02

-0.19

-0.04

-122.13

21.13

127.82

-126.96

-0.15

0.08

0.55

-0.13

<u> 11 11 1</u>

�

200 1000

660

New bottle, same old wine

Let'	s take	agair דח ^ד	ו our 8	8 × 8	image	$\mathcal{I} =$	A,	and	con	npute it		۲ sp	ectr	rum	by 7
JD	- D 81	ω ₈ .							0					\blacksquare	
									1		ΝN		W	M	W
	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02			ens ess	1000	2020	NRAL.	MM.
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28	2		W2.W2	1000	MAN.	MM.	MAN -
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02			and and	1000	Market .	0.000	0.0.00
	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34	3	=	5-0 M (S	1999	NON.	MM.	800 I.

21.91

56.39

-8.59

19.85

162.51	-0.02	-163.91	-0.02
6.87	0.32	-99.53	-0.19
47.59	-0.28	52.52	-0.04

42.38 -0.03

51.96

0.10

-122.13

-126.96

21.13

127.82

-0.15

-0.13

0.08

0.55

New bottle, same old wine

6.87

47.59

Let' \mathcal{J}_{D}	s take $= \mathbf{D}_8 \mathcal{I}$	agair \mathbf{D}_8^T .	n our {	3 × 8	image	$\mathcal{I} =$	8	and	con	$\stackrel{\text{opute i}}{\longrightarrow} v^{1}$		sp	ectr	um 6	by 7
	-							-	1		АN		W.	闘	闣
	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02	2	<u> </u>	0.00	00	666	MA P	661
	78.48	0.24	-97.16	0.03	-101.02 -109.01	-0.14 -0.21	290.97	0.02			2020		555	20100 I 1	1000 I
a	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34	3	_	999		888.	979 I	888
JD =	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17			COMPANY OF THE O	arrante Strategi	PERSONAL PROPERTY AND	nenni i Reise i	anna. BCCB
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03	4		2-03-04		000	200U -	1000 I

-8.59

19.85

-0.41

0.01

$$\mathcal{J}_{\text{D}} =$$

0.03	51.96	0.10	-122.13	-0.15
0.02	-163.91	-0.02	21.13	0.08
0.32	-99.53	-0.19	127.82	-0.13
0.28	52.52	-0.04	-126.96	0.55

 $\mathcal{I} - \tilde{\mathcal{I}}_{9}$

-150

New bottle, same old wine

-0.02

-0.28

0.32

162.51

6.87

47.59

Let' \mathcal{J}_{D}	s take = D ₈ 1	agair \mathbf{D}_8^T .	1 our 8	3 × 8	image	$\mathcal{I} =$	8	and	con	its [sp 4	ectr	rum	by ⁷
									1	100	N	88	W.	88.	88
]	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02			100.00	in a	Inches In	ana.	
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28	2		5.05		UUU.	Ш.	000
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02			10000	COLUMN T	DESET	ALCONT.	
<i>a</i>	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34	3	 1.540	575	888	888.	88.	888.
$\mathcal{J}_{\mathbf{D}} = [$	12 38	_0.03	51.06	0.10	-122.13	_0.15	21.01	0.17		 n serves	ALC: NOT	and the second	COLUMN 1	COLOR.	an a

56.39

-8.59

19.85

-0.03

-0.41

0.01

5

6

-0.02

-0.19

-0.04

-163.91

-99.53

52.52

21.13

127.82

-126.96

0.08

0.55

-0.13

200

-150

<u>22280000</u>

222

333

 $\mathcal{I} - \tilde{\mathcal{I}}_{10}$

New bottle, same old wine

Let	s take	agair	our 8	8 × 8	image	$\mathcal{I} =$	A.	and	cor	npute its DCT spectrum by
\mathcal{J}_{D}	$= \mathbf{D}_{8}\mathcal{I}$	ζ D ⁷ ₈ .							0	
	_								1 1	=200000000
	1036.38 -14.65	-0.26 0.24	232.68 243.27	-0.03 -0.13	228.38 -181.82	0.49 -0.14	-60.52 -224.28	0.02 -0.28	2	
-	78.48 -74.41	0.09 -0.20	-97.16 75.28	0.03 0.17	-109.01 -68.36	-0.21 -0.02	290.97 82.06	0.02 0.34	3	

0.17

-0.03

-0.41

7	-74.
/D =	42.
	162.

14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28
78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97
74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06
42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91
62.51	-0.02	-163.91	-0.02	21.13	0.08	56.39
6.87	0.32	-99.53	-0.19	127.82	-0.13	-8.59
47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85

Guillaume TOCHON (LRDE)

New bottle, same old wine

	Let'	's take $= \mathbf{D}_{\mathbf{s}}\mathcal{I}$	agair $\mathbf{D}_{\mathbf{D}}^{T}$.	our 8	8 × 8	image	$\mathcal{I} =$	A,	and	con	npute	its ₂ D	DCT	- sp	ectr 5	um	by 7
	00	- 0-	- 8 -							0 u							
	I	F 1026 20	0.26	121 60	0.02	220 20	0.40	60 50	0.02	1		A	N	e,	W	W	W
$\begin{bmatrix} 1050.36 & -0.26 & 232.06 & -0.05 & 226.36 & 0.49 & -00.32 & 0.02 \\ -14.65 & 0.24 & 243.27 & -0.13 & -181.82 & -0.14 & -224.28 & -0.28 \\ 78.49 & 0.00 & 0.27 & 160.01 & 0.02 \\ 100.01 & 0.02 & 100.01 & 0.02 \\ \end{bmatrix}^{2}$		-14.65	0.20	232.00	-0.13	-181.82	-0.14	-224.28	-0.28	2		0	ОČ	00	000	000	

