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How to get things done quicker

1. Do less work

2. Do some work better (i.e. the one being the more time-consuming)
3. Do some work at the same time

4. Distribute work between different workers



How to get things done quicker

1. Do less work

2. Do some work better (i.e. the one being the more time-consuming)
3. Do some work at the same time

4. Distribute work between different workers

(1) Choose the most adapted algorithms, and avoid re-computing things
(2) Choose the most adapted data structures

- (3,4) Parallelism
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Why parallelism ?

- Moore’s law: processors are not getting twice as powerful every 2 years anymore
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- So the processor is getting smarter:
- Out-of-order execution / dynamic register renaming
- Speculative execution with branch prediction

- And the processor is getting super-scalar:



Toward data-oriented programming

The“data
deluge” gap
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- while the CPU clock rate got bounded...
- ...the quantity data to process has shot up!

We need another way of thinking “speed”



The burger factory assembly line
& & 6

Get Bread & Get salad & Get tomatoe & Get cheese & Close
Cut Cut & Slice & Slice &
Put in bread Put in bread Put in bread

How to make several sandwiches as fast as possible ?



The burger factory assembly line
& & 6

Get Bread & Get salad & Get tomatoe & Get cheese & Close
Cut Cut & Slice & Slice &
Put in bread Put in bread Put in bread

How to make several sandwiches as fast as possible ?

- Optimize for latency: time to get 1 sandwich done.
- Optimize for throughput: number of sandwiches done during a given duration



Data-oriented programming parallelism

Flynn's Taxonomy

Single Instruction  Multiple Instruction

Single Data SISD MISD
Multiple Data ~ SIMD MIMD

- SISD: no parallelism

- SIMD: same instruction on data group (vector)
- MISD: rare, mostly used for fault tolerant code
- MIMD: usual parallel mode



Optimize for latency (MIMD with collaborative workers)

4 super-workers (4 CPU cores) collaborate to make 1 sandwich.
- Manu gets the bread and cuts and waits for the others
- Donald slices the salad
- Angela slices the the tomatoes
- Kim slices the cheeses

Manu Donald Angela Kim
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Time to make 1sandwich: § (400% speed-up)

This is optimized for latency (CPU are good for that).



Optimize for throughput (MIMD Horizontal with multiple jobs)
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Time to make 4 sandwiches: s (400% speed-up)
This is optimized for throughput (GPU are good for that).



Optimize for throughput (MIMD Vertical Pipelining)

- Manu cuts the bread

- Donald slices the salads
- Angela slices the tomatoes

Time

Manu Donald Angela Kim
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Time to make &4 sandwiches: s (400% speed-up)



Optimize for throughput (SIMD DLP)

Time

A worker has many arms and
make 4 sandwiches at a time

Time to make 4 sandwiches: s (400% speed-up)



More cores is trendy

Data-oriented design have changed the way we make processors (even CPUs):

- Lower clock-rate
- Larger vector-size, more vector-oriented ISA
- More cores (processing units)

64bits Intel Xeon 5100 Xeon 5500 Xeon 5600 Xeon E5 2600
Xeon series series series series Xeon Phi 7120P
Freq 3.6 Ghz 3.0 Ghz 3.2 Ghz 3.3 Ghz 2.7 Ghz 1.24 Ghz
Cores 1 2 4 6 12 61
Threads 2 2 8 12 24 244
SIMD 128 bits 128 bits 128 bits 128 bits 256 bits 512 bits

width (2 clocks) (1 clock) (1 clock) (1 clock) (1 clock) (1 clock)




More cores is trendy

Theoretical Peak Performance per Gore/Multiprocessor, Single Precision
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Peak performance / core is getting lower

Theoretical Peak Floating Point Operations per Clock Cycle, Single Precision

FLOPs per Clock Cycle
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Global peak performance is getting higher (with more
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CPU vs GPU performance

And you see it with HPC apps:
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Toward Heterogeneous Architectures

But don't forget, you may need to optimize both latency and throughput.

What is the bounds speedup attainable on a parallel machine with a program which is parallelizable at P %

(i.e. must run sequentially for (1 - P)).



Toward Heterogeneous Architectures

But don't forget, you may need to optimize both latency and throughput.

What is the bounds speedup attainable on a parallel machine with a program which is parallelizable at P %

(i.e. must run sequentially for (1 - P)).

If you have N processors, the speed-up is: P =80%, max speed-up =5
_ t_old _ 1
~ tmnew (1—P)+P/N .

- Time to run the sequential part
o
- Time to run the parallel part %3
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Toward Heterogeneous Architectures (1/2)

t_old 1 - Time to run the sequential part
~ tmnew (1—P)+P/N - Time to run the parallel part
Latency-optimized (multi-core CPU) Throughput-optimized (GPU)
I 2 Poor perfs on parallel portions Iz Poor perfs on sequential portions
oom 3
e oon >
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Execution time Execution time



Toward Heterogeneous Architectures (2/2)

t_old 1 - Time to run the sequential part
Tt new (1-P)+P/N - Time to run the parallel part

Heterogeneous (CPU+GPU)
IS Use the right tool for the right job

I Allows aggressive optimization for latency or for throughput

Execution time



Toward Heterogeneous Architectures
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