
Analog-to-Digital Conversion

Guillaume Tochon

guillaume.tochon@lrde.epita.fr

LRDE, EPITA

Guillaume Tochon (LRDE) CODO - Analog-to-Digital Conversion 1 / 26



Being discrete but looking continuous...

Let’s take a look inside some audio file:
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Sampling the real world

Physical phenonema are continous by nature (light, sound, pressure, temperature,
current, voltage, etc) and must somehow be discretized in order to be digitally
handled and stored on computers.

From the real world
fa(x , y , z , t)

to the digital one
fd(i , j , k, n)

. . .

Can this be done without loosing any information (or as few as possible)?
And if yes, how?
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From the continuous world to the discrete one
The challenge of analog-to-digital conversion
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Recorded physical signals are continuous both with respect to their variable(s) (time
and/or position) and the values they may take ⇒ fa : R→ R.

But they must be converted into discrete-time and discrete-amplitude digital signals
in order to be stored and manipulated on computers ⇒ fd : Z→ F

How to get from something that is continuous to something that is discrete without
loosing information?

fa : R→ R fd : Z→ F

continuous
world

discrete
world

ADC
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Recorded physical signals are continuous both with respect to their variable(s) (time
and/or position) and the values they may take ⇒ fa : R→ R.

But they must be converted into discrete-time and discrete-amplitude digital signals
in order to be stored and manipulated on computers ⇒ fd : Z→ F

How to get from something that is continuous to something that is discrete without
loosing information?

fa : R→ R fd : Z→ F

continuous
world

discrete
world

f̃d : Z→ R
sampling quantization

ADC

discretization
in time

discretization
in amplitude



The problematic of sampling

The goal of sampling is to pick some values of the continuous signal fa at particular
sampling points (tn)n∈Z in order to create the sampled sequence (f̃d (n) = fa(tn))n∈Z.
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|
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For the sake of simplicity, sampling points are regularly spaced: tn = nTe .
Te : sampling period, and fe = 1

Te
: sampling frequency/rate.

⇒ What is the best frequency to sample a signal?
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Te too small → oversampling
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How fast is a signal varying?
Need for a new representation...

The temporal representation is not convenient for that ⇒ we need a new one!

Ex: Consider the simple signal x(t) = A0 cos(2πf0t)

→ temporal representation

t

x(t)
→ frequency representation

f

|x(t)|

Ex: Consider now a slightly more complicated signal x(t) = A1 cos(2πf1t)+
A2 cos(2πf2t) + A3 cos(2πf3t) (A1>A2>A3, f1<f2<f3)

t

x(t)

f

|x(t)|

|
f1

|
f2

|
f3

|A1

|A2

|A3
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How fast is a signal varying?
What about more complicated signals?

The frequency representation of sine/cosine waves (and any linear mixture of them)
is pretty straightforward...
What about more general signals?

→ Periodic signals

t

x(t)

|
0 T

Fourier series

decomposition

cn =
1

T

∫ T

0

x(t)e−2iπ n
T tdt . . . f

|cn|

0
|

1
T

|
2
T

|
3
T

|
4
T

|
n
T

→ All other (non-periodic) signals

t

x(t) Fourier transform

x̂(f ) =

∫ +∞

−∞
x(t)e−2iπftdt

f

|x̂( f )|
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Superposition principle

Why does Fourier series decomposition only apply to periodic signals?
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In classical physics, a complicated oscillatory phenomenon can be decomposed as
the superposition of several much simpler oscillatory phenomena.

Light decomposition Water ripples and interferences Guitar strings vibrating

⇒ This is the base idea of Fourier series decomposition, namely to express some
potential complicated periodic function as a sum of much simpler cosine and sine
waves.
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Fourier series decomposition
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Let’s take a simple square function of period T , f (t) =

{
1 if t ∈

[
0, T

2

[
0 if t ∈

[
T
2
,T
[ and

try to build an approximation f̃ using only sine waves

1st step: Add the mean value of f (since sine waves are 0-mean functions).