	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02
7	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34
JD =	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03
	6.87	0.32	-99.53	-0.19	127.82	-0.13	-8.59	-0.41
	47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85	0.01

New bottle, same old wine

-0.03

-0.02

0.32

42.38

6.87

47.59 -0.28

Let'	s take = D ∘7	agair $\mathbf{D}_{\mathbf{D}}^{T}$	our 8	8 × 8	image	$\mathcal{I} =$	8	and	cor	mpute its DCT spectrum by v^{-1} $v^$
00	- 0-	- 8 -							0	
	_								1	
	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02		- AND AND AND AND AND AND AND AND
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28	2	
1	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02		
	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34	3	

21.91

56.39

-8.59

19.85

0.17

-0.03

-0.41

0.01

5

6

162.51

0.10

-0.02

-0.19

-0.04

-122.13

21.13

127.82

-126.96

-0.15

0.08

0.55

-0.13

51.96

52.52

-163.91

-99.53

200 200 200

888

88 88

660 888

New bottle, same old wine

Let'	s take = D ∘∕	agair $\mathbf{D}_{\mathbf{D}}^{T}$.	our 8	8 × 8	image	$\mathcal{I} =$	A,	and	con	npute i	ts ₂ D	CT 3	sp	ectr	um	by 7
υD	- 0-	- 8 -							0							
,								7	1		e.	N	M	W.	M	W
	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02		the second second	ALC: NO	101 A.		BLACK.	8.6.61	10.00
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28	2		Q.	UU.	99	88.	999.	88.
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02						DELETE -		

I	14.05	0.24	245.21	0.15	101.02	0.14	224.20	0.20
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02
7	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34
JD =	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03
	6.87	0.32	-99.53	-0.19	127.82	-0.13	-8.59	-0.41
	47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85	0.01
	-							

New bottle, same old wine

Let	s take	agair	our 8	8 × 8	image	$\mathcal{I} =$	A.	and	cor	npute its DCT spectrum by
\mathcal{J}_{D}	$= \mathbf{D}_8 \mathcal{I}$	ζ D ⁷ ₈ .							0	$\rightarrow v$ 1 2 3 4 5 6 7
									ů,	
	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02]	
	-14.65 78.48	0.24 0.09	243.27 -97.16	-0.13 0.03	-181.82 -109.01	-0.14 -0.21	-224.28 290.97	-0.28 0.02	2	
~	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34	3	

21.91

56.39

-8.59

19.85

-0.15

-0.13

0.08

0.55

1 4.44	0.20	15.20	0.11	00.50
42.38	-0.03	51.96	0.10	-122.13
162.51	-0.02	-163.91	-0.02	21.13
6.87	0.32	-99.53	-0.19	127.82
47.59	-0.28	52.52	-0.04	-126.96

Guillaume TOCHON (LRDE)

New bottle, same old wine

Let'	s take	agair	n our 8	8 × 8	image	$\mathcal{I} =$	A.	and	con	npute its DCT spectrum by
JD	- D 81	ω ₈ .							0	
,									1	
	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02		- WE KEN ON DO DO DO DO DO
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28	2	
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02		
	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34	3	

21.91

56.39

-8.59

42.38 -0.03

6.87

47.59

162.51

-0.02

-0.28

0.32

-0.15

-0.13

0.08

 \mathcal{I}

51.96

-163.91

-99.53

0.10

-0.02

-0.19

-122.13

21.13

127.82

 $\tilde{\mathcal{I}}_{\mathbf{16}}$

0.17

-0.03

-0.41

5

6

800

200 1000

888

New bottle, same old wine

Let's take again our 8×8 image $\mathcal{I} = \mathbf{P}_{\mathbf{S}}$ $\mathcal{J}_{\mathbf{D}} = \mathbf{D}_{\mathbf{S}} \mathcal{I} \mathbf{D}_{\mathbf{S}}^{\mathsf{T}}$. and compute its DCT spectrum by $_{0}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{6}$ $_{7}$ 1036.38 -0.26232.68 -0.03228.38 0.49 -60.520.02 -14.650.24 243.27 -0.13-181.82-0.14-224.28-0.282 78.48 0.09 -97.160.03 -109.01-0.21290.97 0.02

-74.41 42.38 $-0.20 \\ -0.03$ 75.28 0.17 -68.36-0.0282.06 0.34 $\mathcal{J}_{D} =$ 51.96 -163.91 0.10 -122.13-0.1521.91 0.17 -0.02 162.51 -0.0221.13 0.08 56.39 -0.030.32 -99.53 6.87 -0.19127.82 -0.13-8.59-0.4147.59 -0.2852.52 -0.04-126.960.55 19.85 0.01

