
Hands On OpenCL
Created by
Simon McIntosh-Smith
and Tom Deakin

Includes contributions from:
Timothy G. Mattson (Intel) and Benedict Gaster (Qualcomm) V 1.2 – Nov 2014

IMPORTANT OPENCL CONCEPTS
Lecture 3

OpenCL Platform Model

• One Host and one or more OpenCL Devices
– Each OpenCL Device is composed of one or more

Compute Units
• Each Compute Unit is divided into one or more Processing

Elements

• Memory divided into host memory and device memory

Processing
Element

OpenCL Device

……
…

…
……

…
…

……
…

…
……

…
Host

Compute Unit

The BIG idea behind OpenCL
• Replace loops with functions (a kernel) executing at each

point in a problem domain
– E.g., process a 1024x1024 image with one kernel invocation per pixel or

1024x1024=1,048,576 kernel executions

Traditional loops Data Parallel OpenCL
void

mul(const int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i = 0; i < n; i++)

 c[i] = a[i] * b[i];

}

__kernel void

mul(__global const float *a,

 __global const float *b,

 __global float *c)

{

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

}

// many instances of the kernel,

// called work-items, execute

// in parallel

An N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)
• Local Dimensions:

– 64x64 (work-group, executes together)

• Choose the dimensions that are “best” for
your algorithm

102
4

10
2

4

Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

OpenCL N Dimensional Range
(NDRange)

• The problem we want to compute should
have some dimensionality;
– For example, compute a kernel on all points in a

cube
• When we execute the kernel we specify up

to 3 dimensions
• We also specify the total problem size in

each dimension – this is called the global size
• We associate each point in the iteration

space with a work-item

OpenCL N Dimensional Range
(NDRange)

• Work-items are grouped into work-groups;
work-items within a work-group can share
local memory and can synchronize

• We can specify the number of work-items
in a work-group – this is called the local
(work-group) size

• Or the OpenCL run-time can choose the
work-group size for you (usually not
optimally)

OpenCL Memory model
• Private Memory

– Per work-item
• Local Memory

– Shared within a
work-group

• Global Memory
/Constant Memory
– Visible to all

work-groups
• Host memory

– On the CPU

Memory management is explicit:
You are responsible for moving data from

host → global → local and back

Context and Command-Queues
• Context:

– The environment within which kernels
execute and in which synchronization
and memory management is defined.

• The context includes:
– One or more devices
– Device memory
– One or more command-queues

• All commands for a device (kernel
execution, synchronization, and memory
transfer operations) are submitted
through a command-queue.

• Each command-queue points to a single
device within a context.

Queue

Context

Device

Device Memory

Execution model (kernels)
• OpenCL execution model … define a problem domain and

execute an instance of a kernel for each point in the
domain

__kernel void times_two(
 __global float* input,
 __global float* output)
{
 int i = get_global_id(0);
 output[i] = 2.0f * input[i];
}

get_global_id(0)
10

Input

Output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

__kernel void
horizontal_reflect(read_only image2d_t src,
 write_only image2d_t dst)
{
 int x = get_global_id(0); // x-coord
 int y = get_global_id(1); // y-coord
 int width = get_image_width(src);
 float4 src_val = read_imagef(src, sampler,
 (int2)(width-1-x, y));
 write_imagef(dst, (int2)(x, y), src_val);
}

Building Program Objects
• The program object encapsulates:

– A context
– The program kernel source or binary
– List of target devices and build options

• The C API build process to create a
program object:

– clCreateProgramWithSource()
– clCreateProgramWithBinary()

OpenCL uses runtime
compilation … because
in general you don’t
know the details of the
target device when you
ship the program

Compile for
GPU

Compile for
CPU

GPU
code

CPU
code

Example: vector addition

• The “hello world” program of data parallel
programming is a program to add two vectors

C[i] = A[i] + B[i] for i=0 to N-1

• For the OpenCL solution, there are two parts
– Kernel code
– Host code

Vector Addition - Kernel

__kernel void vadd(__global const float *a,

 __global const float *b,

 __global float *c)

 {

 int gid = get_global_id(0);

 c[gid] = a[gid] + b[gid];

 }

Vector Addition – Host
• The host program is the code that runs on the host to:

