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IMPORTANT OPENCL CONCEPTS
Lecture 3



OpenCL Platform Model

• One Host and one or more OpenCL Devices
– Each OpenCL Device is composed of one or more

Compute Units
• Each Compute Unit is divided into one or more Processing 

Elements

• Memory divided into host memory and device memory
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The BIG idea behind OpenCL
• Replace loops with functions (a kernel) executing at each 

point in a problem domain
– E.g., process a 1024x1024 image with one kernel invocation per pixel or 

1024x1024=1,048,576 kernel executions

Traditional loops Data Parallel OpenCL
void 

mul(const int n,

    const float *a,

    const float *b,

          float *c)

{

  int i;

  for (i = 0; i < n; i++)

    c[i] = a[i] * b[i];

}

__kernel void

mul(__global const float *a,

    __global const float *b,

    __global       float *c)

{

  int id = get_global_id(0);

  c[id] = a[id] * b[id];

}

// many instances of the kernel,

// called work-items, execute

// in parallel



An N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)
• Local Dimensions:

– 64x64 (work-group, executes together)

• Choose the dimensions that are “best” for 
your algorithm
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Synchronization between 
work-items possible only 

within work-groups:
barriers and memory fences

Cannot synchronize 
between work-groups 

within a kernel



OpenCL N Dimensional Range 
(NDRange)

• The problem we want to compute should 
have some dimensionality; 
– For example, compute a kernel on all points in a 

cube
• When we execute the kernel we specify up 

to 3 dimensions
• We also specify the total problem size in 

each dimension – this is called the global size
• We associate each point in the iteration 

space with a work-item



OpenCL N Dimensional Range 
(NDRange)

• Work-items are grouped into work-groups; 
work-items within a work-group can share 
local memory and can synchronize

• We can specify the number of work-items 
in a work-group – this is called the local 
(work-group) size

• Or the OpenCL run-time can choose the 
work-group size for you (usually not 
optimally)



OpenCL Memory model
• Private Memory

– Per work-item
• Local Memory

– Shared within a
work-group

• Global Memory 
/Constant Memory
– Visible to all

work-groups
• Host memory

– On the CPU

Memory management is explicit: 
You are responsible for moving data from

host → global → local and back



Context and Command-Queues
• Context: 

– The environment within which kernels 
execute and in which synchronization 
and memory management is defined. 

• The context includes:
– One or more devices
– Device memory 
– One or more command-queues

• All commands for a device (kernel 
execution, synchronization, and memory 
transfer operations) are submitted 
through a command-queue.  

• Each command-queue points to a single 
device within a context.
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Execution model (kernels)
• OpenCL execution model … define a problem domain and 

execute an instance of a kernel for each point in the 
domain

__kernel void times_two(
    __global float* input,
    __global float* output)
{
   int i = get_global_id(0);
   output[i] = 2.0f * input[i];
}

get_global_id(0)
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__kernel void 
horizontal_reflect(read_only image2d_t src,
                   write_only image2d_t dst) 
{
  int x = get_global_id(0);  // x-coord  
  int y = get_global_id(1);  // y-coord  
  int width = get_image_width(src);  
  float4 src_val = read_imagef(src, sampler, 
                       (int2)(width-1-x, y));  
  write_imagef(dst, (int2)(x, y), src_val);
}

Building Program Objects
• The program object encapsulates:

– A context
– The program kernel source or binary
– List of target devices and build options

• The C API build process to create a 
program object:

– clCreateProgramWithSource()
– clCreateProgramWithBinary()

OpenCL uses runtime 
compilation … because 
in general you don’t 
know the details of the 
target device when you 
ship the program
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Example: vector addition

• The “hello world” program of data parallel 
programming is a program to add two vectors

C[i] = A[i] + B[i] for i=0 to N-1

• For the OpenCL solution, there are two parts
– Kernel code
– Host code



Vector Addition - Kernel

__kernel void vadd(__global const float *a,

     __global const float *b,

     __global       float *c)

 {

     int gid = get_global_id(0);

     c[gid]  = a[gid] + b[gid];

 }



Vector Addition – Host
• The host program is the code that runs on the host to:

– Setup the environment for the OpenCL program
– Create and manage kernels

• 5 simple steps in a basic host program:
1. Define the platform … platform = devices+context+queues
2. Create and Build the program (dynamic library for kernels)
3. Setup memory objects
4. Define the kernel (attach arguments to kernel functions)
5. Submit commands … transfer memory objects and execute 

kernels



The basic platform and runtime APIs 
in OpenCL (using C)
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1. Define the platform
• Grab the first available platform:

err = clGetPlatformIDs(1, &firstPlatformId, 

                               &numPlatforms);

• Use the first CPU device the platform provides:
err = clGetDeviceIDs(firstPlatformId,

            CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);

• Create a simple context with a single device:
context = clCreateContext(firstPlatformId, 1,

                       &device_id, NULL, NULL, &err);

• Create a simple command-queue to feed our device:
commands = clCreateCommandQueue(context, device_id,

                                            0, &err);



Command-Queues
• Commands include:

– Kernel executions
– Memory object management
– Synchronization

• The only way to submit commands 
to a device is through a 
command-queue.  

