Carlinet, J. Chazalon (firstnæes.lastnæs@lrde.epits.fr) Oct 21 UPTA Research & Development Laboratory (1880)	GPU vs CPU architectures	Aui Aui I I I I I I I I I I I I I I I I I I I	Intel 17 Core Shored Core Core Shared Core Core Shared Core Core Core Core Core Core Core Core Core
	GPU vs CPU architectures	It's all about data the GPU:	· Hiding latency With thread parallelism & pipelining
GPU vs CPU architectures	How to explain that: - CPU are low-latency - GPU are high-throughput	CPU AUX AUX AUX AUX AUX AUX AUX AU	So you want to hide the latency of getting data from global memory how ? 1 CPU Core

Hiding latency With thread parallelism & pipelining		More about forms of parallelism (the why!)	More about forms of parallelism (the how!)
So you want to hide the latency of getting data from global memory how ? 1 CPU Core	Latency hiding - = do other operations when waiting for data - = having a lot of parallelism - = having a lot of data - will run faster - but not faster than the peak - what is the peak by the way ?	Vertical parallelism for latency hiding Pipelining keeps units busy when waiting for dependencies, memory Image: State of the s	Instruction-Level Parallelism (LP) Between independent instructions. 3. sub r1 ← r3, r0 '1 and '2 run concurrently
CPU CPU OPU OPU OPU OPU OPU OPU OPU OPU OPU O	, Hiding latency	throughput	" More about forms of parallelism (the how!)
Customer arrival rate: Throughput Customer time spent: Latency Avergage customer count: Concurrency (Data in the pipe)* = throughput * Latency	With thread parallelism & pipeling Note that pipeling exists on CPUs (cycle de Von Neumann): Clock cycle - IF instruction fetch 0 1 2 3 6 7 8 - ID instruction decode	Instruction-Level Parallelism (LF) Between independent instructions. 3. sub r1 ← r3, r0	Instruction-Level Parallelism (LP) Between independent instructions. 3. sub r1 ← r3, r0
Concurrency is the number of items processed at the same time. Latency Peak Throughput Needed Concurrency GPU-arithmetic 24 cycles 8 IPC 192 inst GPU-memory 350 ns 190 GB/s 65K	Wolting Instructions Instru	'1 and '2 run concurrently Thread-Level Parallelism (TLP) Thread 1 Thread 2 Between independent execution contexts: threads add mt	'1 and '2 run concurrently Thread-Level Parallelism (TLP) Thread 1 Thread 2 Between independent execution contexts: threads add mt
	Stage 4: Wite back		Data-Level Parallelism (DLP) vadd r ← a, b

b, b, b, r, r₂ r₃

a, a, a,

+

Extracting parallelism

Parallel architectures & parallelism

CPU (Intel Haswell) Hor. Vert.

• 8 ALUs for executing non-dependent instructions • 4 cores. Physical cores 4*2 logical hyper-cores Lane of 8x32bits SIMD registers supporting AVX 256

General-purpose multi-cores: balance ILP, TLP and DLP

Parallel architectures & parallelism						
CPU (II	ntel Ha	swell)		8 ALUs for executing non-dependent instructions 4 cores. Physical cores		
		Hor.	Vert.	 4*2 logical hyper-cores Lane of Britzhite SIMD registers supporting AVX 355 		
	ILP	8	1	Calle of 0x32bits Simb registers Supporting XXX 250		
	TLP	4	2	General-purpose multi-cores: balance ILP, TLP and DLP		
	DLP	8				

GPUs focus on Thread-level and Data-level parallelism

GPU	(NVidia	Kep	ler)

Hor. Vert.

ILP 2 TLP 16x4 64

DLP 32

 Dual instruction issue for executing non-dependent instructions • 16 Multiprocessors (physical cores) Can execute 4 simultaneous warps • Multithreading (64 warps / SM)

• 128 (4 x 32) CUDA cores. SIMT of width 32

GPU: focus on DLP, TLP horizontal and vertical.

+ All processors use hardware to turn parallelism into performance