
GPU Computing
Projects

E. Carlinet, J. Chazalon {firstname.lastname@lrde.epita.fr}

Nov. 2021

EPITA Research & Development Laboratory (LRDE)

Slides generated on November 4, 2021

1



Overview



Objectives

The goals of the project are to:

• apply data-parallelism concepts
• practice with CUDA
• set up a benchmark with a sound evaluation procedure
• present your results in a clear and convincing way

2



Possible Subjects

Standard Assignment

We propose 1 subject, that most of you should work on:
Implementation a barcode detector in CUDA

More details later in this presentation.

Custom Assignment

For students who are at ease with CUDA, and want to investigate a particular question:
Implementation and performance analysis of SOME INTERESTING algorithm in YOUR PARALLEL
PROGRAMMING TECHNOLOGY OF CHOICE

If you choose this assignment, you must validate your subject with us.
Contact us by email ASAP.

3



Important dates

1. Group composition (teams of 4) on Moodle by Nov. 7th
2. Final project submission on Moodle (the day before your defense, before 23:59)
3. Oral defense (either Teams or in presence) (SCIA: Dec. 16th, GISTRE: Dec. 17th)

4



Deliverables



Final Deliverables (1/3)

1. Implementation

• Source code for C++ CPU reference
• Source code for CUDA implementation(s)
• Source code for benchmark tools
• Build scripts (GNU Make, CMake…)

We must be able to reproduce your results

5



Final Deliverables (2/3)

2. Report

• Description of the problem
• Detailed if custom subject
• Quick summary otherwise

• Quick description of the baseline CPU implementation (paper reference, parallel or not, etc.)
• Quick description of the baseline GPU implementation (changes from CPU version)
• Which performance indicators you have used and why
• Identification of performance bottlenecks (with measured indicators, graphs, etc.)
• For each improvement over the GPU baseline (implementations):

• justification of this work regarding performance analysis
• description of the improvement (e.g. used output privatization instead of global atomics)
• comparison of the performance with and without this implementation

• Table with summary of the benchmark of all variants implemented
• Summary of the contributions of each team member

6



Final Deliverables (3/3)

3. A live lecture / defense

• 15’ presentation
• 5’ demo
• 5’ discussion
• Defenses will be held on Teams (opt. in presence)
• All the team members must be there

We will share with you some images/videos to process during the defense.

Links to each meeting will be shared when all groups are formed.

7



Submission

Submit code + report + slides on Moodle

• GISTRE: https://moodle.cri.epita.fr/mod/assign/view.php?id=10526
• SCIA: https://moodle.cri.epita.fr/mod/assign/view.php?id=10754

8

https://moodle.cri.epita.fr/mod/assign/view.php?id=10526
https://moodle.cri.epita.fr/mod/assign/view.php?id=10754


Grade Sheet Used for Last Session

9



How you should work



Our Expectations

We expect your implementation to be:

• running on GPU;
• correct, i.e. it produces an acceptable result.

Do not try to make it fast at first, just make it work.
Then, try to apply NVidia’s Assess, Parallelize, Optimize, Deploy (APOD) design cycle as described in the
CUDA C++ Best Practices Guide:

1. identify the part of the code which is responsible for the bulk of the execution time;
2. get a parallel version of the code (assumed to be sequential at first);
3. optimize the performance of the parallel code;
4. measure the performance of the new code. 10

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#assess-parallelize-optimize-deploy


Project Outline for Standard Performance Analysis

Broad Outline Concrete Example

Choose an application Mandelbrot
Determine the most time-consuming part of the
app

Global atomics

Determine one or more data-parallel approaches
to solve the problem

Tiling…

Create multiple implementations of the approach One naive version, one version with shared
memory…

Benchmark the implementations Record memory transfer time, kernel time,
utilization, FLOPS, etc.

Relate results to course concepts Identify the cause of the bottleneck (memory or
compute bounding)

11



Detect Barcodes with CUDA



Objective

End to end application for smartphone real-time barcode detector.

In practice: at least a working CUDA implementation which can process 1 image

12



Recommended approach

Barcodes exhibit a particular texture made of highly contrasted lines.

13



Recommended approach

We will try to detect perfectly horizontal barcodes which have perfectly vertical lines.