• Each command-queue points to a 
single device within a context. 

• Multiple command-queues can feed 
a single device.
– Used to define independent 

streams of commands that don’t 
require synchronization
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Command-Queue execution details

Command queues can be configured in 
different ways to control how commands 
execute
• In-order queues:

– Commands are enqueued and complete in the 
order they appear in the program (program-order)

• Out-of-order queues:
– Commands are enqueued in program-order but 

can execute (and hence complete) in any order.

• Execution of commands in the 
command-queue are guaranteed to be 
completed at synchronization points
– Discussed later
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2. Create and Build the program
• Define source code for the kernel-program as a string literal 

(great for toy programs) or read from a file (for real 
applications).

• Build the program object:

program = clCreateProgramWithSource(context, 1

           (const char**) &KernelSource, NULL, &err);

• Compile the program to create a “dynamic library” from 
which specific kernels can be pulled:

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);



Error messages

• Fetch and print error messages:

if (err != CL_SUCCESS) {

 size_t len;

 char buffer[2048];

 clGetProgramBuildInfo(program, device_id,   

  CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);

 printf(“%s\n”, buffer);

}

• Important to do check all your OpenCL API error messages!

• Easier in C++ with try/catch (see later)



3. Setup Memory Objects
• For vector addition we need 3 memory objects, one each 

for input vectors A and B, and one for the output vector C.
• Create input vectors and assign values on the host:

float h_a[LENGTH], h_b[LENGTH], h_c[LENGTH];

for (i = 0; i < length; i++) {

    h_a[i] = rand() / (float)RAND_MAX;

    h_b[i] = rand() / (float)RAND_MAX;

}

• Define OpenCL memory objects:
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY,

                   sizeof(float)*count, NULL, NULL);

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,

                   sizeof(float)*count, NULL, NULL);

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

                   sizeof(float)*count, NULL, NULL);



What do we put in device memory?
Memory Objects: 
• A handle to a reference-counted region of global memory.

There are two kinds of memory object
• Buffer object: 

– Defines a linear collection of bytes (“just a C array”).
– The contents of buffer objects are fully exposed within kernels and 

can be accessed using pointers
• Image object: 

– Defines a two- or three-dimensional region of memory.
– Image data can only be accessed with read and write functions, i.e. 

these are opaque data structures.  The read functions use a sampler.

Used when interfacing with a graphics API such as 
OpenGL.  We won’t use image objects in this tutorial.



Creating and manipulating buffers
• Buffers are declared on the host as type: cl_mem

• Arrays in host memory hold your original host-side 
data:
float h_a[LENGTH], h_b[LENGTH];

• Create the buffer (d_a), assign sizeof(float)*count 
bytes from “h_a” to the buffer and copy it into 
device memory:
cl_mem d_a = clCreateBuffer(context,

    CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

     sizeof(float)*count, h_a, NULL);



Conventions for naming buffers

• It can get confusing about whether a host 
variable is just a regular C array or an 
OpenCL buffer

• A useful convention is to prefix the names 
of your regular host C arrays with “h_” 
and your OpenCL buffers which will live 
on the device with “d_”



Creating and manipulating buffers

• Other common memory flags include:
CL_MEM_WRITE_ONLY, CL_MEM_READ_WRITE

• These are from the point of view of the device

• Submit command to copy the buffer back to host 
memory at “h_c”:
– CL_TRUE = blocking, CL_FALSE = non-blocking

clEnqueueReadBuffer(queue, d_c, CL_TRUE,
sizeof(float)*count, h_c, 
NULL, NULL, NULL);



4. Define the kernel
• Create kernel object from the kernel function 

“vadd”:

kernel = clCreateKernel(program, “vadd”, &err);

• Attach arguments of the kernel function “vadd” to 
memory objects:

err  = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);

err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), 
&count);



5. Enqueue commands

• Write Buffers from host into global memory (as 
non-blocking operations):

err = clEnqueueWriteBuffer(commands, d_a, CL_FALSE,

         0, sizeof(float)*count, h_a, 0, NULL, NULL);

err = clEnqueueWriteBuffer(commands, d_b, CL_FALSE,

         0, sizeof(float)*count, h_b, 0, NULL, NULL);