New bottle, same old wine

-0.02

-0.28

0.32

162.51

6.87

47.59

Let' \mathcal{J}_{D}	s take = D ₈ 7	agair $C\mathbf{D}_8^T$.	1 our 8	8 × 8	image	$\mathcal{I} =$	8	and	con	$\stackrel{\text{opute i}}{\longrightarrow} v^{-1}$	ts C		sp 4	ectr	rum	by ⁷
									1		A	NV.		W.	88.	闣
]	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02			1000	10.0	Long to the second	Internal Int	ALC: N	10.00
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28	2		NUR.	UU.	<u></u>	UU.	Шυ.	ш.
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02			10000	and a second	COLUMN T	DESET	ALCONT.	NACES.
a	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34	3		590 B	95	888	888.	88.	888.
$J_{D} = $	12 38	_0.03	51.06	0.10	-122.13	_0.15	21.01	0.17			ALC: 100	ar tanti	and the second	COLUMN 1	COLOR.	and the second sec

56.39

-8.59

19.85

-0.03

-0.41

0.01

5 6

0.08

0.55

-0.13

21.13

127.82

-126.96

Guillaume TOCHON (LRDE)

CODO - Lossy Compresison

88

22

 $\tilde{\mathcal{I}}_{24}$

 \mathcal{I}

-163.91

-99.53

52.52

-0.02

-0.19

-0.04

8888888

222

New bottle, same old wine

Let \mathcal{J}_{D}	s take $= \mathbf{D}_8 \mathcal{I}$	again \mathbf{D}_8^T .	n our {	3 × 8	image	$\mathcal{I} =$	8	and	con			sp	ectr	rum	by ⁷
	r								1	- 6	NN		W.	W.	M
	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02	2	- M.	ev ex	66	866	896.	891
	78 48	0.24	-97.16	0.13	-101.02 -109.01	-0.14 -0.21	290.97	0.02			200 200		500		1000
a	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34	3	_	0.00	88	888.	P99.	999 I.
J _D =	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17			anten attent Service artesta	arrante. Second	anne. Noto	DERCE.	0000
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03	4		240.240		200.	800	1000 I

-0.41

162.51 -0.02-163.91-0.0221.13 0.08 -8.596.87 0.32 -99.53 -0.19127.82 -0.13-0.2852.52 -0.0447.59 -126.960.55 19.85

Guillaume TOCHON (LRDE)

New bottle, same old wine

-0.02

-0.28

0.32

-163.91

-99.53

52.52

-0.02

-0.19

-0.04

162.51

6.87

47.59

Let' \mathcal{J}_{D}	s take = D ₈ 1	agair \mathbf{D}_8^T .	n our 8	3 × 8	image	$\mathcal{I} =$	8	and	con	$\stackrel{0}{\longrightarrow} v \stackrel{1}{\longrightarrow} v$	ts ₂ D	CT	sp 4	ectr	um	by ⁷
								_	1	20	AV.	Ν.	M.	W.	WA.	W.
[1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02			1000			BLALS.	8.0.AL	1.1.1.1
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28	2	=	1233	UR 1	ш.	UU.	<u>000</u> .	ш.
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02							a a su a	NA AL
<i>a</i>	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34	3		5.85	19 J.		MR.	88.	88.
$\mathcal{J}_{D} = $	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17						ana a	666). 2000	and the second s

56.39

-8.59

19.85

-0.03

-0.41

0.01

5

6

0.08

0.55

-0.13

21.13

127.82

-126.96

$$\mathcal{J}_{\mathsf{D}} =$$

Guillaume TOCHON (LRDE)

 \mathcal{I}


~~~~

-100 -150

222

 $\mathcal{I} - \tilde{\mathcal{I}}_{32}$ 

New bottle, same old wine

-0.02

-0.28

0.32

-163.91 -0.02

-99.53 -0.19

52.52 -0.04

| Let' $\mathcal{J}_{D}$ | s take<br>= <b>D</b> <sub>8</sub> 7 | agaiı<br>Z <b>D</b> 8 | ו our 8 | 8 × 8 | image   | $\mathcal{I} =$ | 8       | and   | con | npute        | its C |                       | sp<br>4       | ectr         | um            | by<br>7 |
|------------------------|-------------------------------------|-----------------------|---------|-------|---------|-----------------|---------|-------|-----|--------------|-------|-----------------------|---------------|--------------|---------------|---------|
|                        |                                     |                       |         |       |         |                 |         | -     | 1   | - 6          | A     | N                     | M             | 翮            | 鼦             | 闣       |
|                        | 1036.38                             | -0.26                 | 232.68  | -0.03 | 228.38  | 0.49            | -60.52  | 0.02  |     | 1000 Colored | 1.000 | and a                 | Lange I       | DOM: N       | ALC: N        | 0.0.00  |
|                        | -14.65                              | 0.24                  | 243.27  | -0.13 | -181.82 | -0.14           | -224.28 | -0.28 | 2   | _            | Ю.    | 98.                   | 99            | <u>998</u> . | 999           | WU.     |
|                        | 78.48                               | 0.09                  | -97.16  | 0.03  | -109.01 | -0.21           | 290.97  | 0.02  |     |              | 1000  | and the second        | Lange and the | DELET.       | and and and a | BLACKS  |
| 7                      | -74.41                              | -0.20                 | 75.28   | 0.17  | -68.36  | -0.02           | 82.06   | 0.34  | 3   |              | 52    | 95                    | 50 C          | 555.         | 888           | 886     |
| JD =                   | 42.38                               | -0.03                 | 51.96   | 0.10  | -122.13 | -0.15           | 21.91   | 0.17  |     | _            |       | and the second second |               | ACCOUNTS OF  | anana.        |         |

56.39 -0.03

19.85

-8.59 -0.41

0.01

5 6

162.51 6.87 47.59



0.08

0.55

21.13

-126.96

127.82 -0.13



26 (B)

