GPU Computing

E. Carlinet, J. Chazalon {firstname.lastnamedlrde.epita.fr}

Oct 21

EPITA Research & Development Laboratory (LRDE)

Slides generated on October 8, 2021

Fifty shades of Parallelism

Fifty shades of Parallelism

How to get things done quicker

1. Do less work

2. Do some work better (i.e. the one being the more time-consuming)
3. Do some work at the same time

4. Distribute work between different workers

How to get things done quicker

1. Do less work

2. Do some work better (i.e. the one being the more time-consuming)
3. Do some work at the same time

4. Distribute work between different workers

(1) Choose the most adapted algorithms, and avoid re-computing things
(2) Choose the most adapted data structures

- (3,4) Parallelism

Meeting C++ 2016

Want fast C++7? It w

Want fast C++ 7

KnOW your hardware' Know your hart

u'

Timur Doumler

Why parallelism ?

- Moore’s law: processors are not getting twice as powerful every 2 years anymore

107 ¢ Intel 48-Core
Prototype §

Transistors
(Thousands)

Parallel Proc
Performance

10° b AMD 4-Core
Opteron

10° + Intel [
Pentium 4

Sequential
Processor
Performance
10" ¢ DEC Alpha [¢

21264 | Frequency

(MHz)

10" - mips R2k
2 Typical Power
10" ¢ (Watts)
1 Number
10 ¢ of Cores
1
0 T

1975 1980 1985 1990 1995 2000 2005 2010 2015

- So the processor is getting smarter:
- Out-of-order execution / dynamic register renaming
- Speculative execution with branch prediction

- And the processor is getting super-scalar:

Toward data-oriented programming

The“data
deluge” gap

A

—@- Data Growth —l- Moore's Law

2006 2007 2008 2009 2010

- while the CPU clock rate got bounded...
- ...the quantity data to process has shot up!

We need another way of thinking “speed”

The burger factory assembly line
& & 6

Get Bread & Get salad & Get tomatoe & Get cheese & Close
Cut Cut & Slice & Slice &
Put in bread Put in bread Put in bread

How to make several sandwiches as fast as possible ?

The burger factory assembly line
& & 6

Get Bread & Get salad & Get tomatoe & Get cheese & Close
Cut Cut & Slice & Slice &
Put in bread Put in bread Put in bread

How to make several sandwiches as fast as possible ?

- Optimize for latency: time to get 1 sandwich done.
- Optimize for throughput: number of sandwiches done during a given duration

Data-oriented programming parallelism

Flynn's Taxonomy

Single Instruction Multiple Instruction

Single Data SISD MISD
Multiple Data ~ SIMD MIMD

- SISD: no parallelism

- SIMD: same instruction on data group (vector)
- MISD: rare, mostly used for fault tolerant code
- MIMD: usual parallel mode

Optimize for latency (MIMD with collaborative workers)

4 super-workers (4 CPU cores) collaborate to make 1 sandwich.
- Manu gets the bread and cuts and waits for the others
- Donald slices the salad
- Angela slices the the tomatoes
- Kim slices the cheeses

Manu Donald Angela Kim

e 8
i

Time

Time to make 1sandwich: § (400% speed-up)

This is optimized for latency (CPU are good for that).

Optimize for throughput (MIMD Horizontal with multiple jobs)

e & Ul

- Donald makes sandwich 2

. &
- Manu makes sandwich 1 J@
&

|

|

LY

Time to make 4 sandwiches: s (400% speed-up)
This is optimized for throughput (GPU are good for that).

