
GPU Computing

E. Carlinet, J. Chazalon {firstname.lastname@lrde.epita.fr}

Oct 21

EPITA Research & Development Laboratory (LRDE)

Slides generated on October 8, 2021

1

GPU vs CPU architectures

2

GPU vs CPU architectures

GPU vs CPU architectures

How to explain that:

• CPU are low-latency
• GPU are high-throughput

3

It’s all about data… the CPU:

• Optimized for low-latency access (many memory caches)
• Control logic for out-of-order and speculative execution

4

Intel i7 IBM Power 8 (2014)

5

It’s all about data… the GPU:

CPU

• Low-latency access
• Many control logic

GPU

• Throughput computation (ALUs)
• Tolerant to memory latency

But how… ?

6

Hiding latency With thread parallelism & pipelining

So… you want to hide the latency of getting data from global memory… how ?

1 CPU Core

Time (cycles)

#
T
h
re
a
d
s

T1

T2

T1
Thread
Switch

Stall

Query

Exec

1 GPU SMP (Streaming Multiprocessor)

Time (cycles)

#
W
ar
p
s

Memory Query Stall Ready Exec

CPU
• low-latency memory to get data ready
• each thread context switch has a cost

GPU
• memory latency hidden by pipelining
• context switch is free

7

Hiding latency With thread parallelism & pipelining

So… you want to hide the latency of getting data from global memory… how ?

1 CPU Core

Time (cycles)

#
T
h
re
ad

s

T1

T2

T1
Thread
Switch

Stall

Query

Exec

1 GPU SMP (Streaming Multiprocessor)

Time (cycles)

#
W
ar
p
s

Memory Query Stall Ready Exec

CPU
• low-latency memory to get data ready
• each thread context switch has a cost

GPU
• memory latency hidden by pipelining
• context switch is free

7

Latency hiding

• = do other operations when waiting for data

• = having a lot of parallelism

• = having a lot of data

• will run faster

• but not faster than the peak

• what is the peak by the way ?

8

It’s all about data… Little’s law

• Customer arrival rate: Throughput
• Customer time spent: Latency
• Avergage customer count: Concurrency (Data in the pipe)” = throughput * Latency

Concurrency is the number of items processed at the same time.

Latency Peak Throughput Needed Concurrency

GPU-arithmetic 24 cycles 8 IPC 192 inst
GPU-memory 350 ns 190 GB/s 65K

9

Hiding latency

With thread parallelism & pipelining
Note that pipeling exists on CPUs (cycle de Von Neumann):

• IF instruction fetch
• ID instruction decode
• OPF Operand fetch
• EX execute
• WB result write back

Pipeline at Instruction Level vs pipeline at Thread (Warp) Level
10

More about forms of parallelism (the why!)

Vertical parallelism for latency hiding

Pipelining keeps units busy when waiting for dependencies, memory

A B

A

C

B

A

D

C

B

A

la
te
n
cy

Horizontal parallelism for throughput

More units working in parallel

A B C D

throughput

11

More about forms of parallelism (the how!)

Instruction-Level Parallelism (ILP)

Between independent instructions.

1. add r3 ← r1, r2
2. mul r0 ← r0, r1
3. sub r1 ← r3, r0

’1 and ’2 run concurrently

Thread-Level Parallelism (TLP)

Between independent execution contexts: threads

Thread 1 Thread 2

add mul

Data-Level Parallelism (DLP)

Between elements of a vector: same operation on
several elements

vadd r ← a, b
a₁ a₂ a₃

+
b₁ b₂ b₃
—————————
r₁ r₂ r₃

12

More about forms of parallelism (the how!)

Instruction-Level Parallelism (ILP)

Between independent instructions.

1. add r3 ← r1, r2
2. mul r0 ← r0, r1
3. sub r1 ← r3, r0

’1 and ’2 run concurrently

Thread-Level Parallelism (TLP)

Between independent execution contexts: threads

Thread 1 Thread 2

add mul

Data-Level Parallelism (DLP)

Between elements of a vector: same operation on
several elements

vadd r ← a, b
a₁ a₂ a₃

+
b₁ b₂ b₃
—————————
r₁ r₂ r₃

12

More about forms of parallelism (the how!)

Instruction-Level Parallelism (ILP)

Between independent instructions.

1. add r3 ← r1, r2
2. mul r0 ← r0, r1
3. sub r1 ← r3, r0

’1 and ’2 run concurrently

Thread-Level Parallelism (TLP)

Between independent execution contexts: threads

Thread 1 Thread 2

add mul

Data-Level Parallelism (DLP)

Between elements of a vector: same operation on
several elements

vadd r ← a, b
a₁ a₂ a₃

+
b₁ b₂ b₃
—————————
r₁ r₂ r₃

12

Extracting parallelism

Horizontal Vertical

ILP Superscalar Pipeline
TLP Multi-cores / SMT Interleaved / Switch-on-event multi-threading
DLP SIMD / SIMT

13

Parallel architectures & parallelism

CPU (Intel Haswell)

Hor. Vert.

ILP 8 3

TLP 4 2
DLP 8

• 8 ALUs for executing non-dependent instructions
• 4 cores. Physical cores
• 4*2 logical hyper-cores
• Lane of 8x32bits SIMD registers supporting AVX 256

General-purpose multi-cores: balance ILP, TLP and DLP

GPU (NVidia Kepler)

Hor. Vert.

ILP 2
TLP 16x4 64
DLP 32

• Dual instruction issue for executing non-dependent instructions
• 16 Multiprocessors (physical cores) Can execute 4 simultaneous
warps

• Multithreading (64 warps / SM)
• 128 (4 x 32) CUDA cores. SIMT of width 32

GPU: focus on DLP, TLP horizontal and vertical.

14

Parallel architectures & parallelism

CPU (Intel Haswell)

Hor. Vert.

ILP 8 3

TLP 4 2
DLP 8

• 8 ALUs for executing non-dependent instructions
• 4 cores. Physical cores
• 4*2 logical hyper-cores
• Lane of 8x32bits SIMD registers supporting AVX 256

General-purpose multi-cores: balance ILP, TLP and DLP

GPU (NVidia Kepler)

Hor. Vert.

ILP 2
TLP 16x4 64
DLP 32

• Dual instruction issue for executing non-dependent instructions
• 16 Multiprocessors (physical cores) Can execute 4 simultaneous
warps

• Multithreading (64 warps / SM)
• 128 (4 x 32) CUDA cores. SIMT of width 32

GPU: focus on DLP, TLP horizontal and vertical.

14

• All processors use hardware to turn parallelism into performance
• GPUs focus on Thread-level and Data-level parallelism

15