~~~~~

2222

88 B.

A first step toward lossy compression

The (j, k)-th entry of the $N \times N$ DCT matrix is $\mathbf{D}_N(j, k) = \alpha(j) \cos\left(\frac{\pi(2k+1)j}{2N}\right)$ with $\alpha(j) = \begin{cases} \sqrt{\frac{1}{N}} & \text{if } j = 0, \\ \sqrt{\frac{2}{N}} & \text{otherwise.} \end{cases}$

A first step toward lossy compression

The (j, k)-th entry of the $N \times N$ DCT matrix is $\mathbf{D}_N(j, k) = \alpha(j) \cos\left(\frac{\pi(2k+1)j}{2N}\right)$ with $\alpha(j) = \begin{cases} \sqrt{\frac{1}{N}} & \text{if } j = 0, \\ \sqrt{\frac{2}{N}} & \text{otherwise.} \end{cases}$

 \rightarrow Entries of **D**_N are floating point numbers.

	0.3536	0.3536	0.3536	0.3536	0.3536	0.3536	0.3536	0.3536 -
D 1	0.4904	0.4157	0.2778	0.0975	-0.0975	-0.2778	-0.4157	-0.4904
	0.4619	0.1913	-0.1913	-0.4619	-0.4619	-0.1913	0.1913	0.4619
	0.4157	-0.0975	-0.4904	-0.2778	0.2778	0.4904	0.0975	-0.4157
$D_8 = \frac{1}{2}$	0.3536	-0.3536	-0.3536	0.3536	0.3536	-0.3536	-0.3536	0.3536
	0.2778	-0.4904	0.0975	0.4157	-0.4157	-0.0975	0.4904	-0.2778
	0.1913	-0.4619	0.4619	-0.1913	-0.1913	0.4619	-0.4619	0.1913
	0.0975	-0.2778	0.4157	-0.4904	0.4904	-0.4157	0.2778	-0.0975

A first step toward lossy compression

The (j, k)-th entry of the $N \times N$ DCT matrix is $\mathbf{D}_N(j, k) = \alpha(j) \cos\left(\frac{\pi(2k+1)j}{2N}\right)$ with $\alpha(j) = \begin{cases} \sqrt{\frac{1}{N}} & \text{if } j = 0, \\ \sqrt{\frac{2}{N}} & \text{otherwise.} \end{cases}$

- $\rightarrow~$ Entries of $D_{\it N}$ are floating point numbers.
- $\rightarrow~$ So are those of $\mathcal{J}_{\mathsf{D}}.$

	1036.38	-0.26	232.68	-0.03	228.38	0.49	-60.52	0.02]
	-14.65	0.24	243.27	-0.13	-181.82	-0.14	-224.28	-0.28
	78.48	0.09	-97.16	0.03	-109.01	-0.21	290.97	0.02
<i>π</i>	-74.41	-0.20	75.28	0.17	-68.36	-0.02	82.06	0.34
JD =	42.38	-0.03	51.96	0.10	-122.13	-0.15	21.91	0.17
	162.51	-0.02	-163.91	-0.02	21.13	0.08	56.39	-0.03
	6.87	0.32	-99.53	-0.19	127.82	-0.13	-8.59	-0.41
	47.59	-0.28	52.52	-0.04	-126.96	0.55	19.85	0.01

A first step toward lossy compression

The (j, k)-th entry of the $N \times N$ DCT matrix is $\mathbf{D}_N(j, k) = \alpha(j) \cos\left(\frac{\pi(2k+1)j}{2N}\right)$ with $\alpha(j) = \begin{cases} \sqrt{\frac{1}{N}} & \text{if } j = 0, \\ \sqrt{\frac{2}{N}} & \text{otherwise.} \end{cases}$

- \rightarrow Entries of **D**_N are floating point numbers.
- $\rightarrow~$ So are those of $\mathcal{J}_{\text{D}}.$
- $\rightarrow \,$ Round the spectrum values $\tilde{\mathcal{J}}_{D} = \lfloor \mathcal{J}_{D} \rceil$

$$\tilde{\mathcal{J}}_{\mathsf{D}} = \begin{bmatrix} 1036 & 0 & 233 & 0 & 228 & 0 & -61 & 0 \\ -15 & 0 & 243 & 0 & -182 & 0 & -224 & 0 \\ 78 & 0 & -97 & 0 & -109 & 0 & 291 & 0 \\ -74 & 0 & 75 & 0 & -68 & 0 & 82 & 0 \\ 42 & 0 & 52 & 0 & -122 & 0 & 22 & 0 \\ 163 & 0 & -164 & 0 & 21 & 0 & 56 & 0 \\ 7 & 0 & -100 & 0 & 128 & 0 & -9 & 0 \\ 48 & 0 & 53 & 0 & -127 & 1 & 20 & 0 \end{bmatrix}$$

