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GPU vs CPU architectures

How to explain that:

• CPU are low-latency
• GPU are high-throughput
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It’s all about data… the CPU:

• Optimized for low-latency access (many memory caches)
• Control logic for out-of-order and speculative execution
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Intel i7 IBM Power 8 (2014)
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It’s all about data… the GPU:

CPU

• Low-latency access
• Many control logic

GPU

• Throughput computation (ALUs)
• Tolerant to memory latency

But how… ?
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Hiding latency With thread parallelism & pipelining

So… you want to hide the latency of getting data from global memory… how ?
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CPU
• low-latency memory to get data ready
• each thread context switch has a cost

GPU
• memory latency hidden by pipelining
• context switch is free
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Latency hiding

• = do other operations when waiting for data

• = having a lot of parallelism

• = having a lot of data

• will run faster

• but not faster than the peak

• what is the peak by the way ?
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It’s all about data… Little’s law

• Customer arrival rate: Throughput
• Customer time spent: Latency
• Avergage customer count: Concurrency (Data in the pipe)” = throughput * Latency

Concurrency is the number of items processed at the same time.

Latency Peak Throughput Needed Concurrency

GPU-arithmetic 24 cycles 8 IPC 192 inst
GPU-memory 350 ns 190 GB/s 65K
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Hiding latency

With thread parallelism & pipelining
Note that pipeling exists on CPUs (cycle de Von Neumann):

• IF instruction fetch
• ID instruction decode
• OPF Operand fetch
• EX execute
• WB result write back

Pipeline at Instruction Level vs pipeline at Thread (Warp) Level
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More about forms of parallelism (the why!)

Vertical parallelism for latency hiding

Pipelining keeps units busy when waiting for dependencies, memory
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Horizontal parallelism for throughput

More units working in parallel

A B C D

throughput
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More about forms of parallelism (the how!)

Instruction-Level Parallelism (ILP)

Between independent instructions.

1. add r3 ← r1, r2
2. mul r0 ← r0, r1
3. sub r1 ← r3, r0

’1 and ’2 run concurrently

Thread-Level Parallelism (TLP)

Between independent execution contexts: threads

Thread 1 Thread 2

add mul

Data-Level Parallelism (DLP)

Between elements of a vector: same operation on
several elements

vadd r ← a, b
a₁ a₂ a₃

+
b₁ b₂ b₃
—————————
r₁ r₂ r₃
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Extracting parallelism

Horizontal Vertical

ILP Superscalar Pipeline
TLP Multi-cores / SMT Interleaved / Switch-on-event multi-threading
DLP SIMD / SIMT
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Parallel architectures & parallelism

CPU (Intel Haswell)

Hor. Vert.

ILP 8 3

TLP 4 2
DLP 8

• 8 ALUs for executing non-dependent instructions
• 4 cores. Physical cores
• 4*2 logical hyper-cores
• Lane of 8x32bits SIMD registers supporting AVX 256

General-purpose multi-cores: balance ILP, TLP and DLP

GPU (NVidia Kepler)

Hor. Vert.

ILP 2
TLP 16x4 64
DLP 32

• Dual instruction issue for executing non-dependent instructions
• 16 Multiprocessors (physical cores) Can execute 4 simultaneous
warps

• Multithreading (64 warps / SM)
• 128 (4 x 32) CUDA cores. SIMT of width 32

GPU: focus on DLP, TLP horizontal and vertical.
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• All processors use hardware to turn parallelism into performance
• GPUs focus on Thread-level and Data-level parallelism
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