– Setup the environment for the OpenCL program
– Create and manage kernels

• 5 simple steps in a basic host program:
1. Define the platform … platform = devices+context+queues
2. Create and Build the program (dynamic library for kernels)
3. Setup memory objects
4. Define the kernel (attach arguments to kernel functions)
5. Submit commands … transfer memory objects and execute

kernels

The basic platform and runtime APIs
in OpenCL (using C)

arg [0]
value

arg [1]
value

arg [2]
value

arg [0]
value

arg [1]
value

arg [2]
value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffer
s

Image
s In

Order
Queue

Out of
Order
Queue

Compute Device

GPU

CPU

dp_mul

Programs Kernels Memory Objects Command Queues

1. Define the platform
• Grab the first available platform:

err = clGetPlatformIDs(1, &firstPlatformId,

 &numPlatforms);

• Use the first CPU device the platform provides:
err = clGetDeviceIDs(firstPlatformId,

 CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);

• Create a simple context with a single device:
context = clCreateContext(firstPlatformId, 1,

 &device_id, NULL, NULL, &err);

• Create a simple command-queue to feed our device:
commands = clCreateCommandQueue(context, device_id,

 0, &err);

Command-Queues
• Commands include:

– Kernel executions
– Memory object management
– Synchronization

• The only way to submit commands
to a device is through a
command-queue.

• Each command-queue points to a
single device within a context.

• Multiple command-queues can feed
a single device.
– Used to define independent

streams of commands that don’t
require synchronization

Queue Queue

Context

GPU

CPU

Command-Queue execution details

Command queues can be configured in
different ways to control how commands
execute
• In-order queues:

– Commands are enqueued and complete in the
order they appear in the program (program-order)

• Out-of-order queues:
– Commands are enqueued in program-order but

can execute (and hence complete) in any order.

• Execution of commands in the
command-queue are guaranteed to be
completed at synchronization points
– Discussed later

Queue Queue

Context

GPU

CPU

2. Create and Build the program
• Define source code for the kernel-program as a string literal

(great for toy programs) or read from a file (for real
applications).

• Build the program object:

program = clCreateProgramWithSource(context, 1

 (const char**) &KernelSource, NULL, &err);

• Compile the program to create a “dynamic library” from
which specific kernels can be pulled:

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

Error messages

• Fetch and print error messages:

if (err != CL_SUCCESS) {

 size_t len;

 char buffer[2048];

 clGetProgramBuildInfo(program, device_id,

 CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);

 printf(“%s\n”, buffer);

}

• Important to do check all your OpenCL API error messages!

• Easier in C++ with try/catch (see later)

3. Setup Memory Objects
• For vector addition we need 3 memory objects, one each

for input vectors A and B, and one for the output vector C.
• Create input vectors and assign values on the host:

float h_a[LENGTH], h_b[LENGTH], h_c[LENGTH];

for (i = 0; i < length; i++) {

 h_a[i] = rand() / (float)RAND_MAX;

 h_b[i] = rand() / (float)RAND_MAX;

}

• Define OpenCL memory objects:
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY,

 sizeof(float)*count, NULL, NULL);

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,

 sizeof(float)*count, NULL, NULL);

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

 sizeof(float)*count, NULL, NULL);

What do we put in device memory?
Memory Objects:
• A handle to a reference-counted region of global memory.

There are two kinds of memory object
• Buffer object:

– Defines a linear collection of bytes (“just a C array”).
– The contents of buffer objects are fully exposed within kernels and

can be accessed using pointers
• Image object:

– Defines a two- or three-dimensional region of memory.
– Image data can only be accessed with read and write functions, i.e.

these are opaque data structures. The read functions use a sampler.

Used when interfacing with a graphics API such as
OpenGL. We won’t use image objects in this tutorial.

Creating and manipulating buffers
• Buffers are declared on the host as type: cl_mem

• Arrays in host memory hold your original host-side
data:
float h_a[LENGTH], h_b[LENGTH];

• Create the buffer (d_a), assign sizeof(float)*count
bytes from “h_a” to the buffer and copy it into
device memory:
cl_mem d_a = clCreateBuffer(context,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 sizeof(float)*count, h_a, NULL);

Conventions for naming buffers

• It can get confusing about whether a host
variable is just a regular C array or an
OpenCL buffer

• A useful convention is to prefix the names
of your regular host C arrays with “h_”
and your OpenCL buffers which will live
on the device with “d_”