A first step toward lossy compression

The (j, k)-th entry of the $N \times N$ DCT matrix is $\mathbf{D}_N(j, k) = \alpha(j) \cos\left(\frac{\pi(2k+1)j}{2N}\right)$ with $\alpha(j) = \begin{cases} \sqrt{\frac{1}{N}} & \text{if } j = 0, \\ \sqrt{\frac{2}{N}} & \text{otherwise.} \end{cases}$ Reconstruction and error:

- $\rightarrow~$ Entries of $D_{\it N}$ are floating point numbers.
- $\rightarrow~$ So are those of $\mathcal{J}_{\text{D}}.$
- $\rightarrow\,$ Round the spectrum values $\tilde{\mathcal{J}}_{D} = \lfloor \mathcal{J}_{D} \rceil$

$$\tilde{\mathcal{J}}_{\text{D}} = \begin{bmatrix} 1036 & 0 & 233 & 0 & 228 & 0 & -61 & 0 \\ -15 & 0 & 243 & 0 & -182 & 0 & -224 & 0 \\ 78 & 0 & -97 & 0 & -109 & 0 & 291 & 0 \\ -74 & 0 & 75 & 0 & -68 & 0 & 82 & 0 \\ 42 & 0 & 52 & 0 & -122 & 0 & 22 & 0 \\ 163 & 0 & -164 & 0 & 21 & 0 & 56 & 0 \\ 7 & 0 & -100 & 0 & 128 & 0 & -9 & 0 \\ 48 & 0 & 53 & 0 & -127 & 1 & 20 & 0 \end{bmatrix}$$

Without rounding

With rounding

DCT Reconstruction error

DCT Reconstruction error

DCT Reconstruction error

DCT vs. Walsh-Hadamard transform

DCT vs. Walsh-Hadamard transform

Parseval theorem gives $\|\mathcal{I}\|_2^2 = \|\mathcal{J}_H\|_2^2$ = $\|\mathcal{J}_D\|_2^2$

 \rightarrow A efficient transform should compact most of the image energy into as few coefficients as possible.

	80%	90%	95%	99%
DCT	4	15	77	7784
WHT	5	29	169	13501

Number of leading coefficients necessary to reach a given fraction of the total energy.

In summary

	WHT	DFT	DCT
Suited for frequency analysis	1	1	1
Real result	1	×	1
Computationally cheap	1	×	×
Adapated to any image dimensions	×	1	1
Efficient implementation available	1	1	1
Energy compaction	×	×	1

Frequency analysis

In summary

			STROVED +
			- 990
Suited for frequency analysis	T	0.00	* APPROV
Real result	1	×	1
Computationally cheap	1	×	×
Adapated to any image dimensions	×	1	1
Efficient implementation available	1	1	1
Energy compaction	×	×	1

A first naive approach

2 Frequency analysis

③ JPEG compression algorithm

- Compression scheme
- Decompression scheme
- Compression error analysis

A brief overview

- $JPEG \equiv Joint Photographic Expert Group.$
 - \rightarrow Started in 1986.
 - \rightarrow First standard (Part 1) released in 1992.
 - \hookrightarrow Its pet name is ISO/CEI 10918-1 = UIT-T Recommendation T.81.
 - $\rightarrow\,$ Latest one (Part 6) released in 2013.
 - $\rightarrow\,$ Still active today (2 or 3 meetings per year).
 - $\rightarrow\,$ Has spawn many compression standards (JPEG2000, JPEG XR, incorporated in MPEG \ldots).

Step 1: Block splitting

 1^{st} step: the input image is divided into non-overlapping 8×8 macro-blocks.

Step 1: Block splitting

 1^{st} step: the input image is divided into non-overlapping 8×8 macro-blocks.

If the dimensions are not divisible in integer numbers of blocks, the image can be padded

Step 1: Block splitting

 1^{st} step: the input image is divided into non-overlapping 8×8 macro-blocks.

If the dimensions are not divisible in integer numbers of blocks, the image can be padded

 \rightarrow with black pixels \blacksquare (crude, may create noticeable artifacts).

Step 1: Block splitting

 1^{st} step: the input image is divided into non-overlapping 8×8 macro-blocks.

If the dimensions are not divisible in integer numbers of blocks, the image can be padded

 \rightarrow with black pixels \blacksquare (crude, may create noticeable artifacts).

Step 1: Block splitting

 1^{st} step: the input image is divided into non-overlapping 8×8 macro-blocks.

If the dimensions are not divisible in integer numbers of blocks, the image can be padded

- \rightarrow with black pixels \blacksquare (crude, may create noticeable artifacts).
- \rightarrow by replicating the border pixels (reduces the artifacts, but not necessarily all of them).

Step 1: Block splitting

 1^{st} step: the input image is divided into non-overlapping 8×8 macro-blocks.

If the dimensions are not divisible in integer numbers of blocks, the image can be padded

- \rightarrow with black pixels \blacksquare (crude, may create noticeable artifacts).
- \rightarrow by replicating the border pixels (reduces the artifacts, but not necessarily all of them).

JPEG compression algorithm Step 2: DCT

 2^{nd} step: the DCT of each 8×8 block is computed.