Such region must therefore exhibit:

• a high density of strong horizontal gradients
• a low density of strong vertical gradients

Image horizontal/vertical gradients are computed by looking at the variation of the luminance when
moving left-right/up-down.

14



Recommended approach

We encourage you to follow these steps:

1. Compute (absolute) horizontal and vertical derivatives for each pixel 3x3 neighborhood using Sobel.
2. Divide the image into patches and compute the mean gradient values (H and V) over each patch.
3. Compute some simple patch “barcodeness” indicator by taking the difference of the mean
horizontal gradients and the mean vertical gradients: good patch candidates have a large amount of
horizontal gradients and a little amount of vertical gradients.

4. Apply some post-processing to remove small activations and connect large ones horizontally using
a (grayscale) morphological closing using a horizontal rectangular (3x5 for instance) structuring
element.

5. Threshold the final activation map, using 50% of the maximal value of the activation map.
6. Process the activation map on CPU to detect barcodes (hint: use connected components detection).
7. Package everything in a nice CLI tool, so you can process our images during the demo.
8. Find performance bottlenecks, fix them, document the improvements.
9. Go further: try “hit or miss” filters instead of Sobel, try various parameter values (Sobel aperture,
patch size, post-processing…), experiment with various CUDA parameters (block size, work per
thread), try to detect connected components on the GPU, or even rectangle coordinates, package
everything in a nice demo which processes webcam frames that we will showcase during JPOs…

15



Sample Python notebook

ipynb version:
https://www.lrde.epita.fr/~carlinet/cours/GPGPU/barcode_sobel/sobel-

pooling_barcode.ipynb

HTML version:
https://www.lrde.epita.fr/~carlinet/cours/GPGPU/barcode_sobel/sobel-

pooling_barcode.html

16

https://www.lrde.epita.fr/~carlinet/cours/GPGPU/barcode_sobel/sobel-pooling_barcode.ipynb
https://www.lrde.epita.fr/~carlinet/cours/GPGPU/barcode_sobel/sobel-pooling_barcode.ipynb
https://www.lrde.epita.fr/~carlinet/cours/GPGPU/barcode_sobel/sobel-pooling_barcode.html
https://www.lrde.epita.fr/~carlinet/cours/GPGPU/barcode_sobel/sobel-pooling_barcode.html


Illustrations

Full pipeline

17



Illustrations

Inputs

18



Illustrations

Horizontal gradients

19



Illustrations

Vertical gradients

20



Illustrations

Pooling of horizontal gradients over patches

21



Illustrations

Pooling of vertical gradients over patches

22



Illustrations

Response 𝑅 = Δ𝑥 − Δ𝑦

23



Illustrations

Post-processing 𝑅′ = 𝜖(𝛿(𝑅))

24



Illustrations

Final result 𝑅′ > 0.5 ∗ 𝑚𝑎𝑥(𝑅′)

25



BONUS: End to end pipeline with Streams

1. Have an end to end, real-time video processing pipeline that detects barcodes (JPO demo).
2. Capture a video with your smartphone/webcam and process it (show the framerate!)

26



Recommended implementation and grading

1. Get a working reference CPU (C++ or Python) version
2. Have a simple/slow port of your baseline to GPU/CUDA
3. Benchmark their respective speed and compute relevant indicators (occupancy, L1/L2 cache hit
rates…)

4. Identify the performance bottleneck(s)
— Minimum expected work reached at this point —

5. Perform more CUDA optimizations, measures, etc.
6. Experiment with algorithm variants, packaging, etc.

27



Dataset

Collaborative dataset for photos and videos:
https://cloud.lrde.epita.fr/s/Y36oXiYJ77ezytC

Each group have to upload video/photos of barcodes:

1. 1 video (1080p or 4K, < 20s)
2. 5 photos (16-24 Mpix, JPEG)
3. 5 ground truth files for photos (PNG with white color for regions with a barcode, black elsewhere)

You should try your algorithm on the simplest possible data to begin.

28

https://cloud.lrde.epita.fr/s/Y36oXiYJ77ezytC


Implementation Hints (Final Reminders)

• Have a working (slow) C++ reference implementation first (and keep it forever)
• Tag (git tag) the versions of your program before any optimization (useful to track and benchmark
ideas)

• Try optimizations step by step so that you can tell which ones are the most important

29


	Overview
	Deliverables
	How you should work
	Detect Barcodes with CUDA