Creating and manipulating buffers

• Other common memory flags include:
CL_MEM_WRITE_ONLY, CL_MEM_READ_WRITE

• These are from the point of view of the device

• Submit command to copy the buffer back to host
memory at “h_c”:
– CL_TRUE = blocking, CL_FALSE = non-blocking

clEnqueueReadBuffer(queue, d_c, CL_TRUE,
sizeof(float)*count, h_c,
NULL, NULL, NULL);

4. Define the kernel
• Create kernel object from the kernel function

“vadd”:

kernel = clCreateKernel(program, “vadd”, &err);

• Attach arguments of the kernel function “vadd” to
memory objects:

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);

err |= clSetKernelArg(kernel, 3, sizeof(unsigned int),
&count);

5. Enqueue commands

• Write Buffers from host into global memory (as
non-blocking operations):

err = clEnqueueWriteBuffer(commands, d_a, CL_FALSE,

 0, sizeof(float)*count, h_a, 0, NULL, NULL);

err = clEnqueueWriteBuffer(commands, d_b, CL_FALSE,

 0, sizeof(float)*count, h_b, 0, NULL, NULL);

• Enqueue the kernel for execution (note: in-order so OK):

err = clEnqueueNDRangeKernel(commands, kernel, 1,

 NULL, &global, &local, 0, NULL, NULL);

5. Enqueue commands

• Read back result (as a blocking operation). We have an
in-order queue which assures the previous commands are
completed before the read can begin.

err = clEnqueueReadBuffer(commands, d_c, CL_TRUE,

 sizeof(float)*count, h_c, 0, NULL, NULL);

Vector Addition – Host Program
// create the OpenCL context on a GPU device
cl_context context = clCreateContextFromType(0,
 CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);
clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |
 CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);
memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |
 CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 sizeof(cl_float)*n, NULL, NULL);

// create the program
program = clCreateProgramWithSource(context, 1,
 &program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],
 sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,
 global_work_size, NULL,0,NULL,NULL);

// read output array
err = clEnqueueReadBuffer(cmd_queue, memobjs[2],
 CL_TRUE, 0,
 n*sizeof(cl_float), dst,
 0, NULL, NULL);

Vector Addition – Host Program
// create the OpenCL context on a GPU device
cl_context context = clCreateContextFromType(0,
 CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);
clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |
 CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);
memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |
 CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 sizeof(cl_float)*n, NULL, NULL);

// create the program
program = clCreateProgramWithSource(context, 1,
 &program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],
 sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,
 global_work_size, NULL,0,NULL,NULL);

// read output array
err = clEnqueueReadBuffer(cmd_queue, memobjs[2],
 CL_TRUE, 0,
 n*sizeof(cl_float), dst,
 0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.

OVERVIEW OF OPENCL APIS
Lecture 4

Host programs can be “ugly”

• OpenCL’s goal is extreme portability, so it
exposes everything
– (i.e. it is quite verbose!).

• But most of the host code is the same from
one application to the next – the re-use
makes the verbosity a non-issue.

• You can package common API combinations
into functions or even C++ or Python classes
to make the reuse more convenient.

The C++ Interface
• Khronos has defined a common C++ header file containing a

high level interface to OpenCL, cl.hpp
• This interface is dramatically easier to work with1

• Key features:
– Uses common defaults for the platform and

command-queue, saving the programmer from extra
coding for the most common use cases

– Simplifies the basic API by bundling key parameters with
the objects rather than requiring verbose and repetitive
argument lists

– Ability to “call” a kernel from the host, like a regular
function

– Error checking can be performed with C++ exceptions

1 especially for C++ programmers…

or cl2.hpp

C++ Interface:
setting up the host program

• Enable OpenCL API Exceptions. Do this before
including the header file
#define __CL_ENABLE_EXCEPTIONS

• Include key header files … both standard and custom
#include <CL/cl.hpp> // Khronos C++ Wrapper API

#include <cstdio> // For C style

#include <iostream> // For C++ style IO

#include <vector> // For C++ vector types

For information about C++, see
the appendix:
“C++ for C programmers”.