Optimize for throughput (MIMD Vertical Pipelining)

- Manu cuts the bread

- Donald slices the salads
- Angela slices the tomatoes

Time

Manu Donald Angela Kim

2 2 & 2
—
e > o

&5 ®

Time to make &4 sandwiches: s (400% speed-up)

Optimize for throughput (SIMD DLP)

Time

A worker has many arms and
make 4 sandwiches at a time

Time to make 4 sandwiches: s (400% speed-up)

More cores is trendy

Data-oriented design have changed the way we make processors (even CPUs):

- Lower clock-rate
- Larger vector-size, more vector-oriented ISA
- More cores (processing units)

64bits Intel Xeon 5100 Xeon 5500 Xeon 5600 Xeon E5 2600
Xeon series series series series Xeon Phi 7120P
Freq 3.6 Ghz 3.0 Ghz 3.2 Ghz 3.3 Ghz 2.7 Ghz 1.24 Ghz
Cores 1 2 4 6 12 61
Threads 2 2 8 12 24 244
SIMD 128 bits 128 bits 128 bits 128 bits 256 bits 512 bits

width (2 clocks) (1 clock) (1 clock) (1 clock) (1 clock) (1 clock)

More cores is trendy

Theoretical Peak Performance per Gore/Multiprocessor, Single Precision

10°
H
£
K]
B vﬁ%ﬂ
8
g
a
2
g
S [
g &
ey % yeon Phi 7120 (KNG)
o e o p?@ +%%$ INTEL Xeon CPUs =—dhe—
+ = W : NVIDIA GeForce GPUs —Jill—
: AMD Radeon GPUs —@—
: ' INTEL Xeon Phis —agpm—
10!
2008 2010 2012 2014 2016
End of Year

Peak performance / core is getting lower

Theoretical Peak Floating Point Operations per Clock Cycle, Single Precision

FLOPs per Clock Cycle

5

Global peak performance is getting higher (with more

INTEL Xeon GPUs —dhe—

> s go @?"p NVIDIA GeForce GPUs ~—{ilif—
o I ! AMD Radeon GPUs —@—
INTEL Xeon Phis —ag—

2008 2010 2012 2014 2016

End of Year

cores!)

CPU vs GPU performance

And you see it with HPC apps:

NVIDIA®

0 NVIDIA Tesla K80
£
B
=
o = w
g £ § £ 8 X 33 v #E 8 45 3 § E 8 B
= &« | o = N S= = s 2 o = L
2 £ 2 ¥ ® ° =z 3 gg & 3 g 3
=} -
s 3 $ 2 £l g g E g z
< < 3 Sw g 3
=] o« o
-
COMPUTATIONAL CHEMISTRY MATERIALS PHYSICS SEISMIC BENCH- MACHINE

AND MOLECULAR DYNAMICS SCIENCE FROCESSING MARK LEARNING

Toward Heterogeneous Architectures

But don't forget, you may need to optimize both latency and throughput.

What is the bounds speedup attainable on a parallel machine with a program which is parallelizable at P %

(i.e. must run sequentially for (1 - P)).

Toward Heterogeneous Architectures

But don't forget, you may need to optimize both latency and throughput.

What is the bounds speedup attainable on a parallel machine with a program which is parallelizable at P %

(i.e. must run sequentially for (1 - P)).

If you have N processors, the speed-up is: P =80%, max speed-up =5
_ t_old _ 1
~ tmnew (1—P)+P/N .

- Time to run the sequential part
o
- Time to run the parallel part %3
[
o
7]

10 20 30 40 50 60
procs

Toward Heterogeneous Architectures (1/2)

t_old 1 - Time to run the sequential part
~ tmnew (1—P)+P/N - Time to run the parallel part
Latency-optimized (multi-core CPU) Throughput-optimized (GPU)
I 2 Poor perfs on parallel portions Iz Poor perfs on sequential portions
oom 3
e oon >
COn =

Execution time Execution time

Toward Heterogeneous Architectures (2/2)

t_old 1 - Time to run the sequential part
Tt new (1-P)+P/N - Time to run the parallel part

Heterogeneous (CPU+GPU)
IS Use the right tool for the right job

I Allows aggressive optimization for latency or for throughput

Execution time

Toward Heterogeneous Architectures

—1 =

OMAP5430 i

MEP| LI/
Ilmmlll: mmrrw ARM M—-u
Cortex-M4

°
ARAR® VA-HD 3 MIPLGSLZ s o o
Corte k15 | Cortcdls | S0 o a kit
MPCore MPCors tor
et e

& trace

D
CJTAG/STRPTM DM 1 40

Y 6o | eras

Fast
(L)

TPO25015
s

	Fifty shades of Parallelism

