
GPU Computing

E. Carlinet, J. Chazalon {firstname.lastname@lrde.epita.fr}

Oct 21

EPITA Research & Development Laboratory (LRDE)

Slides generated on October 8, 2021

1

Fifty shades of Parallelism

2

Fifty shades of Parallelism

How to get things done quicker

1. Do less work
2. Do some work better (i.e. the one being the more time-consuming)
3. Do some work at the same time
4. Distribute work between different workers

• (1) Choose the most adapted algorithms, and avoid re-computing things

• (2) Choose the most adapted data structures

• (3,4) Parallelism

3

How to get things done quicker

1. Do less work
2. Do some work better (i.e. the one being the more time-consuming)
3. Do some work at the same time
4. Distribute work between different workers

• (1) Choose the most adapted algorithms, and avoid re-computing things

• (2) Choose the most adapted data structures

• (3,4) Parallelism

3

Why parallelism ?

• Moore’s law: processors are not getting twice as powerful every 2 years anymore

• So the processor is getting smarter:
• Out-of-order execution / dynamic register renaming
• Speculative execution with branch prediction

• And the processor is getting super-scalar:
• ISA gets vectorized instructions

(More details in few slides)

4

Toward data-oriented programming

• while the CPU clock rate got bounded…
• … the quantity data to process has shot up!

We need another way of thinking “speed”

5

The burger factory assembly line

How to make several sandwiches as fast as possible ?

• Optimize for latency: time to get 1 sandwich done.
• Optimize for throughput: number of sandwiches done during a given duration

6

The burger factory assembly line

How to make several sandwiches as fast as possible ?

• Optimize for latency: time to get 1 sandwich done.
• Optimize for throughput: number of sandwiches done during a given duration

6

Data-oriented programming parallelism

Flynn’s Taxonomy

Single Instruction Multiple Instruction

Single Data SISD MISD
Multiple Data SIMD MIMD

• SISD: no parallelism
• SIMD: same instruction on data group (vector)
• MISD: rare, mostly used for fault tolerant code
• MIMD: usual parallel mode

7

Optimize for latency (MIMD with collaborative workers)

4 super-workers (4 CPU cores) collaborate to make 1 sandwich.
• Manu gets the bread and cuts and waits for the others
• Donald slices the salad
• Angela slices the the tomatoes
• Kim slices the cheeses

Time

Manu Donald Angela Kim

Time to make 1 sandwich: 𝑠

4
(400% speed-up)

This is optimized for latency (CPU are good for that).
8

Optimize for throughput (MIMD Horizontal with multiple jobs)

• Manu makes sandwich 1
• Donald makes sandwich 2
• …

Time

Manu Donald Angela Kim

Time to make 4 sandwiches: 𝑠 (400% speed-up)
This is optimized for throughput (GPU are good for that).

9

Optimize for throughput (MIMD Vertical Pipelining)

• Manu cuts the bread
• Donald slices the salads
• Angela slices the tomatoes
• …

Time

Manu Donald Angela Kim

Time to make 4 sandwiches: 𝑠 (400% speed-up)

10

Optimize for throughput (SIMD DLP)

A worker has many arms and
make 4 sandwiches at a time

Time

Time to make 4 sandwiches: 𝑠 (400% speed-up)

11

More cores is trendy

Data-oriented design have changed the way we make processors (even CPUs):

• Lower clock-rate
• Larger vector-size, more vector-oriented ISA
• More cores (processing units)

64bits Intel
Xeon

Xeon 5100
series

Xeon 5500
series

Xeon 5600
series

Xeon E5 2600
series Xeon Phi 7120P

Freq 3.6 Ghz 3.0 Ghz 3.2 Ghz 3.3 Ghz 2.7 Ghz 1.24 Ghz
Cores 1 2 4 6 12 61
Threads 2 2 8 12 24 244
SIMD
Width

128 bits
(2 clocks)

128 bits
(1 clock)

128 bits
(1 clock)

128 bits
(1 clock)

256 bits
(1 clock)

512 bits
(1 clock)

12

More cores is trendy

Peak performance / core is getting lower Global peak performance is getting higher (with more
cores!)

13

CPU vs GPU performance

And you see it with HPC apps:

14

Toward Heterogeneous Architectures

But don’t forget, you may need to optimize both latency and throughput.

What is the bounds speedup attainable on a parallel machine with a program which is parallelizable at P %
(i.e. must run sequentially for (1 - P)).

Sequential=20% Parallelizable=80%

If you have N processors, the speed-up is:

𝑆 =
𝑡_old

𝑡_new
=

1

(1 − 𝑃) + 𝑃/𝑁

• Time to run the sequential part
• Time to run the parallel part

P = 80%, max speed-up = 5

10 20 30 40 50 60
procs

1

2

3

4

Sp
ee

d
U

p

15

Toward Heterogeneous Architectures

But don’t forget, you may need to optimize both latency and throughput.

What is the bounds speedup attainable on a parallel machine with a program which is parallelizable at P %
(i.e. must run sequentially for (1 - P)).

Sequential=20% Parallelizable=80%

If you have N processors, the speed-up is:

𝑆 =
𝑡_old

𝑡_new
=

1

(1 − 𝑃) + 𝑃/𝑁

• Time to run the sequential part
• Time to run the parallel part

P = 80%, max speed-up = 5

10 20 30 40 50 60
procs

1

2

3

4

Sp
ee

d
U

p

15

Toward Heterogeneous Architectures (1/2)

𝑆 =
𝑡_old

𝑡_new
=

1

(1 − 𝑃) + 𝑃/𝑁

• Time to run the sequential part
• Time to run the parallel part

Latency-optimized (multi-core CPU)
❉Poor perfs on parallel portions

Execution time

Throughput-optimized (GPU)
❉Poor perfs on sequential portions

Execution time

16

Toward Heterogeneous Architectures (2/2)

𝑆 =
𝑡_old

𝑡_new
=

1

(1 − 𝑃) + 𝑃/𝑁

• Time to run the sequential part
• Time to run the parallel part

Heterogeneous (CPU+GPU)

❯Use the right tool for the right job

❯Allows aggressive optimization for latency or for throughput

Execution time

17

Toward Heterogeneous Architectures

18

	Fifty shades of Parallelism