// Create buffers

// True indicates CL_MEM_READ_ONLY

// False indicates CL_MEM_READ_WRITE

d_a = cl::Buffer(context,
 h_a.begin(), h_a.end(), true);

d_b = cl::Buffer(context,
 h_b.begin(), h_b.end(), true);

d_c = cl::Buffer(context,
 CL_MEM_READ_WRITE,
 sizeof(float) * LENGTH);

// Enqueue the kernel

vadd(cl::EnqueueArgs(

 queue,

 cl::NDRange(count)),

 d_a, d_b, d_c, count);

cl::copy(queue,
 d_c, h_c.begin(), h_c.end());

std::vector<float>

 h_a(N), h_b(N), h_c(N);

// initialize host vectors…

cl::Buffer d_a, d_b, d_c;

cl::Context context(
 CL_DEVICE_TYPE_DEFAULT);

cl::CommandQueue
 queue(context);

cl::Program program(

 context,

 loadprogram(“vadd.cl”),

 true);

// Create the kernel functor

cl::make_kernel<cl::Buffer,
 cl::Buffer, cl::Buffer, int>

 vadd(program, “vadd”);

C++ interface: The vadd host program

The C++ Buffer Constructor
• This is the API definition:

– Buffer(startIterator, endIterator, bool readOnly, bool useHostPtr)
• The readOnly boolean specifies whether the memory is

CL_MEM_READ_ONLY (true) or CL_MEM_READ_WRITE (false)
– You must specify a true or false here

• The useHostPtr boolean is default false
– Therefore the array defined by the iterators is implicitly copied

into device memory
– If you specify true:

• The memory specified by the iterators must be contiguous
• The context uses the pointer to the host memory, which becomes device

accessible - this is the same as CL_MEM_USE_HOST_PTR
• The array is not copied to device memory

• We can also specify a context to use as the first argument in
this API call

The C++ Buffer Constructor

• When using the buffer constructor which uses
C++ vector iterators, remember:
– This is a blocking call
– The constructor will enqueue a copy to the first

Device in the context (when useHostPtr == false)
– The OpenCL runtime will automatically ensure

the buffer is copied across to the actual device
you enqueue a kernel on later if you enqueue the
kernel on a different device within this context

A HOST VIEW OF WORKING
WITH KERNELS

Review

Working with Kernels (C++)

• The kernels are where all the action is in an OpenCL
program.

• Steps to using kernels:
1. Load kernel source code into a program object from a file
2. Make a kernel functor from a function within the program
3. Initialize device memory
4. Call the kernel functor, specifying memory objects and

global/local sizes
5. Read results back from the device

• Note the kernel function argument list must match the
kernel definition on the host.

Create a kernel
• Kernel code can be a string in the host code (toy codes)
• Or the kernel code can be loaded from a file (real codes)

• Compile for the default devices within the default context

program.build();

• Define the kernel functor from a function within the program –
allows us to ‘call’ the kernel to enqueue it

cl::make_kernel
<cl::Buffer, cl::Buffer, cl::Buffer, int> vadd(program, "vadd");

The build step can be carried out by specifying true
in the program constructor. If you need to specify
build flags you must specify false in the constructor
and use this method instead.

Create a kernel (advanced)
• If you want to query information about a

kernel, you will need to create a kernel
object too:

cl::Kernel ko_vadd(program, “vadd”);

• Get the default size of local dimension (i.e. the size
of a Work-Group)

::size_t local = ko_vadd.getWorkGroupInfo

 <CL_KERNEL_WORK_GROUP_SIZE>(cl::Device::getDefault());

If we set the local dimension
ourselves or accept the OpenCL
runtime’s, we don’t need this step

We can use any work-group-info parameter from table 5.15 in the
OpenCL 1.1 specification. The function will return the appropriate type.

Associate with args and enqueue kernel

• Enqueue the kernel for execution with buffer
objects d_a, d_b and d_c and their length,
count:

vadd(cl::EnqueueArgs(

 queue, cl::NDRange(count), cl::NDRange(local)),
 d_a, d_b, d_c, count);

We can include any arguments from the
clEnqueueNDRangeKernel function including Event wait lists
(to be discussed later) and the command queue (optional)

We have now covered the basic
platform runtime APIs in OpenCL

arg [0]
value

arg [1]
value

arg [2]
value

arg [0]
value

arg [1]
value

arg [2]
value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffer
s

Image
s In

Order
Queue

Out of
Order
Queue

Compute Device

GPU

CPU

dp_mul

Programs Kernels Memory Objects Command Queues

INTRODUCTION TO OPENCL
KERNEL PROGRAMMING

Lecture 5

OpenCL C for Compute Kernels
• Derived from ISO C99

– A few restrictions: no recursion, function
pointers, functions in C99 standard headers ...

– Preprocessing directives defined by C99 are
supported (#include etc.)