• Enqueue the kernel for execution (note: in-order so OK):

err = clEnqueueNDRangeKernel(commands, kernel, 1,

               NULL, &global, &local, 0, NULL, NULL);



5. Enqueue commands

• Read back result (as a blocking operation). We have an 
in-order queue which assures the previous commands are 
completed before the read can begin.

err = clEnqueueReadBuffer(commands, d_c, CL_TRUE,

            sizeof(float)*count, h_c, 0, NULL, NULL);



Vector Addition – Host Program
// create the OpenCL context on a GPU device
cl_context context = clCreateContextFromType(0,
                       CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);
clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |
       CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);
memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |
       CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 
                             sizeof(cl_float)*n, NULL, NULL);

// create the program
program = clCreateProgramWithSource(context, 1,
                                &program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0], 
                         sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1], 
                         sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2], 
                         sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,
                    global_work_size, NULL,0,NULL,NULL);

// read output array
err = clEnqueueReadBuffer(cmd_queue, memobjs[2], 
                          CL_TRUE, 0,
                          n*sizeof(cl_float), dst,
                          0, NULL, NULL);



Vector Addition – Host Program
// create the OpenCL context on a GPU device
cl_context context = clCreateContextFromType(0,
                       CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);
clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |
       CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);
memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |
       CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 
                             sizeof(cl_float)*n, NULL, NULL);

// create the program
program = clCreateProgramWithSource(context, 1,
                                &program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0], 
                         sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1], 
                         sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2], 
                         sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,
                    global_work_size, NULL,0,NULL,NULL);

// read output array
err = clEnqueueReadBuffer(cmd_queue, memobjs[2], 
                          CL_TRUE, 0,
                          n*sizeof(cl_float), dst,
                          0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.



OVERVIEW OF OPENCL APIS
Lecture 4



Host programs can be “ugly”

• OpenCL’s goal is extreme portability, so it 
exposes everything
– (i.e. it is quite verbose!).

• But most of the host code is the same from 
one application to the next – the re-use  
makes the verbosity a non-issue.

• You can package common API combinations 
into functions or even C++ or Python classes 
to make the reuse more convenient.



The C++ Interface
• Khronos has defined a common C++ header file containing a 

high level interface to OpenCL, cl.hpp
• This interface is dramatically easier to work with1

• Key features:
– Uses common defaults for the platform and 

command-queue, saving the programmer from extra 
coding for the most common use cases

– Simplifies the basic API by bundling key parameters with 
the objects rather than requiring verbose and repetitive 
argument lists

– Ability to “call” a kernel from the host, like a regular 
function

– Error checking can be performed with C++ exceptions

1 especially for C++ programmers…

or cl2.hpp



C++ Interface:
setting up the host program

• Enable OpenCL API Exceptions. Do this before 
including the header file
#define __CL_ENABLE_EXCEPTIONS

• Include key header files … both standard and custom
#include <CL/cl.hpp>   // Khronos C++ Wrapper API

#include <cstdio>      // For C style 

#include <iostream>    // For C++ style IO

#include <vector>      // For C++ vector types

For information about C++, see 
the appendix:
“C++ for C programmers”.



// Create buffers

// True indicates CL_MEM_READ_ONLY

// False indicates CL_MEM_READ_WRITE

d_a = cl::Buffer(context, 
        h_a.begin(), h_a.end(), true);

d_b = cl::Buffer(context, 
        h_b.begin(), h_b.end(), true);

d_c = cl::Buffer(context,
        CL_MEM_READ_WRITE,  
        sizeof(float) * LENGTH);

// Enqueue the kernel

vadd(cl::EnqueueArgs(

                queue, 

                cl::NDRange(count)),

        d_a, d_b, d_c, count);

cl::copy(queue, 
      d_c, h_c.begin(), h_c.end());

std::vector<float>

  h_a(N), h_b(N), h_c(N);

// initialize host vectors…

cl::Buffer d_a, d_b, d_c;

cl::Context  context( 
   CL_DEVICE_TYPE_DEFAULT);

cl::CommandQueue 
   queue(context);

cl::Program  program(

  context,

  loadprogram(“vadd.cl”), 

  true);

// Create the kernel functor

cl::make_kernel<cl::Buffer,
 cl::Buffer, cl::Buffer, int>  

 vadd(program, “vadd”);

C++ interface: The vadd host program



The C++ Buffer Constructor
• This is the API definition:

– Buffer(startIterator, endIterator, bool readOnly, bool useHostPtr)
• The readOnly boolean specifies whether the memory is 

CL_MEM_READ_ONLY (true) or CL_MEM_READ_WRITE (false)
– You must specify a true or false here

• The useHostPtr boolean is default false
– Therefore the array defined by the iterators is implicitly copied 

into device memory
– If you specify true:

• The memory specified by the iterators must be contiguous
• The context uses the pointer to the host memory, which becomes device 

accessible - this is the same as CL_MEM_USE_HOST_PTR
• The array is not copied to device memory

• We can also specify a context to use as the first argument in 
this API call



The C++ Buffer Constructor

• When using the buffer constructor which uses 
C++ vector iterators, remember:
– This is a blocking call
– The constructor will enqueue a copy to the first 

Device in the context (when useHostPtr == false)
– The OpenCL runtime will automatically ensure 

the buffer is copied across to the actual device 
you enqueue a kernel on later if you enqueue the 
kernel on a different device within this context



A HOST VIEW OF WORKING 
WITH KERNELS

Review



Working with Kernels (C++)

• The kernels are where all the action is in an OpenCL 
program.

• Steps to using kernels:
1. Load kernel source code into a program object from a file
2. Make a kernel functor from a function within the program
3. Initialize device memory
4. Call the kernel functor, specifying memory objects and 

global/local sizes
5. Read results back from the device

• Note the kernel function argument list must match the 
kernel definition on the host.



Create a kernel
• Kernel code can be a string in the host code (toy codes)
• Or the kernel code can be loaded from a file (real codes)

• Compile for the default devices within the default context

program.build();

• Define the kernel functor from a function within the program – 
allows us to ‘call’ the kernel to enqueue it

cl::make_kernel
<cl::Buffer, cl::Buffer, cl::Buffer, int> vadd(program, "vadd");

The build step can be carried out by specifying true 
in the program constructor. If you need to specify 
build flags you must specify false in the constructor 
and use this method instead.



Create a kernel (advanced)
• If you want to query information about a 

kernel, you will need to create a kernel 
object too:

cl::Kernel ko_vadd(program, “vadd”);

• Get the default size of local dimension (i.e. the size 
of a Work-Group)

::size_t local = ko_vadd.getWorkGroupInfo

 <CL_KERNEL_WORK_GROUP_SIZE>(cl::Device::getDefault());

If we set the local dimension 
ourselves or accept the OpenCL 
runtime’s, we don’t need this step

We can use any work-group-info parameter from table 5.15 in the 
OpenCL 1.1 specification. The function will return the appropriate type.



Associate with args and enqueue kernel

• Enqueue the kernel for execution with buffer 
objects d_a, d_b and d_c and their length, 
count:

vadd(cl::EnqueueArgs(

    queue, cl::NDRange(count), cl::NDRange(local)),
    d_a, d_b, d_c, count);

We can include any arguments from the 
clEnqueueNDRangeKernel function including Event wait lists 
(to be discussed later) and the command queue (optional)



We have now covered the basic 
platform runtime APIs in OpenCL
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INTRODUCTION TO OPENCL 
KERNEL PROGRAMMING

Lecture 5



OpenCL C for Compute Kernels
• Derived from ISO C99

– A few restrictions: no recursion, function 
pointers, functions in C99 standard headers ...

– Preprocessing directives defined by C99 are 
supported (#include etc.)

• Built-in data types
– Scalar and vector data types, pointers
– Data-type conversion functions:

• convert_type<_sat><_roundingmode> 
– Image types:

• image2d_t, image3d_t and sampler_t



OpenCL C for Compute Kernels
• Built-in functions — mandatory

– Work-Item functions, math.h, read and write image
– Relational, geometric functions, synchronization 

functions
– printf (v1.2 only, so not currently for NVIDIA GPUs)

• Built-in functions — optional (called 
“extensions”)
– Double precision, atomics to global and local 

memory
– Selection of rounding mode, writes to image3d_t 

surface



OpenCL C Language Highlights
• Function qualifiers

– __kernel qualifier declares a function as a kernel
• I.e. makes it visible to host code so it can be enqueued

– Kernels can call other kernel-side functions
• Address space qualifiers

– __global, __local, __constant, __private
– Pointer kernel arguments must be declared with an address space qualifier

• Work-item functions
– get_work_dim(),  get_global_id(), get_local_id(), get_group_id()

• Synchronization functions
– Barriers - all work-items within a work-group must execute the barrier 

function before any work-item can continue
– Memory fences - provides ordering between memory operations



OpenCL C Language Restrictions

• Pointers to functions are not allowed
• Pointers to pointers allowed within a kernel, but 

not as an argument to a kernel invocation
• Bit-fields are not supported
• Variable length arrays and structures are not 

supported
• Recursion is not supported (yet!)
• Double types are optional in OpenCL v1.1, but 

the key word is reserved
   (note: most implementations support double)



1  2  1 x 1

1  3  3 y = 2

1  1  4 z 6

Worked example: Linear Algebra
• Definition:

– The branch of mathematics concerned with the study of 
vectors, vector spaces, linear transformations and systems of 
linear equations. 