2nd step: Iteratively correct the approximation error with sine waves of proper
scaling and increasing frequencies (multiples of the fundamental frequency 1

T
).

f̃ (t) =
1

2

t

f (t)

1

−T/2 0 T/2 T 2T

bn ≡ resemblance between the approximation error
(
f (t)− f̂ (t)

)
and sin(2π n

T t).

≡ resemblance between the original function f (t) and sin(2π n
T t).

⇒ dot product between the original function f (t) and sin(2π n
T t).
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The dot product

The dot product 〈x , y〉 between two elements (x , y) ∈ E × E of some space E
measures the similarity between those two elements.

→ E ≡ R2

Let x =
(
x1

x2

)
and y =

(
y1

y2

)
be two vectors in R2

⇒ 〈x , y〉 = x1y1 + x2y2

= ‖x‖‖y‖ cos θ

→ E ≡ Rn

Let x =


x1

.

.

.
xn

 and y =


y1

.

.

.
yn

 be two vectors in Rn.

⇒ 〈x , y〉 = xT y =
n∑

i=1

xiyi

→ E ≡ L2([0,T ]) (square integrable functions over [0,T ]).

Let f and g be two functions in L2([0,T ]).

⇒ 〈f , g〉 =
1

T

∫ T

0

f (t)g(t)dt
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x

y

θz

〈x , y〉 = ‖x‖‖y‖ cos θ ≈ ‖x‖‖y‖
〈x , z〉 = 0

t

f (t),g(t),h(t)
〈 f ,g〉 ≈ ‖ f‖‖g‖
〈 f ,h〉= 0
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⇒ 〈f , g〉 =
1

T

∫ T

0
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y

θz

〈x , y〉 = ‖x‖‖y‖ cos θ ≈ ‖x‖‖y‖
〈x , z〉 = 0

t

f (t),g(t),h(t)
〈 f ,g〉 ≈ ‖ f‖‖g‖
〈 f ,h〉= 0



The dot product

The dot product 〈x , y〉 between two elements (x , y) ∈ E × E of some space E
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Geometric illustration of Fourier series decomposition (1/2)
Decomposition of a vector over a basis

If (u1, u2) is the canonical basis of R2, then any
vector x ∈ R2 can be decomposed as :
x = x1u1 + x2u2

⇒ xi ≡ projection of x over the axe
spanned by ui .

= 〈x , ui 〉
⇒ x = 〈x , u1〉u1 + 〈x , u2〉u2

u1 =

(
1
0

)
u2 =

(
0
1

)
x =

(
x1

x2

)

x1 = 〈x , u1〉

x2 = 〈x , u2〉

⇒ This can be generalized straightforwardly to Rn :
If (u1, . . . , un) is an orthonormal basis of Rn, then any x ∈ Rn can be expressed as

x =
n∑

i=1

〈x , ui 〉ui =
n∑

i=1

xiui ⇔ x =


x1

...
xn
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Geometric illustration of Fourier series decomposition (2/2)
The same decomposition goes for functions

L2([0,T ]) is a space of functions (i.e., of infinite dimension). But this decomposition remains
valid, provided that we have an infinite orthonormal basis of L2([0,T ]).

⇒ The infinite set of functions {e i2π n
T
t , n ∈ Z} is an infinite orthonormal basis of L2([0,T ]).

⇒ Any function f ∈ L2([0,T ]) can be decomposed as f (t) =
+∞∑

n=−∞

〈f , e i2π n
T
t〉e i2π n

T
t

⇒ 〈f , e i2π n
T
t〉 = cn =

1

T

∫ T

0

f (t)e−i2π n
T
tdt is the projection of f over e i2π

n
T
t .

f (t) =
+∞∑

n=−∞

cne
i2π n

T
t ≡ Fourier series decomposition of f .

f =




...
ck
cm
cn

...




O

L2([0,T ])

cn •

ck
•

cm
•

ei2π k
T t

ei2π n
T t

ei2π m
T t

cn ≡ coordinate of f with respect to the basis
function e i2π

n
T
t .
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Fourier series decomposition
Dirichlet theorem

Using the fact that e iθ = cos(θ) + i sin(θ), one can rewrite

f (t) =
+∞∑

n=−∞

cne
i2π n

T
t = a0 +

+∞∑
n=1

an cos(2π
n

T
t) + bn sin(2π

n

T
t)

Dirichlet theorem

The Fourier series decomposition holds for any piecewise C1, T−periodic function f that is
continuous on t.
If f is not continuous on t, then the Fourier series converges to 1

2

(
f (t−) + f (t+)

)
.