• Built-in data types
– Scalar and vector data types, pointers
– Data-type conversion functions:

• convert_type<_sat><_roundingmode>
– Image types:

• image2d_t, image3d_t and sampler_t

OpenCL C for Compute Kernels
• Built-in functions — mandatory

– Work-Item functions, math.h, read and write image
– Relational, geometric functions, synchronization

functions
– printf (v1.2 only, so not currently for NVIDIA GPUs)

• Built-in functions — optional (called
“extensions”)
– Double precision, atomics to global and local

memory
– Selection of rounding mode, writes to image3d_t

surface

OpenCL C Language Highlights
• Function qualifiers

– __kernel qualifier declares a function as a kernel
• I.e. makes it visible to host code so it can be enqueued

– Kernels can call other kernel-side functions
• Address space qualifiers

– __global, __local, __constant, __private
– Pointer kernel arguments must be declared with an address space qualifier

• Work-item functions
– get_work_dim(), get_global_id(), get_local_id(), get_group_id()

• Synchronization functions
– Barriers - all work-items within a work-group must execute the barrier

function before any work-item can continue
– Memory fences - provides ordering between memory operations

OpenCL C Language Restrictions

• Pointers to functions are not allowed
• Pointers to pointers allowed within a kernel, but

not as an argument to a kernel invocation
• Bit-fields are not supported
• Variable length arrays and structures are not

supported
• Recursion is not supported (yet!)
• Double types are optional in OpenCL v1.1, but

the key word is reserved
 (note: most implementations support double)

1 2 1 x 1

1 3 3 y = 2

1 1 4 z 6

Worked example: Linear Algebra
• Definition:

– The branch of mathematics concerned with the study of
vectors, vector spaces, linear transformations and systems of
linear equations.

• Example: Consider the following system of linear equations
 x + 2y + z = 1
 x + 3y + 3z = 2
 x + y + 4z = 6

– This system can be represented in terms of vectors and a
matrix as the classic “Ax = b” problem.

1 0 0 1 2 1 1 2 1

1 1 0 0 1 2 = 1 3 3

1 -1 1 0 0 5 1 2 4

Solving Ax=b
• LU Decomposition:

– transform a matrix into the product of a lower triangular
and upper triangular matrix. It is used to solve a linear
system of equations.

L AU =
• We solve for x, given a problem Ax=b

– Ax=b LUx=b
– Ux=(L-1)b x = (U-1)(L-1)b

So we need to be able to do matrix multiplication

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 C[i*N+j] = 0.0f;
 for (k = 0; k < N; k++) {
 // C(i, j) = sum(over k) A(i,k) * B(k,j)
 C[i*N+j] += A[i*N+k] * B[k*N+j];
 }
 }
 }
}

Matrix multiplication: sequential code
We calculate C=AB, where all three matrices are NxN

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

Matrix multiplication performance

• Serial C code on CPU (single core).

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz
using the gcc compiler.

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 C[i*N+j] = 0.0f;

 for (k = 0; k < N; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i*N+j] += A[i*N+k] * B[k*N+j];

 }

 }

 }

} We turn this into an OpenCL kernel!

Matrix multiplication: OpenCL kernel (1/2)

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 // C(i, j) = sum(over k) A(i,k) * B(k,j)
 for (k = 0; k < N; k++) {
 C[i*N+j] += A[i*N+k] * B[k*N+j];
 }
 }
 }
}

__kernel void mat_mul(
 const int N,
__global float *A, __global float *B, __global float *C)

Mark as a kernel function and
specify memory qualifiers

__kernel void mat_mul(

 const int N,

 __global float *A, __global float *B, __global float *C)

{

 int i, j, k;

 for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 for (k = 0; k < N; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i*N+j] += A[i*N+k] * B[k*N+j];

 }

 }

 }

}

Matrix multiplication: OpenCL kernel (2/2)

i = get_global_id(0);
j = get_global_id(1);

Remove outer loops and set
work-item co-ordinates

__kernel void mat_mul(

 const int N,

 __global float *A, __global float *B, __global float *C)

{

 int i, j, k;

 i = get_global_id(0);

 j = get_global_id(1);

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 for (k = 0; k < N; k++) {

 C[i*N+j] += A[i*N+k] * B[k*N+j];