• Example: Consider the following system of linear equations
 x + 2y +  z  = 1
 x + 3y + 3z = 2
 x +  y +  4z = 6

– This system can be represented in terms of vectors and a 
matrix as the classic “Ax = b” problem.



1 0 0 1 2  1 1  2   1

1 1 0  0 1  2 = 1  3   3

1 -1 1 0 0  5 1  2   4

Solving Ax=b
• LU Decomposition:

– transform a matrix into the product of a lower triangular 
and upper triangular matrix.  It is used to solve a linear 
system of equations. 

L AU =
• We solve for x, given a problem Ax=b

– Ax=b                   LUx=b
– Ux=(L-1)b             x = (U-1)(L-1)b 

So we need to be able to do matrix multiplication



void mat_mul(int N, float *A, float *B, float *C)
{
    int i, j, k;
    for (i = 0; i < N; i++) {
        for (j = 0; j < N; j++) {
            C[i*N+j] = 0.0f;
            for (k = 0; k < N; k++) { 
                // C(i, j) = sum(over k) A(i,k) * B(k,j)
                C[i*N+j] += A[i*N+k] * B[k*N+j];
            }
        }
    }
}

Matrix multiplication: sequential code
We calculate C=AB, where all three matrices are NxN

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C



Matrix multiplication performance

• Serial C code on CPU (single core).

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 
using the gcc compiler.

Third party names are the property of their owners.

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system.



Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)

{

    int i, j, k;

    for (i = 0; i < N; i++) {

        for (j = 0; j < N; j++) {

            C[i*N+j] = 0.0f;

            for (k = 0; k < N; k++) { 

              // C(i, j) = sum(over k) A(i,k) * B(k,j)

              C[i*N+j] += A[i*N+k] * B[k*N+j];

            }

        }

    }

} We turn this into an OpenCL kernel!



Matrix multiplication: OpenCL kernel (1/2)

void mat_mul(int N, float *A, float *B, float *C)
{
    int i, j, k;
    for (i = 0; i < N; i++) {
      for (j = 0; j < N; j++) {
        // C(i, j) = sum(over k) A(i,k) * B(k,j)
        for (k = 0; k < N; k++) {  
          C[i*N+j] += A[i*N+k] * B[k*N+j];
            }
        }
    }
}

__kernel void mat_mul(
 const int N,
__global float *A, __global float *B, __global float *C)

Mark as a kernel function and 
specify memory qualifiers



__kernel void mat_mul(

  const int N,

  __global float *A, __global float *B, __global float *C)

{

    int i, j, k;

    for (i = 0; i < N; i++) {

        for (j = 0; j < N; j++) {

            for (k = 0; k < N; k++) { 

                // C(i, j) = sum(over k) A(i,k) * B(k,j)

                C[i*N+j] += A[i*N+k] * B[k*N+j];

            }

        }

    }

}

Matrix multiplication: OpenCL kernel (2/2)

i = get_global_id(0);
j = get_global_id(1);

Remove outer loops and set 
work-item co-ordinates



__kernel void mat_mul(

 const int N,

 __global float *A, __global float *B, __global float *C)

{

    int i, j, k;

    i = get_global_id(0);

    j = get_global_id(1);

    // C(i, j) = sum(over k) A(i,k) * B(k,j)

    for (k = 0; k < N; k++) { 

      C[i*N+j] += A[i*N+k] * B[k*N+j];

    }

}

Matrix multiplication: OpenCL kernel



__kernel void mmul(

   const int N,

   __global float *A,

   __global float *B,

   __global float *C)

Matrix multiplication: OpenCL kernel improved

{

  int k;

  int i = get_global_id(0);

  int j = get_global_id(1);

  float tmp = 0.0f;

  for (k = 0; k < N; k++) 

   tmp += A[i*N+k]*B[k*N+j];

  }

  C[i*N+j] += tmp;

}

Rearrange and use a local scalar for intermediate C element 
values (a common optimization in Matrix Multiplication functions) 