Fourier coefficients are given by:

- ∀n ∈ Z, cn =
1

T

∫ T

0

f (t)e−i2π n
T
tdt

- ∀n ≥ 1, an =
2

T

∫ T

0

f (t) cos(2π
n

T
t)dt and a0 =

1

T

∫ T

0

f (t)dt (mean value of f ).

- ∀n ≥ 1, bn =
2

T

∫ T

0

f (t) sin(2π
n

T
t)dt
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Some useful stuff about Fourier coefficients

→ The interval used in the definition of the Fourier coefficients does not matter,
as long as it is of length T (i.e., [0,T ] is as good as [−T

2
,T

2
]).

→ |cn| is called the spectrum of f (it’s what we actually look for).

→ If f is a real function, then cn = c−n (in which case the spectrum is symmetric).

→ If f is an even function (f (−t) = f (t)),
then bn = 0 ∀n ∈ N.

t

< f , sin(2π n
T t)> = 0

|
0 T

→ If f is an odd function (f (−t) = −f (t)),
then an = 0 ∀n ∈ N∗. t

< f , cos(2π n
T t)> = 0

|
0 T

→ ∀n ∈ N∗
{

an = cn + c−n
bn = i(cn − c−n)

⇔
{

cn = 1
2 (an − ibn)

c−n = 1
2 (an + ibn)

→ Parseval equality:
1

T

∫ T

0

|f (t)|2dt

energy in temporal domain

=
+∞∑

n=−∞
|cn|2 = a2

0 +
1

2

+∞∑

n=1

(a2
n + b2

n)

energy in frequency domain
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Example
Harmonic analysis of a signal

Let’s consider a recording of a piano A3 note (frequency 220 Hz):

time (s)
0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

piano  note soundwaveA3

→ The obtained spectrum is symmetric (since cn = c−n).
→ The fundamental frequency is f = 218.3 Hz.
→ The harmonics 2f , 3f , 4f and 5f have relatively large magnitudes.
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From Fourier series decomposition to Fourier transform
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The Fourier transform extends the Fourier series decomposition to non-periodic functions:
Intuitively, the coefficient cn is associated with frequency n

T
⇒ the “gap” between two

successive coefficients is ∆c = cn+1 − cn = 1
T

.

Thus, when T → +∞, the T−periodic function f ”becomes” non-periodic, and ∆c → 0
⇒ a non periodic function f has a continuous spectrum.

The Fourier transform of some non-periodic (and integrable) function f is defined as the

complex-valued function f̂ : R→ C, ν 7→ f̂ (ν) =

∫ +∞

−∞
f (t)e−i2πνtdt

t

f (t)

|
0 T

νn

|cn|

0
|

1
T

|
2
T

|
3
T

|
4
T

t

f(t) = e−a|t|

1

ν

f̂(ν) = 2a
a2+4π2ν2

2
a

Fourier transform

t

f(t) = ΠT (t)

T/2−T/2

1

ν

f̂(ν) = sin(πTν)
πν

1/T

2/T

T

| |

Fourier transform
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Some useful stuff about the Fourier transform

→ If f is real and even, then f̂ is real and even.

→ If f is real and odd, then f̂ is imaginary and odd.

→ F(f ∗ g) = f̂ (ν)× ĝ(ν) and F(f × g) = f̂ (ν) ∗ ĝ(ν).

→ F(f (t − t0)) = f̂ (ν)e−i2πνt0 .

→ |f̂ (ν)| gives only the magnitude of the frequencies contained in f . Their position
is given by φ(f̂ (ν)).

→ Parseval equality:

∫ +∞

−∞
|f (t)|2dt =

∫ +∞

−∞
|f̂ (ν)|2dν ⇒ the signal energy is

the same in the temporal and in the frequency domains.