 }

}

Matrix multiplication: OpenCL kernel

__kernel void mmul(

 const int N,

 __global float *A,

 __global float *B,

 __global float *C)

Matrix multiplication: OpenCL kernel improved

{

 int k;

 int i = get_global_id(0);

 int j = get_global_id(1);

 float tmp = 0.0f;

 for (k = 0; k < N; k++)

 tmp += A[i*N+k]*B[k*N+j];

 }

 C[i*N+j] += tmp;

}

Rearrange and use a local scalar for intermediate C element
values (a common optimization in Matrix Multiplication functions)

Matrix multiplication host program (C++ API)

int main(int argc, char *argv[])
{
 std::vector<float> h_A, h_B, h_C; // matrices
 int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]
 int i, err;
 int szA, szB, szC; // num elements in each matrix
 double start_time, run_time; // timing data
 cl::Program program;

 Ndim = Pdim = Mdim = ORDER;
 szA = Ndim*Pdim;
 szB = Pdim*Mdim;
 szC = Ndim*Mdim;
 h_A = std::vector<float>(szA);
 h_B = std::vector<float>(szB);
 h_C = std::vector<float>(szC);

 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

 // Compile for first kernel to setup program
 program = cl::Program(C_elem_KernelSource, true);
 Context context(CL_DEVICE_TYPE_DEFAULT);
 cl::CommandQueue queue(context);
 std::vector<Device> devices =
 context.getInfo<CL_CONTEXT_DEVICES>();
 cl::Device device = devices[0];
 std::string s =
 device.getInfo<CL_DEVICE_NAME>();
 std::cout << "\nUsing OpenCL Device ”
 << s << "\n";

 // Setup the buffers, initialize matrices,
 // and write them into global memory
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);
 cl::Buffer d_a(context, h_A.begin(),h_A.end(), true);
 cl::Buffer d_b(context, h_B.begin(),h_B.end(), true);
 cl::Buffer d_c = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * szC);

 cl::make_kernel<int, int, int,
 cl::Buffer, cl::Buffer, cl::Buffer>
 naive(program, "mmul");

 zero_mat(Ndim, Mdim, h_C);
 start_time = wtime();

 naive(cl::EnqueueArgs(queue,
 cl::NDRange(Ndim, Mdim)),
 Ndim, Mdim, Pdim, d_a, d_b, d_c);

 cl::copy(queue, d_c, h_C.begin(), h_C.end());

 run_time = wtime() - start_time;
 results(Mdim, Ndim, Pdim, h_C, run_time);
}

Declare and
initialize

data

Setup the
platform and
build program

Setup buffers and write
A and B matrices to the

device memory

Create the kernel functor

Run the kernel and
collect results

Note: To use the default context/queue/device, skip this section and
remove the references to context, queue and device.

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

UNDERSTANDING THE OPENCL
MEMORY HIERARCHY

Lecture 6

Optimizing matrix multiplication
• MM cost determined by FLOPS and memory movement:

– 2*n3 = O(n3) FLOPS
– Operates on 3*n2 = O(n2) numbers

• To optimize matrix multiplication, we must ensure that for
every memory access we execute as many FLOPS as
possible.

• Outer product algorithms are faster, but for pedagogical
reasons, let’s stick to the simple dot-product algorithm.

• We will work with work-item/work-group sizes and the memory model to
optimize matrix multiplication

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

An N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)
• Local Dimensions:

– 128x128 (work-group, executes together)

• Choose the dimensions that are “best” for
your algorithm

102
4

10
2

4

Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

OpenCL Memory model
• Private Memory

– Per work-item
• Local Memory

– Shared within a
work-group

• Global/Constant
Memory
– Visible to all

work-groups
• Host memory

– On the CPU

Memory management is explicit:
You are responsible for moving data from

host → global → local and back

OpenCL Memory model
• Private Memory

– Fastest & smallest: O(10) words/WI
• Local Memory

– Shared by all WI’s in a work-group
– But not shared between

work-groups!
– O(1-10) Kbytes per work-group

• Global/Constant Memory
– O(1-10) Gbytes of Global memory
– O(10-100) Kbytes of Constant

memory
• Host memory

– On the CPU - GBytes

O(1-10) Gbytes/s bandwidth to discrete GPUs for
 Host <-> Global transfers

Private Memory

• Managing the memory hierarchy is one of the
most important things to get right to achieve
good performance

• Private Memory:
– A very scarce resource, only a few tens of 32-bit

words per Work-Item at most
– If you use too much it spills to global memory or

reduces the number of Work-Items that can be run at
the same time, potentially harming performance*