Matrix multiplication host program (C++ API)

int main(int argc, char *argv[])
{
  std::vector<float> h_A, h_B, h_C; // matrices
  int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]
  int i, err; 
  int szA, szB, szC; // num elements in each matrix
  double start_time, run_time; // timing data
  cl::Program program;

  Ndim = Pdim = Mdim = ORDER;
  szA = Ndim*Pdim; 
  szB = Pdim*Mdim; 
  szC = Ndim*Mdim;
  h_A   = std::vector<float>(szA);
  h_B   = std::vector<float>(szB);
  h_C   = std::vector<float>(szC);

  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

  // Compile for first kernel to setup program
  program = cl::Program(C_elem_KernelSource, true);
  Context context(CL_DEVICE_TYPE_DEFAULT);  
  cl::CommandQueue queue(context);
  std::vector<Device> devices =
      context.getInfo<CL_CONTEXT_DEVICES>();
  cl::Device device = devices[0]; 
  std::string s =  
      device.getInfo<CL_DEVICE_NAME>();
  std::cout << "\nUsing OpenCL Device ”
            << s << "\n";

  // Setup the buffers, initialize matrices,
  // and write them into global memory
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);
  cl::Buffer d_a(context, h_A.begin(),h_A.end(), true);
  cl::Buffer d_b(context, h_B.begin(),h_B.end(), true);
  cl::Buffer d_c = cl::Buffer(context, 
                              CL_MEM_WRITE_ONLY,
                              sizeof(float) * szC);
 

  cl::make_kernel<int, int, int,
                   cl::Buffer, cl::Buffer, cl::Buffer> 
                   naive(program, "mmul");

  zero_mat(Ndim, Mdim, h_C);
  start_time = wtime();

  naive(cl::EnqueueArgs(queue,
                        cl::NDRange(Ndim, Mdim)),
        Ndim, Mdim, Pdim, d_a, d_b, d_c);

  cl::copy(queue, d_c, h_C.begin(), h_C.end());

  run_time  = wtime() - start_time;
  results(Mdim, Ndim, Pdim, h_C, run_time);
}

Declare and 
initialize 

data

Setup the 
platform and 
build program

Setup buffers and write 
A and B matrices to the 

device memory

Create the kernel functor

Run the kernel and 
collect results

Note: To use the default context/queue/device, skip this section and 
remove the references to context, queue and device.



Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system.



UNDERSTANDING THE OPENCL 
MEMORY HIERARCHY

Lecture 6



Optimizing matrix multiplication
• MM cost determined by FLOPS and memory movement:

– 2*n3 = O(n3) FLOPS
– Operates on 3*n2 = O(n2) numbers

• To optimize matrix multiplication, we must ensure that for 
every memory access we execute as many FLOPS as 
possible.

• Outer product algorithms are faster, but for pedagogical 
reasons, let’s stick to the simple dot-product algorithm.

• We will work with work-item/work-group sizes and the memory model to 
optimize matrix multiplication

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C



An N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)
• Local Dimensions:

– 128x128 (work-group, executes together)

• Choose the dimensions that are “best” for 
your algorithm

102
4

10
2

4

Synchronization between 
work-items possible only 

within work-groups:
barriers and memory fences

Cannot synchronize 
between work-groups 

within a kernel



OpenCL Memory model
• Private Memory

– Per work-item
• Local Memory

– Shared within a
work-group

• Global/Constant 
Memory
– Visible to all

work-groups
• Host memory

– On the CPU

Memory management is explicit: 
You are responsible for moving data from

host → global → local and back



OpenCL Memory model
• Private Memory

– Fastest & smallest: O(10) words/WI
• Local Memory

– Shared by all WI’s in a work-group
– But not shared between 

work-groups!
– O(1-10) Kbytes per work-group

• Global/Constant Memory
– O(1-10) Gbytes of Global memory
– O(10-100) Kbytes of Constant 

memory
• Host memory

– On the CPU - GBytes

O(1-10) Gbytes/s bandwidth to discrete GPUs for
      Host <-> Global transfers



Private Memory

• Managing the memory hierarchy is one of the 
most important things to get right to achieve 
good performance

• Private Memory:
– A very scarce resource, only a few tens of 32-bit 

words per Work-Item at most
– If you use too much it spills to global memory or 

reduces the number of Work-Items that can be run at 
the same time, potentially harming performance*

– Think of these like registers on the CPU

* Occupancy on a GPU



Local Memory*
• Tens of KBytes per Compute Unit

– As multiple Work-Groups will be running on each CU, this means 
only a fraction of the total Local Memory size is available to each 
Work-Group