2^{nd} step: the DCT of each 8×8 block is computed.

$$\mathbf{B}_{i} = \begin{bmatrix} 52 & 55 & 61 & 66 & 70 & 61 & 64 & 73 \\ 63 & 59 & 55 & 90 & 109 & 85 & 69 & 72 \\ 62 & 59 & 68 & 113 & 144 & 104 & 66 & 73 \\ 63 & 58 & 71 & 122 & 154 & 106 & 70 & 69 \\ 67 & 61 & 68 & 104 & 126 & 88 & 68 & 70 \\ 79 & 65 & 60 & 70 & 77 & 68 & 58 & 75 \\ 85 & 71 & 64 & 59 & 55 & 61 & 65 & 83 \\ 87 & 79 & 69 & 68 & 65 & 76 & 78 & 94 \end{bmatrix}$$

 2^{nd} step: the DCT of each 8×8 block is computed.

 2^{nd} step: the DCT of each 8×8 block is computed.

In average, \mathbf{B}_i has a mean value close to $128 \Rightarrow \text{DC}$ coefficient of $\text{DCT}(\mathbf{B}_i - 128)$ should be close to 0.

 2^{nd} step: the DCT of each (8 × 8 block) -128 is computed.

In average, \mathbf{B}_i has a mean value close to $128 \Rightarrow \text{DC}$ coefficient of $\text{DCT}(\mathbf{B}_i - 128)$ should be close to 0.

Step 3: quantization

 3^{rd} step: the DCT is quantized by some quantification matrix $\mathcal{Q}.$

Step 3: quantization

If you wonder how the hell did they come up with those quantization values, go read JPEG: Still image data compression standard by W.B. Pennebaker & J.L. Mitchell, Springer Science & Business Media (1992).

Step 3: quantization

If you wonder how the hell did they come up with those quantization values, go read JPEG: Still image data compression standard by W.B. Pennebaker & J.L. Mitchell, Springer Science & Business Media (1992).

Step 3: quantization

3rd step: the DCT is quantized by some quantification matrix Q. $ilde{\mathcal{J}}_{\mathsf{B}_i} = \lfloor \mathcal{J}_{\mathsf{B}_i} \oslash^{\mathsf{F}} \mathcal{Q}
ceil$ element-wise division $= \begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \end{bmatrix} \bigcirc \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$

If you wonder how the hell did they come up with those quantization values, go read JPEG: Still image data compression standard by W.B. Pennebaker & J.L. Mitchell, Springer Science & Business Media (1992).

Step 4: entropy coding

4th step: Arrange the quantized values in sequence following the zigzag order and use Huffman encoding with pre-determined conversion tables.

Step 4: entropy coding

4th step: Arrange the quantized values in sequence following the zigzag order and use Huffman encoding with pre-determined conversion tables.

Step 4: entropy coding

4th step: Arrange the quantized values in sequence following the zigzag order and use Huffman encoding with pre-determined conversion tables.

= -26 -3 0 -3 -2 -6 2 -4 1 -3 1 1 5 1 2 -1 1 -1 2 0 0 0 0 0 -1 -1 FOB

Step 4: entropy coding

4th step: Arrange the quantized values in sequence following the zigzag order and use Huffman encoding with pre-determined conversion tables.

= -26 -3 0 -3 -2 -6 2 -4 1 -3 1 1 5 1 2 -1 1 -1 2 0 0 0 0 0 -1 -1 EOB

After applying Huffman with standard JPEG tables, the final encoding is:

1010110 0100 11100100 0101 100001 0110 100011 001 0100 001 001 100101 001 0110 000 001 000 0110 11110100 000 1010

Step 4: entropy coding

4th step: Arrange the quantized values in sequence following the zigzag order and use Huffman encoding with pre-determined conversion tables.

= -26 -3 0 -3 -2 -6 2 -4 1 -3 1 1 5 1 2 -1 1 -1 2 0 0 0 0 0 -1 -1 EOB

After applying Huffman with standard JPEG tables, the final encoding is:

1010110 0100 11100100 0101 100001 0110 100011 001 0100 001 001 100101 001 0110 000 001 000 0110 11110100 000 1010

Step 4: entropy coding

4th step: Arrange the quantized values in sequence following the zigzag order and use Huffman encoding with pre-determined conversion tables.

= -26 -3 0 -3 -2 -6 2 -4 1 -3 1 1 5 1 2 -1 1 -1 2 0 0 0 0 0 -1 -1 EOB

After applying Huffman with standard JPEG tables, the final encoding is: 1010110 0100 11100100 0101 100001 0110 100011 001 0100 001 100101 001 0110 000 001

 $000 \ 0110 \ 11110100 \ 000 \ 1010$

Step 4: entropy coding

4th step: Arrange the quantized values in sequence following the zigzag order and use Huffman encoding with pre-determined conversion tables.

 $=\ -26\ -3\ 0\ -3\ -2\ -6\ 2\ -4\ 1\ -3\ 1\ 1\ 5\ 1\ 2\ -1\ 1\ -1\ 2\ 0\ 0\ 0\ 0\ 0\ -1\ -1\ \mathsf{EOB}$

After applying Huffman with standard JPEG tables, the final encoding is:

1010110 0100 11100100 0101 100001 0110 100011 001 0100 001 001 100101 001 0110 000 001 000 0110 11110100 000 1010

Before compression: $8 \times 8 \times 8 = 512$ bits. After compression: 94 bits. Guillaume TOCHON (LRDE) CODO - Lossy Compression

- rw - r r	1	gtochon	lrde	245K	mai	19	13:22	randompic.tif
- rw - r r	1	gtochon	lrde	35K	mai	19	14:18	randompic.jpg

Decompression

Decompression

JPEG decompression process is the exact inverse of the compression scheme.