– Think of these like registers on the CPU

* Occupancy on a GPU

Local Memory*
• Tens of KBytes per Compute Unit

– As multiple Work-Groups will be running on each CU, this means
only a fraction of the total Local Memory size is available to each
Work-Group

• Assume O(1-10) KBytes of Local Memory per Work-Group
– Your kernels are responsible for transferring data between Local

and Global/Constant memories … there are optimized library
functions to help

– E.g. async_work_group_copy(), async_workgroup_strided_copy(),
…

• Use Local Memory to hold data that can be reused by all the
work-items in a work-group

• Access patterns to Local Memory affect performance in a similar
way to accessing Global Memory
– Have to think about things like coalescence & bank conflicts

* Typical figures for a 2013 GPU

Local Memory

• Local Memory doesn’t always help…
– CPUs don’t have special hardware for it
– This can mean excessive use of Local Memory

might slow down kernels on CPUs
– GPUs now have effective on-chip caches which

can provide much of the benefit of Local
Memory but without programmer intervention

– So, your mileage may vary!

The Memory Hierarchy

Private memory
O(10) words/WI

Local memory
O(1-10) KBytes/WG

Global memory
O(1-10) GBytes

Host memory
O(1-100) GBytes

Private memory
O(2-3) words/cycle/WI

Local memory
O(10) words/cycle/WG

Global memory
O(100-200) GBytes/s

Host memory
O(1-100) GBytes/s

Speeds and feeds approx. for a high-end discrete GPU, circa 2011

Bandwidths Sizes

Memory Consistency
• OpenCL uses a relaxed consistency memory model; i.e.

– The state of memory visible to a work-item is not guaranteed to
be consistent across the collection of work-items at all times.

• Within a work-item:
– Memory has load/store consistency to the work-item’s private

view of memory, i.e. it sees its own reads and writes correctly
• Within a work-group:

– Local memory is consistent between work-items at a barrier.
• Global memory is consistent within a work-group at a barrier, but

not guaranteed across different work-groups!!
– This is a common source of bugs!

• Consistency of memory shared between commands (e.g. kernel
invocations) is enforced by synchronization (barriers, events,
in-order queue)

Optimizing matrix multiplication

• There may be significant overhead to manage work-items
and work-groups.

• So let’s have each work-item compute a full row of C

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

• And with an eye towards future optimizations, let’s collect
work-items into work-groups with 64 work-items per
work-group

An N-dimension domain of work-items

• Global Dimensions: 1024 (1D)
Whole problem space (index space)

• Local Dimensions: 64 (work-items per work-group)
Only 1024/64 = 16 work-groups in total

• Important implication: we will have a lot fewer
work-items per work-group (64) and work-groups
(16). Why might this matter?

10
2

4

6 4

__kernel void mmul(

 const int N,

 __global float *A,

 __global float *B,

 __global float *C)

Matrix multiplication: One work item per row of C

{

 int j, k;

 int i = get_global_id(0);

 float tmp;

 for (j = 0; j < N; j++) {

 tmp = 0.0f;

 for (k = 0; k < N; k++)

 tmp += A[i*N+k]*B[k*N+j];

 C[i*N+j] = tmp;

 }

}

 // Setup the buffers, initialize matrices,
 // and write them into global memory
 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);
 cl::Buffer d_a(context, h_A.begin(),h_A.end(), true);
 cl::Buffer d_b(context, h_B.begin(),h_B.end(), true);
 cl::Buffer d_c = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * szC);

 cl::make_kernel<int, int, int,
 cl::Buffer, cl::Buffer, cl::Buffer>
 krow(program, "mmul");

 zero_mat(Ndim, Mdim, h_C);
 start_time = wtime();

 krow(cl::EnqueueArgs(queue,
 cl::NDRange(Ndim),
 cl::NDRange(ORDER/16)),
 Ndim, Mdim, Pdim, d_a, d_b, d_c);

 cl::copy(queue, d_c, h_C.begin(), h_C.end());

 run_time = wtime() - start_time;
 results(Mdim, Ndim, Pdim, h_C, run_time);
}

int main(int argc, char *argv[])
{
 std::vector<float> h_A, h_B, h_C; // matrices
 int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]
 int i, err;
 int szA, szB, szC; // num elements in each matrix
 double start_time, run_time; // timing data
 cl::Program program;