→ f is said to be bandlimited if ∃B > 0 s.t |f̂ (ν)| = 0 ∀|ν| > B.

B
|

−B
| ν

|f̂(ν)|
Bernstein theorem:

|f ′(t)| ≤ 2πB

∫ B

−B
|f̂ (ν)|dν
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Mathematical model of sampling (1/2)
Say hi! to Dirac

Dirac delta function is defined by δ : t 7→
{

+∞ if t = 0
0 otherwise

and

∫ +∞

−∞
δ(t)dt = 1

t

δ(t)

−1

This little guy is useful to model the sampling operation thanks to its following
properties:

→ f (t)δ(t − t0) = f (t0)δ(t − t0)

t

f(t)

t

δ(t− t0)

|
t0

−1

t

f(t0)δ(t− t0)

|
t0

−f(t0)

× =

→ (f ∗ δ)(t) = (δ ∗ f )(t) = f (t) → δ is the identity element for the convolution
product.

→ f (t) ∗ δ(t − t0) = f (t − t0)

t

f(t)

t

δ(t− t0)

|
t0

−1

t

f(t− t0)

|
t0

∗ =
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Mathematical model of sampling
Sampling with the Dirac comb

Dirac delta can be extended to the Dirac comb, also called
sampling function with period Te :

XTe (t) = · · ·+ δ(t + Te) + δ(t) + δ(t − Te) + . . .

=
+∞∑

n=−∞

δ(t − nTe) t

XTe (t)

−1

|
Te

|
2Te

|
0

|
−Te

It allows to easily model the sampling operation:

f̃d(n) = fa(t)×XTe (t)

=
+∞∑

n=−∞

fa(nTe)δ(t − nTe)

Besides, the Dirac comb maps to itself through the Fourier
transform, and this property is the key to prove Shannon
sampling theorem:

X̂Te (ν) =
1

Te
X 1

Te
(ν) =

1

Te

+∞∑
n=−∞

δ(ν − n

Te
) ν

X̂Te (ν)

−1
Te

|

fe = 1
Te

|
2
Te

|
0

|

− 1
Te
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Shannon sampling theorem (1/2)
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One can now express the spectrum of the sampled signal f̃d(n) using elementary
properties of the Fourier transform and the Dirac comb:

ˆ̃fd(ν) = f̂a(ν) ∗X̂Te (ν) = f̂a(ν) ∗ 1

Te

+∞∑
n=−∞

δ(ν − n

Te
) =

1

Te

+∞∑
n=−∞

f̂a(ν − n

Te
)

⇒ The spectrum of f̃d(n) is obtained by replicating f̂a(ν) with frequency fe = 1
Te

.

If fa is bandlimited with |f̂a(ν)| = 0 ∀|ν| > B:

- Either fe ≥ 2B → there is no overlap between the replicates of f̂a(ν).

- Or fe < 2B → there is some overlap ≡ aliasing.

If fa is not bandlimited, aliasing inevitably occurs.
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One can now express the spectrum of the sampled signal f̃d(n) using elementary
properties of the Fourier transform and the Dirac comb:

ˆ̃fd(ν) = f̂a(ν) ∗X̂Te (ν) = f̂a(ν) ∗ 1

Te

+∞∑
n=−∞

δ(ν − n

Te
) =

1

Te

+∞∑
n=−∞

f̂a(ν − n

Te
)

⇒ The spectrum of f̃d(n) is obtained by replicating f̂a(ν) with frequency fe = 1
Te

.

If fa is bandlimited with |f̂a(ν)| = 0 ∀|ν| > B:

- Either fe ≥ 2B → there is no overlap between the replicates of f̂a(ν).

- Or fe < 2B → there is some overlap ≡ aliasing.

If fa is not bandlimited, aliasing inevitably occurs.
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Shannon sampling theorem Also called Nyquist-Shannon theorem, Whittaker–Shannon–Kotelnikov theorem, Whit-
taker–Nyquist–Kotelnikov–Shannon theorem and cardinal theorem of interpolation...