• Assume O(1-10) KBytes of Local Memory per Work-Group
– Your kernels are responsible for transferring data between Local 

and Global/Constant memories … there are optimized library 
functions to help

– E.g. async_work_group_copy(), async_workgroup_strided_copy(), 
…

• Use Local Memory to hold data that can be reused by all the 
work-items in a work-group

• Access patterns to Local Memory affect performance in a similar 
way to accessing Global Memory
– Have to think about things like coalescence & bank conflicts

* Typical figures for a 2013 GPU



Local Memory

• Local Memory doesn’t always help…
– CPUs don’t have special hardware for it
– This can mean excessive use of Local Memory 

might slow down kernels on CPUs
– GPUs now have effective on-chip caches which 

can provide much of the benefit of Local 
Memory but without programmer intervention

– So, your mileage may vary!



The Memory Hierarchy

Private memory
O(10) words/WI

Local memory
O(1-10) KBytes/WG

Global memory
O(1-10) GBytes

Host memory
O(1-100) GBytes

Private memory
O(2-3) words/cycle/WI

Local memory
O(10) words/cycle/WG

Global memory
O(100-200) GBytes/s

Host memory
O(1-100) GBytes/s

Speeds and feeds approx. for a high-end discrete GPU, circa 2011

Bandwidths Sizes



Memory Consistency
• OpenCL uses a relaxed consistency memory model; i.e. 

– The state of memory visible to a work-item is not guaranteed to 
be consistent across the collection of work-items at all times.

• Within a work-item:
– Memory has load/store consistency to the work-item’s private 

view of memory, i.e. it sees its own reads and writes correctly
• Within a work-group:

– Local memory is consistent between work-items at a barrier.
• Global memory is consistent within a work-group at a barrier, but 

not guaranteed across different work-groups!!
– This is a common source of bugs!

• Consistency of memory shared between commands (e.g. kernel 
invocations) is enforced by synchronization (barriers, events, 
in-order queue) 



Optimizing matrix multiplication

• There may be significant overhead to manage work-items 
and work-groups.

• So let’s have each work-item compute a full row of C

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

• And with an eye towards future optimizations, let’s collect 
work-items into work-groups with 64 work-items per 
work-group 



An N-dimension domain of work-items

• Global Dimensions: 1024 (1D)
Whole problem space (index space)

• Local Dimensions:  64 (work-items per work-group)
Only 1024/64 = 16 work-groups in total

• Important implication: we will have a lot fewer 
work-items per work-group (64) and work-groups 
(16). Why might this matter?

10
2

4

6 4



__kernel void mmul(

   const int N,

   __global float *A,

   __global float *B,

   __global float *C)

Matrix multiplication: One work item per row of C

{

  int j, k;

  int i = get_global_id(0);

  float tmp;

  for (j = 0; j < N; j++) {

   tmp = 0.0f;

   for (k = 0; k < N; k++) 

     tmp += A[i*N+k]*B[k*N+j];

   C[i*N+j] = tmp;

  }

}



  // Setup the buffers, initialize matrices,
  // and write them into global memory
  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);
  cl::Buffer d_a(context, h_A.begin(),h_A.end(), true);
  cl::Buffer d_b(context, h_B.begin(),h_B.end(), true);
  cl::Buffer d_c = cl::Buffer(context, 
                              CL_MEM_WRITE_ONLY,
                              sizeof(float) * szC);
 

  cl::make_kernel<int, int, int,
                  cl::Buffer, cl::Buffer, cl::Buffer> 
                  krow(program, "mmul");

  zero_mat(Ndim, Mdim, h_C);
  start_time = wtime();

  krow(cl::EnqueueArgs(queue,
                       cl::NDRange(Ndim), 
                       cl::NDRange(ORDER/16)),
       Ndim, Mdim, Pdim, d_a, d_b, d_c);

  cl::copy(queue, d_c, h_C.begin(), h_C.end());

  run_time  = wtime() - start_time;
  results(Mdim, Ndim, Pdim, h_C, run_time);
}

int main(int argc, char *argv[])
{
  std::vector<float> h_A, h_B, h_C; // matrices
  int Mdim, Ndim, Pdim; // A[N][P],B[P][M],C[N][M]
  int i, err; 
  int szA, szB, szC; // num elements in each matrix
  double start_time, run_time; // timing data
  cl::Program program;

  Ndim = Pdim = Mdim = ORDER;
  szA = Ndim*Pdim; 
  szB = Pdim*Mdim; 
  szC = Ndim*Mdim;
  h_A   = std::vector<float>(szA);
  h_B   = std::vector<float>(szB);
  h_C   = std::vector<float>(szC);

  initmat(Mdim, Ndim, Pdim, h_A, h_B, h_C);