Decompression

101011001001	
110010001011	
000010110100	26 2 0 2 2 6 2 4
011001010000	-20-30-3-2-02-4
100110010100	
101100000010	2 0 0 0 0 0 -1 -1 EOB
000110111101	
000001010	

Decompression

Decompression

Decompression

Decompression

Decompression

$\tilde{\mathcal{I}}_{B_i^*} = \tilde{\mathcal{I}}_{B_i} \delta \mathcal{I}_{\mathcal{Q}}$ Hadamard (component-wise) product																	
	-26	-3	-6	2	2	$^{-1}$	0	0		16	11	10	16	24	40	51	61
	0	$^{-2}$	-4	1	1	0	0	0		12	12	14	19	26	58	60	55
_	-3	1	5	$^{-1}$	$^{-1}$	0	0	0		14	13	16	24	40	57	69	56
	-3	1	2	$^{-1}$	0	0	0	0		14	17	22	29	51	87	80	62
_	1	0	0	0	0	0	0	0	0	18	22	37	56	68	109	103	77
	0	0	0	0	0	0	0	0		24	35	55	64	81	104	113	92
	0	0	0	0	0	0	0	0		49	64	78	87	103	121	120	101
	6	0	0	0	0	0	0	0_		72	92	95	98	112	100	103	99

Decompression

JPEG decompression process is the exact inverse of the compression scheme.

 $\tilde{\mathcal{J}}_{\mathbf{B}_{i}^{\star}} = \tilde{\mathcal{J}}_{\mathbf{B}_{i}} \delta \mathcal{Q}$ Hadamard (component-wise) product 16 11 10 16 40 51 61 0 0 12 12 14 19 26 58 60 55 19 0 0 0 14 13 16 24 40 57 69 56 80 -24 -40 0 0 0 14 17 22 29 51 87 80 62 -4218 22 37 56 68 24 35 55 64 81 109 103 77 104 113 92 49 64 78 87 103 121 120 101 112 100 103 0 72 92 95 98 99 0 0 0

Decompression

$$\mathsf{DCT}^{-1}\left(\tilde{\mathcal{J}}_{\mathbf{B}_{i}^{*}}\right) = \mathbf{B}_{i}^{*} - 128 = \begin{bmatrix} -66 & -63 & -71 & -68 & -56 & -65 & -68 & -46 \\ -71 & -73 & -72 & -46 & -20 & -41 & -66 & -57 \\ -70 & -78 & -68 & -17 & 20 & -14 & -61 & -63 \\ -63 & -73 & -62 & -8 & 27 & -14 & -60 & -58 \\ -58 & -65 & -61 & -27 & -6 & -40 & -68 & -50 \\ -57 & -57 & -57 & -64 & -58 & -48 & -66 & -72 & -47 \\ -53 & -46 & -61 & -74 & -65 & -63 & -62 & -45 \\ -47 & -34 & -53 & -74 & -60 & -47 & -41 \end{bmatrix}$$

Decompression

Decompression

Decompression

Lossy compression indeed...

... but what is lost in the process?

The only lossy operation in the JPEG process is the rounding $\lfloor \cdot \rceil$ during quantization.
... but what is lost in the process?

-

The only lossy operat	on in th	ne JPEG	6 process is	the rounding $\lfloor \cdot \rceil$ during quantization.
$ ilde{\mathcal{J}}_{B^*_i} = \lfloor \mathcal{J}_{B_i} \oslash \mathcal{Q} ceil \circ \mathcal{Q} =$	$\begin{bmatrix} -416 & - \\ 0 & - \\ -42 \\ -42 \\ 18 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \neq \begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \end{bmatrix} = \mathcal{J}_{\mathbf{B}_{i}}$
$\Rightarrow \mathcal{J}_{\mathbf{B}_{i}} - \tilde{\mathcal{J}}_{\mathbf{B}_{i}^{*}} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} 20 & -2 & 0 \\ -7 & -9 & 5 \\ 10 & 5 & -6 \\ 6 & 2 & 2 \\ 2 & -3 & 3 \\ 1 & 4 & 2 \\ -3 & 4 & -1 \\ 0 & 1 & 2 \end{array} \right] $	

... but what is lost in the process?

The only lossy operation in the JPEG process is the rounding $\lfloor \cdot \rfloor$ during quantization.

... but what is lost in the process?

The only lossy operation in the JPEG process is the rounding $\lfloor \cdot \rceil$ during quantization.

... but what is lost in the process?

The only lossy operation in the JPEG process is the rounding $\lfloor \cdot \rceil$ during quantization.

... but what is lost in the process?