It is possible to exactly recover a bandlimited signal fa with frequency range
[−fmax, fmax] from its sampled sequence f̃d if the sampling rate fe satisfies

fe ≥ 2fmax (Nyquist condition)

The reconstruction of fa from f̃d derives from the application of a low-pass filter on
ˆ̃fd(ν) with cutoff frequency fmax.

⇒ It yields Shannon interpolation formula: fa(t) =
+∞∑

n=−∞
f̃d (n)sinc

( π
Te

(t − nTe)
)



Shannon sampling theorem (2/2)

Guillaume Tochon (LRDE) CODO - Analog-to-Digital Conversion 21 / 26

Shannon sampling theorem Also called Nyquist-Shannon theorem, Whittaker–Shannon–Kotelnikov theorem, Whit-
taker–Nyquist–Kotelnikov–Shannon theorem and cardinal theorem of interpolation...

It is possible to exactly recover a bandlimited signal fa with frequency range
[−fmax, fmax] from its sampled sequence f̃d if the sampling rate fe satisfies

fe ≥ 2fmax (Nyquist condition)

The reconstruction of fa from f̃d derives from the application of a low-pass filter on
ˆ̃fd(ν) with cutoff frequency fmax.

fmax

|
−fmax

| ν

| ˆ̃fd(ν)|

fe
|

−fe
|

⇒ It yields Shannon interpolation formula: fa(t) =
+∞∑

n=−∞
f̃d (n)sinc

( π
Te

(t − nTe)
)



Shannon sampling theorem (2/2)

Guillaume Tochon (LRDE) CODO - Analog-to-Digital Conversion 21 / 26

Shannon sampling theorem Also called Nyquist-Shannon theorem, Whittaker–Shannon–Kotelnikov theorem, Whit-
taker–Nyquist–Kotelnikov–Shannon theorem and cardinal theorem of interpolation...

It is possible to exactly recover a bandlimited signal fa with frequency range
[−fmax, fmax] from its sampled sequence f̃d if the sampling rate fe satisfies

fe ≥ 2fmax (Nyquist condition)

The reconstruction of fa from f̃d derives from the application of a low-pass filter on
ˆ̃fd(ν) with cutoff frequency fmax.

fmax

|
−fmax

| ν

| ˆ̃fd(ν)|

fe
|

−fe
|

⇒ It yields Shannon interpolation formula: fa(t) =
+∞∑

n=−∞
f̃d (n)sinc

( π
Te

(t − nTe)
)



Shannon sampling theorem (2/2)

Guillaume Tochon (LRDE) CODO - Analog-to-Digital Conversion 21 / 26

Shannon sampling theorem Also called Nyquist-Shannon theorem, Whittaker–Shannon–Kotelnikov theorem, Whit-
taker–Nyquist–Kotelnikov–Shannon theorem and cardinal theorem of interpolation...

It is possible to exactly recover a bandlimited signal fa with frequency range
[−fmax, fmax] from its sampled sequence f̃d if the sampling rate fe satisfies

fe ≥ 2fmax (Nyquist condition)

The reconstruction of fa from f̃d derives from the application of a low-pass filter on
ˆ̃fd(ν) with cutoff frequency fmax.
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The aliasing effect
What if fe < 2fmax?
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If Nyquist condition is not fulfilled, the overlap occuring in |ˆ̃fd(ν)| between the
original spectrum |f̂a(ν)| and its replicates generates aliasing.
→ the signal that is reconstructed from (f̃d(n))n∈Z is not fa, but is such that its
sampling at frequency fe yields (fd(n))n∈Z.

t

fa(t)

|
T

|
5T

|
0

→ Examples of aliasing in real life:

Moiré pattern: Stroboscopic effect:



The aliasing effect
What if fe < 2fmax?