  // Compile for first kernel to setup program
  program = cl::Program(C_elem_KernelSource, true);
  Context context(CL_DEVICE_TYPE_DEFAULT);  
  cl::CommandQueue queue(context);
  std::vector<Device> devices =
      context.getInfo<CL_CONTEXT_DEVICES>();
  cl::Device device = devices[0]; 
  std::string s =  
      device.getInfo<CL_DEVICE_NAME>();
  std::cout << "\nUsing OpenCL Device ”
            << s << "\n";

Matrix multiplication host program (C++ API)

Changes to host program:
1. 1D ND Range set to number of rows in the C matrix
2. Local Dimension set to 64 so number of work-groups 

match number of compute units (16 in this case) for our 
order 1024 matrices

krow(cl::EnqueueArgs(queue
                     cl::NDRange(Ndim),
                     cl::NDRange(ORDER/16)),
     Ndim, Mdim, Pdim, a_in, b_in, c_out);



Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system.

This has started to help.



Matrix multiplication performance
• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Block oriented approach using local 1,534.0 230,416.7

Device is Tesla® M2090 GPU from 
NVIDIA® with a max of 16 
compute units, 512 PEs
Device is Intel® Xeon® CPU, 
E5649 @ 2.53GHz

Third party names are the property of their owners.

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system.

Biggest impact so far!



SYNCHRONIZATION IN OPENCL
Lecture 7



Consider N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)
• Local Dimensions:

– 64x64 (work-group, executes together)

Synchronization: when multiple units of execution (e.g. work-items) are 
brought to a known point in their execution.   Most common example is a 
barrier … i.e. all units of execution “in scope” arrive at the barrier before 
any proceed. 
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Work-Item Synchronization

• Within a work-group
void barrier()
– Takes optional flags

CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
– A work-item that encounters a barrier() will wait until ALL work-items in its 

work-group reach the barrier()
– Corollary: If a barrier() is inside a branch, then the branch must be taken by 

either:
• ALL work-items in the work-group, OR
• NO work-item in the work-group

• Across work-groups
– No guarantees as to where and when a particular work-group will be 

executed relative to another work-group
– Cannot exchange data, or have barrier-like synchronization between two 

different work-groups! (Critical issue!)
– Only solution: finish the kernel and start another

Ensure correct order of memory operations to 
local or global memory (with flushes or queuing 
a memory fence)



Where might we need 
synchronization?

• Consider a reduction … reduce a set of 
numbers to a single value
– E.g. find sum of all elements in an array

• Sequential code

int reduce(int Ndim, int *A)
{
  int sum = 0;
  for (int i = 0; i < Ndim; i++)
    sum += A[i];
  return sum;
}



Simple parallel reduction

A reduction can be carried out in three steps:
1. Each work-item sums its private values into a local array 

indexed by the work-item’s local id
2. When all the work-items have finished, one work-item sums 

the local array into an element of a global array (indexed by 
work-group id).

3. When all work-groups have finished the kernel execution, the 
global array is summed on the host.

Note: this is a simple reduction that is straightforward to 
implement.  More efficient reductions do the work-group 
sums in parallel on the device rather than on the host.  
These more scalable reductions are considerably more 
complicated to implement.



A simple program that uses a reduction

Numerical Integration

Mathematically, we know that 
we can approximate the integral 
as a sum of rectangles.

Each rectangle has width and 
height at the middle of interval.

F(
x)

 =
 4

.0
/(1

+x
2 )

4.0

2.0

1.0
X0.0



Numerical integration source code
The serial Pi program

static long num_steps = 100000;
double step;
void main()
{
  int i; double x, pi, sum = 0.0;

  step = 1.0/(double) num_steps;

  for (i = 0; i < num_steps; i++) {
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
  }
  pi = step * sum;
}



The Pi kernels

There are smarter ways to 
do this using more than 1 
thread.



DEBUGGING OPENCL
Lecture 11



Debugging OpenCL
• Parallel programs can be challenging to debug
• Luckily there are some tools to help
• Firstly, if your device can run OpenCL 1.2, you can printf 

straight from the kernel.

• Here, each work-item will print to stdout
• Note: there is some buffering between the device and the 

output, but will be flushed by calling clFinish (or equivalent)

__kernel void func(void)
{
  int i = get_global_id(0);
  printf(" %d\n ", i);
}



Debugging OpenCL 1.1

• Top tip:
– Write data to a global buffer from within the 

kernel
result[ get_global_id(0) ] = … ;

– Copy back to the host and print out from 
there or debug as a normal serial application

• Works with any OpenCL device and 
platform


