
GPU Computing
Projects

E. Carlinet, J. Chazalon {firstname.lastname@lrde.epita.fr}

April 2022

EPITA Research & Development Laboratory (LRDE)

Slides generated on April 20, 2022

1



Overview



Objectives

The goals of the project are to:

• apply data-parallelism concepts
• practice with CUDA
• set up a benchmark with a sound evaluation procedure
• present your results in a clear and convincing way

2



Possible Subjects

Standard Assignment

We propose 1 subject, that most of you should work on:
Implementation a Harris corner detector in CUDA

More details later in this presentation.

Custom Assignment

For students who are at ease with CUDA, and want to investigate a particular question:
Implementation and performance analysis of SOME INTERESTING algorithm in YOUR PARALLEL
PROGRAMMING TECHNOLOGY OF CHOICE

If you choose this assignment, you must validate your subject with us.
Contact us by email ASAP.

3



Important dates

Deadline What Where

May 16, 23:59 Group composition (teams of 4) on Moodle
May 16, 23:59 Final project submission (teams of 4) on Moodle
May 17, all day Oral defense (either Teams or in presence)

4



Deliverables



Final Deliverables (1/3)

1. Implementation

• Source code for C++ CPU reference
• Source code for CUDA implementation(s)
• Source code for benchmark tools
• Build scripts (GNU Make, CMake…)

We must be able to reproduce your results

5



Final Deliverables (2/3)

2. Report

• Description of the problem
• Detailed if custom subject
• Quick summary otherwise

• Quick description of the baseline CPU implementation: paper reference, parallel or not, etc.
• Quick description of the baseline GPU implementation: changes from CPU version, kernels
implemented, etc.

• Which performance indicators you have used and why
• Identification of performance bottlenecks (with measured indicators, graphs, etc.)
• For each improvement over the GPU baseline (implementations):

• justification of this work regarding performance analysis
• description of the improvement (e.g. used output privatization instead of global atomics)
• comparison of the performance with and without this implementation

• Table with summary of the benchmark of all variants implemented
• Summary of the contributions of each team member

6



Final Deliverables (3/3)

3. A live lecture / defense

• 15’ presentation
• 5’ demo
• 5’ discussion
• Defenses will be held on Teams (opt. in presence)
• All the team members must be there

We will share with you some images/videos to process during the defense.

Links to each meeting will be shared when all groups are formed.

7



Submission

Submit code + report + slides on Moodle

https://moodle.cri.epita.fr/course/view.php?id=790

8

https://moodle.cri.epita.fr/course/view.php?id=790


Grade Sheet Used for Last Session

9



How you should work



Our Expectations

We expect your implementation to be:

• running on GPU;
• correct, i.e. it produces an acceptable result.

Do not try to make it fast at first, just make it work.
Then, try to apply NVidia’s Assess, Parallelize, Optimize, Deploy (APOD) design cycle as described in the
CUDA C++ Best Practices Guide:

1. identify the part of the code which is responsible for the bulk of the execution time;
2. get a parallel version of the code (assumed to be sequential at first);
3. optimize the performance of the parallel code;
4. measure the performance of the new code. 10

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#assess-parallelize-optimize-deploy


Project Outline for Standard Performance Analysis

Broad Outline Concrete Example

Choose an application Mandelbrot
Determine the most time-consuming part of the
app

Global atomics

Determine one or more data-parallel approaches
to solve the problem

Tiling…

Create multiple implementations of the approach One naive version, one version with shared
memory…

Benchmark the implementations Record memory transfer time, kernel time,
utilization, FLOPS, etc.

Relate results to course concepts Identify the cause of the bottleneck (memory or
compute bounding)

11



Harris corner detection with CUDA



Objective

Optical flow to track motion.

In practice: at least a working CUDA implementation which can process 1 image

12



Inputs and Outputs

Your program should be able to take an image as input, and return the coordinates of the 2000 best
(sorted) keypoints.

You should be able to display on some image the results produced by Python (green), CPU C++ (cyan) and
GPU CUDA (pink), using some tools of your choice (Python script + image viewer = perfect).

13



Recommended approach

1. Port the Python code from next MLRF lab session in C++ to get a working base
https://www.lrde.epita.fr/~jchazalo/teaching/MLRF/202204_IMAGE_S8/practice_02_student.tar.gz

2. Port the C++ code to CUDA
3. Check all results are correct
4. Identify what can be optimized, implement, measure, repeat.

Some hints:

• Have a working (slow) C++ reference implementation first (and keep it forever)
• Tag (git tag) the versions of your program before any optimization (useful to track and benchmark
ideas)

• Try optimizations step by step so that you can tell which ones are the most important

14



Algorithm steps

Here are the critical steps of the algorithm:

1. Copy the image to the GPU, opt. using managed memory, opt. convert colors
2. Compute the smoothed image derivatives 𝐼𝑥 and 𝐼𝑦
3. Compute the structure tensor images < 𝐼2

𝑥 >, < 𝐼2
𝑦 > and < 𝐼𝑥 ∗ 𝐼𝑦∗ >

4. Compute the approximation (or real) eigenvalue vectors and the cornerness map
5. Perform a non-maximal suppression using a morphological opening
6. Sort the filtered responses
7. Return the coordinates of the 2000 best (or less) keypoints

It is up to you to find which kernels you need, and which pattern they correspond to.

For the visualization (don’t run this on the device), you need to be able to display the keypoints.

15



Algorithm illustrated

Image derivatives, Harris response

16



Algorithm illustrated

Opening

17



Algorithm illustrated

Maximas

18



Algorithm illustrated

Final detection

19



Expected work

To get the average grade:

• all deliverables (code, report, slides)
• working CPU version
• working GPU version
• benchmark their respective speed and compute relevant indicators (occupancy, L1/L2 cache hit
rates…)

To get a better grade: - implement more variants - perform more analysis - …

20



Dataset

Collaborative dataset for photos and videos:
https://cloud.lrde.epita.fr/s/HryzQFoEEdb53A7

Each group have to upload 1 video and 2 photos of something with texture and simple motion:

1. 1 video (1080p or 4K, < 10s)
2. 2 photos (16-24 Mpix, JPEG)

21

https://cloud.lrde.epita.fr/s/HryzQFoEEdb53A7

	Overview
	Deliverables
	How you should work
	Harris corner detection with CUDA

