GPU Computing

E. Carlinet,). Chazalon {firstnane.lastnanealrde.epita. fr}
oct21

EPITA Research & Development Laboratory (LRDE)

Fifty shades of Parallelism

The burger factory assembly line

Fifty shades of Parallelism

How to get things done quicker

Do less work

2. Do some work better (i.e. the one being the more time-consuming)
3. Do some work at the same time

4. Distribute work between different workers

Data-oriented programming parallelism

How to get things done quicker Why parallelism ?

Do less work

Do some work better (i.e. the one being the more time-consuming)

w

Do some work at the same time

Distribute work between different workers

(1) Choose the most adapted algorithms, and avoid re-computing things
(2) Choose the most adapted data structures

- (34) Parallelism

Want fast C++?
Know your hardware!

. »y
ey
J ! l‘ "‘“‘w’iﬂuﬂ e

Timur Doumler

Toward data-oriented programming

/ et

- while the CPU clock rate got bounded.
the quantity data to process has shot up!

We need another way of thinking “speed”

Optimize for throughput (MIMD Vertical Pipelining)

- Moore’s law: processors are not getting twice as powerful every 2 years anymore

o Inte 48-Core [Transistors
Protoiype ., (Thousands)
10 AMD 4-Core = Y, o0

Pro
Performance

10° Intel Sequential
Pentium 4 Processor
" Performance
10" | DEC Alpha
21264 Frequency
a (Hz)
1071 mips Rak
2 Typical Power
10 ' W)
| Number
10 of Gores
10°

1975 1980 1985 1990 1995 2000 2005 2010 2015

- So the processor is getting smarter:
- Out-of-order execution / dynamic register renaming
+ Speculative execution with branch prediction

- And the processor is getting super-scalar.

The burger factory assembly line

S & @ &=

Get Bread & Get salad & Get tomatoe & Get cheese & Close
Cut Cut & Slice & Slice &
Put in bread Put in bread Put in bread

How to make several sandwiches as fast as possible ?

Optimize for throughput (SIMD DLP)

S &

Get Bread & Get salad & Ge
Cut Cut &
Put in bread

&

ice
Put in bread Put in bread
How to make several sandwiches as fast as possible ?

+ Optimize for latency: time to get 1 sandwich done.
- Optimize for throughput: number of sandwiches done during a given duration

Optimize for latency (MIMD with collaborative workers)

Flynn's Taxonomy

Single Instruction Multiple Instruction

Single Data SIsD MISD
Multiple Data SIMD MIMD

- SISD: no parallelism

+ SIMD: same instruction on data group (vector)
+ MISD: rare, mostly used for fault tolerant code
- MIMD: usual parallel mode

Optimize for throughput (MIMD Horizontal with multiple jobs)

- Manu cuts the bread

+ Donald slices the salads

+ Angela slices the tomatoes

Time to make 4 sandwiches: s (400% speed-up)

More cores is trendy

Time

Aworker has many arms and
make 4 sandwiches at a time

Time to make 4 sandwiches: s (400% speed-up)

More cores is trendy

4 super-workers (4 CPU cores) collaborate to make 1 sandwich.
- Manu gets the bread and cuts and waits for the others
+ Donald slices the salad
- Angela slices the the tomatoes
+ Kim slices the cheeses

Donald Angeln Ki

R |

§
&

—=§t9

Time to make 1 sandwich: § (400% speed-up)

This is optimized for latency (CPU are good for that).

- Manu makes sandwich 1

- Donald makes sandwich 2 ® ®
: |

®
®= B
R memEnUnta

Time to make 4 sandwiches: s (400% speed-up)
This is optimized for throughput (GPU are good for that).

o § O E‘?

Data-oriented design have changed the way we make processors (even CPUs):

- Lower clock-rate
- Larger vector-size, more vector-oriented ISA
« More cores (processing units)

6u4bits Intel Xeon 5100 Xeon 5500 Xeon 5600 Xeon E5 2600

Xeon series series series series Xeon Phi 71209
Freq 36Ghz 306Ghz 326hz 33Ghz 276hz 1.24 Ghz
Cores. 1 2 4 6 12 61
Threads 2 2 8 2 % 24
SIMD 128 bits 128 bits 128 bits 128 bits 256 bits 512 bits
Width (2 clocks) (1 clock) (1 clock) (1 clock) (1 clock) (1 clock)

Peak performance / core is getting lower Global peak performance is getting higher (with more

cores!)

CPU vs GPU performance Toward Heterogeneous Architectures Toward Heterogeneous Architectures (2/2) Toward Heterogeneous Architectures

1 - Time to run the sequential par @@@ ==
(1-P)+P/N + Time to run the parallel part ;

Dowe 1 owe T woso | vuar |

And you see it with HPC apps But don't forget, you may need to optimize both latency and throughput.
NVIDIA® TESLA® ACCELERATOR PERFORMANCE

What is the bounds speedup attainable on a parallel machine with a program which is parallelizable at P %
VIO Tesa 80

(i.e. must run sequentially for (1 - P))

T T = S — e
Heterogeneous (CPU+GPU) — Catpirin
!

15 Use the right tool for the right job

15 Allows aggressive optimization for latency or for throughput

Thrsshpat

2

GROMACS.
LAMMPS
NAMD
AMBER14
cP2K
LsMs.

MINIFE |
(CGTIME]
MiLe
CHROMA
RTM
CAFFE

LINPACK

oSt
DS

QUANTUM
ESPRESSO

Exccution tme

HOOMD-BLUE
SPECFEM3ID
CLOVERLEAF

COMPUTATIONAL CHEMISTRY MATERIALS pHvsics SEISMIC BENCH- MACHINE
'AND MOLECULAR DYRAMICS SCIENCE. PROCESSING MARK LEARNING

Toward Heterogeneous Architectures Toward Heterogeneous Architectures (1/2)
But don't forget, you may need to optimize both latency and throughput.

What is the bounds speedup attainable on a parallel machine with a program which is parallelizable at P %

(i.e. must run sequentially for (1 - P)). . told 1 + Time to run the sequential part
“ “tnew (1—P)+P/N + Time to run the parallel part
[Sequentfa=20% 1 ParallelizablesB0%] - S
If you have N processors, the speed-up is: P = 80%, max speed-up =5 Latency-optimized (multi-core CPU) Throughput-optimized (GPU)
I3 Poor perfs on parallel portions I3 Poor perfs on sequential portions

t_old 1

.
tnew (1—P)+P/N

- Time to run the sequential part

- Time to run the parallel part

Speed Up
HHHHHHH[HH

Eection time Exccution e

E)
#procs.