Guillaume Tochon (LRDE) CODO - Analog-to-Digital Conversion 22 / 26

If Nyquist condition is not fulfilled, the overlap occuring in |ˆ̃fd(ν)| between the
original spectrum |f̂a(ν)| and its replicates generates aliasing.
→ the signal that is reconstructed from (f̃d(n))n∈Z is not fa, but is such that its
sampling at frequency fe yields (fd(n))n∈Z.

t

fa(t), f̃d(n)

|
T

|
5T

|
0

→ Examples of aliasing in real life:
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If Nyquist condition is not fulfilled, the overlap occuring in |ˆ̃fd(ν)| between the
original spectrum |f̂a(ν)| and its replicates generates aliasing.
→ the signal that is reconstructed from (f̃d(n))n∈Z is not fa, but is such that its
sampling at frequency fe yields (fd(n))n∈Z.
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Applications of Shannon sampling theorem

Humans can hear frequencies up to 20 kHz:

→ Sounds must be sampled at least at
40 kHz.

→ Sampling at 44.1 kHz in practice to
account for an anti-aliasing lowpass
filter.

The humain visual system perceives individ-
ual images for rates up to 10 to 12 images
per second:

→ Standard video frame rates are 24, 25
and 30 frames per second.
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The problematic of quantization
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After the sampling stage, the input signal has become discrete with respect to its
variable(s), but it is still continous with respect to its amplitude.

The goal of the quantization step is to map the values of the input sample sequence
f̃d(n) to a discrete and finite set F (called dictionary), to create the final discrete
sequence fd(n) = Q(f̃d(n)) : Z→ F.

In practice, the input signal fa is considered bounded → fa(t) ∈ [−A,A].

1. [−A,A] is divided into L non overlapping in-
tervals [ai−1, ai ]→ [−A,A] =

⋃L
i=1[ai−1, ai ].

2. A quantization level αi is chosen in each in-
terval [ai−1, ai ].

3. Values f̃d(n) are rounded to the quantization
level of the interval they fall in:

Q
(
f̃d(n) ∈ [ai−1, ai ]

)
= αi .

∆i = ai − ai−1 → quantization step.
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The goal of the quantization step is to map the values of the input sample sequence
f̃d(n) to a discrete and finite set F (called dictionary), to create the final discrete
sequence fd(n) = Q(f̃d(n)) : Z→ F.

In practice, the input signal fa is considered bounded → fa(t) ∈ [−A,A].

t| | | | | | | | | |

fa(t), f̃d(n), fd(n)

-Aa0

α1
a1

α2

ai−1

αi

ai

αi+1

ai+1

αL−1
aL−1 αL

AaL
1. [−A,A] is divided into L non overlapping in-

tervals [ai−1, ai ]→ [−A,A] =
⋃L

i=1[ai−1, ai ].

2. A quantization level αi is chosen in each in-
terval [ai−1, ai ].

3. Values f̃d(n) are rounded to the quantization
level of the interval they fall in:

Q
(
f̃d(n) ∈ [ai−1, ai ]

)
= αi .

∆i = ai − ai−1 → quantization step.



Uniform quantization

In general, the quantized value are encoded on b bits (i.e. L = 2b) and the
quantization is uniform: ∀i ,∆i = ∆ = 2A

2b = A
2b−1 .

x

Q(x)

|

−

|

−

|

−

|

−
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−

|

−

|− |

−
|

−

|

−

|

−

|

−

|

−

A

A

−A

−A

∆

∆

mid-riser

mid-tread Two main strategies:

- Mid-riser quantizer
→ Q(x) = ∆

(⌊
x
∆

⌋
+ 1

2

)
3 Is readily encodable on b bits.
7 0,A and −A are not quantized levels.

- Mid-tread quantizer
→ Q(x) = ∆

⌊
x
∆

+ 1
2

⌋
3 0,A and −A are quantized levels.
7 Has an odd number of quantization

levels.
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Quantization ≡ rounding ≡ irreversible operation ≡ loss of information.

The induced distortion is called the quantization noise ε(n) = fd(n)− f̃d(n).

For a uniform quantization with step ∆, |ε(n)| ≤ ∆
2 ⇒ ε(n) ∈ [−∆

2 ,
∆
2 ].

When ∆ is small, ε(n) can be approximated by a uniform random variable in

[−∆
2 ,

∆
2 ] with variance σ2

e = ∆2

12

⇒ SNRQ(b) ∝ 6.02b dB.
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Quantization ≡ rounding ≡ irreversible operation ≡ loss of information.

The induced distortion is called the quantization noise ε(n) = fd(n)− f̃d(n).
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