The only lossy operation in the JPEG process is the rounding $\lfloor \cdot \rceil$ during quantization.

$$\mathbf{B}_{i} = \begin{bmatrix} 52 & 55 & 61 & 66 & 70 & 61 & 64 & 73 \\ 63 & 59 & 55 & 90 & 109 & 85 & 69 & 72 \\ 62 & 59 & 68 & 113 & 144 & 104 & 66 & 73 \\ 63 & 55 & 87 & 112 & 154 & 106 & 70 & 69 \\ 61 & 68 & 104 & 126 & 88 & 68 & 70 \\ 79 & 65 & 60 & 70 & 77 & 66 & 88 & 75 \\ 87 & 79 & 69 & 68 & 65 & 76 & 78 & 94 \end{bmatrix} \qquad \qquad \mathbf{B}_{i}^{\star} = \begin{bmatrix} 60 & 63 & 55 & 58 & 70 & 61 & 58 & 80 \\ 58 & 56 & 56 & 83 & 108 & 88 & 63 & 71 \\ 66 & 56 & 68 & 105 & 126 & 166 & 70 \\ 66 & 56 & 68 & 168 & 78 & 60 & 53 & 78 \\ 83 & 96 & 77 & 56 & 70 & 83 & 83 & 89 \end{bmatrix} \qquad \qquad \qquad \mathbf{B}_{i}^{\star} = \begin{bmatrix} -8 & -8 & 6 & 8 & 0 & 0 & 6 & -7 \\ 5 & 3 & -1 & 7 & 1 & -3 & 6 & 6 \\ -3 & 2 & 3 & 0 & -2 & -10 & 1 & -3 \\ -2 & -1 & 3 & 4 & 6 & 2 & 9 & -6 \\ 11 & -3 & -1 & 2 & -1 & 8 & 5 & -3 \\ 11 & -31 & -3 & 5 & -3 & 3 & 0 & 0 \\ 4 & -17 & -8 & 12 & -5 & -7 & -5 & 5 \end{bmatrix} \qquad \qquad \mathbf{RMSE} = 6.01 \\ \mathbf{SNR} = 22.37 \ \mathbf{dB}$$

Reconstruction error at the image scale

The notorious compression artifacts of JPEG

 $\mathcal{I}_{\mathsf{TIF}}$

 $\mathcal{I}_{\text{JPEG}}$

 $\epsilon_{\mathsf{JPEG}} = \mathcal{I}_{\mathsf{TIF}} - \mathcal{I}_{\mathsf{JPEG}}$

Reconstruction error at the image scale

The notorious compression artifacts of JPEG

 $\mathcal{I}_{\mathsf{TIF}}$

 $\epsilon_{\mathsf{JPEG}} = \mathcal{I}_{\mathsf{TIF}} - \mathcal{I}_{\mathsf{JPEG}}$

"mosaic effect" in homogeneous areas.

Reconstruction error at the image scale

The notorious compression artifacts of JPEG

 $\mathcal{I}_{\mathsf{TIF}}$

 $\epsilon_{\mathsf{JPEG}} = \mathcal{I}_{\mathsf{TIF}} - \mathcal{I}_{\mathsf{JPEG}}$

"mosaic effect" in homogeneous areas.

"ringing effect" on sharp edges.

Changing the compression quality

It is possible to adjust the compression quality of JPEG by modyfing the quantization $\ensuremath{\mathsf{matrix}}$

Input: \mathcal{Q} , $q \in [1:100]$									
Output: Q_q		16	11	10	16	24	40	51	61
if $q < 50$ then	$\mathcal{Q} =$	12	12	14	19	26	58	60	55
$\alpha = \frac{5000}{2}$		14	13	16	24	40	57	69	56
q '		14	17	22	29	51	87	80	62
else		18	22	37	56	68	109	103	77
$\alpha = 200 - 2q;$		24	35	55	64	81	104	113	92
end		49	64	78	87	103	121	120	101
$Q_q = \left \frac{\alpha Q + 50}{100} \right ;$		72	92	95	98	112	100	103	99

Changing the compression quality

It is possible to adjust the compression quality of JPEG by modyfing the quantization $\ensuremath{\mathsf{matrix}}$

	Input: \mathcal{Q} , $q \in [1:100]$											
Output: Q_q			16	11	10	16	24	40	51	61	.]	
if $q < 50$ then			12	12	14	19	26	58	60	55	;	
	5000		14	13	16	24	40	57	69	56	;	
$\alpha =;$			14	17	22	29	51	87	80	62		
	else	= .	18	22	37	56	68	109	103	77	,	
$\alpha = 200 - 2q;$			24	35	55	64	81	104	113	92	,	
end			 10	64	78	87	103	121	120	10	1	
	$\alpha Q + 50$		70	07	05	07	110	100	102	10		
	$Q_q = \left[\frac{100}{100} \right];$	L	12	92	90	90	112	100	105	95	, 1	
$\mathcal{Q}_{25} =$	32 22 20 32 48 80 102 122					[8	6	5	8 12	20	26	31
	24 24 28 38 52 116 120 110		$\mathcal{Q}_{75} =$			6	6	7	10 13	29	30	28
	28 26 32 48 80 114 138 112					17	7	8	12 20	29	35	28
	28 34 44 58 102 174 160 124					7	7 <u>9</u>	11	15 26	44	40	31
	36 44 74 112 136 218 206 154 Q50 - Q					ģ) 11	19	28 34	55	52	39
	48 70 110 128 162 208 226 184					1	2 18	28	32 41	52	57	46
	98 128 156 174 206 242 240 202					2	5 32	39	44 52	61	60	51
	144 184 190 196 224 200 206 198						6 46	48	49 56	50	52	50

RMSE = 6.71 SNR = 24.29 dB -rw-r--r-- 35K randompic_050.jpg