 Ndim = Pdim = Mdim = ORDER;
 szA = Ndim*Pdim;
 szB = Pdim*Mdim;
 szC = Ndim*Mdim;
 h_A = std::vector<float>(szA);
 h_B = std::vector<float>(szB);
 h_C = std::vector<float>(szC);

 initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

 // Compile for first kernel to setup program
 program = cl::Program(C_elem_KernelSource, true);
 Context context(CL_DEVICE_TYPE_DEFAULT);
 cl::CommandQueue queue(context);
 std::vector<Device> devices =
 context.getInfo<CL_CONTEXT_DEVICES>();
 cl::Device device = devices[0];
 std::string s =
 device.getInfo<CL_DEVICE_NAME>();
 std::cout << "\nUsing OpenCL Device ”
 << s << "\n";

Matrix multiplication host program (C++ API)

Changes to host program:
1. 1D ND Range set to number of rows in the C matrix
2. Local Dimension set to 64 so number of work-groups

match number of compute units (16 in this case) for our
order 1024 matrices

krow(cl::EnqueueArgs(queue
 cl::NDRange(Ndim),
 cl::NDRange(ORDER/16)),
 Ndim, Mdim, Pdim, a_in, b_in, c_out);

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

This has started to help.

Matrix multiplication performance
• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Block oriented approach using local 1,534.0 230,416.7

Device is Tesla® M2090 GPU from
NVIDIA® with a max of 16
compute units, 512 PEs
Device is Intel® Xeon® CPU,
E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

Biggest impact so far!

SYNCHRONIZATION IN OPENCL
Lecture 7

Consider N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)
• Local Dimensions:

– 64x64 (work-group, executes together)

Synchronization: when multiple units of execution (e.g. work-items) are
brought to a known point in their execution. Most common example is a
barrier … i.e. all units of execution “in scope” arrive at the barrier before
any proceed.

102
4

10
2

4

Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

Work-Item Synchronization

• Within a work-group
void barrier()
– Takes optional flags

CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
– A work-item that encounters a barrier() will wait until ALL work-items in its

work-group reach the barrier()
– Corollary: If a barrier() is inside a branch, then the branch must be taken by

either:
• ALL work-items in the work-group, OR
• NO work-item in the work-group

• Across work-groups
– No guarantees as to where and when a particular work-group will be

executed relative to another work-group
– Cannot exchange data, or have barrier-like synchronization between two

different work-groups! (Critical issue!)
– Only solution: finish the kernel and start another

Ensure correct order of memory operations to
local or global memory (with flushes or queuing
a memory fence)

Where might we need
synchronization?

• Consider a reduction … reduce a set of
numbers to a single value
– E.g. find sum of all elements in an array

• Sequential code

int reduce(int Ndim, int *A)
{
 int sum = 0;
 for (int i = 0; i < Ndim; i++)
 sum += A[i];
 return sum;
}

Simple parallel reduction

A reduction can be carried out in three steps:
1. Each work-item sums its private values into a local array

indexed by the work-item’s local id
2. When all the work-items have finished, one work-item sums

the local array into an element of a global array (indexed by
work-group id).

3. When all work-groups have finished the kernel execution, the
global array is summed on the host.

Note: this is a simple reduction that is straightforward to
implement. More efficient reductions do the work-group
sums in parallel on the device rather than on the host.
These more scalable reductions are considerably more
complicated to implement.

A simple program that uses a reduction

Numerical Integration

Mathematically, we know that
we can approximate the integral
as a sum of rectangles.

Each rectangle has width and
height at the middle of interval.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

Numerical integration source code
The serial Pi program

static long num_steps = 100000;
double step;
void main()
{
 int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i = 0; i < num_steps; i++) {
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

The Pi kernels

There are smarter ways to
do this using more than 1
thread.

DEBUGGING OPENCL
Lecture 11

Debugging OpenCL
• Parallel programs can be challenging to debug
• Luckily there are some tools to help
• Firstly, if your device can run OpenCL 1.2, you can printf

straight from the kernel.

• Here, each work-item will print to stdout
• Note: there is some buffering between the device and the

output, but will be flushed by calling clFinish (or equivalent)

__kernel void func(void)
{
 int i = get_global_id(0);
 printf(" %d\n ", i);
}

Debugging OpenCL 1.1

• Top tip:
– Write data to a global buffer from within the

kernel
result[get_global_id(0)] = … ;

– Copy back to the host and print out from
there or debug as a normal serial application

• Works with any OpenCL device and
platform

