
GPU Computing

E. Carlinet, J. Chazalon {firstname.lastname@lrde.epita.fr}

Oct 21

EPITA Research & Development Laboratory (LRDE)

Slides generated on October 8, 2021

1

From programming model to hardware parallelism

GPU memory model

2

From programming model to
hardware parallelism

Programming Model (CUDA terminology)

Thread
• Instance of one kernel (list of instructions)
• If active, it has a Program Counter, registers,
private memory, IO

• Thread ID = ID a block

3

Block
A set of threads that cooperate:

• Synchronisation
• Shared memory
• Block ID = ID in a grid

4

Grid
Array of blocks executing same kernel:

• Access to global GPU memory
• Sync. by stop and start a new kernel

5

Programming Model - Summary

Hierarchy Memory

6

Mapping Programming model to hardware - the SMs

• CUDA’s Thread/block/grid is mapped to GPU (N°Threads ≠ N°Cores)

• GTX 980 - 16 Streaming Multi-processors (SM)
• SMs are rather independant

7

Mapping Programming model to hardware - the SMs

• Any block of any grid can be mapped to any SM

• Once thread block is affected to a SM, it won’t move to another one.

8

Zoom on the SM

• SM organizes blocks into warps
• 1 warp = group of 32 threads

GTX 920:
• 128 cores = 4 x 32 cores
• Quad warp scheduler selects 4 warps (TLP)
• And 2 independent instructions per warp can be dispatched each
cycle (ILP)

Example:
• 1 (logical) block of 96 threads maps to: 3 (physical) warps of 32
threads

• Context switches in terms of saving and restoring warp states is 0-cost
• Scheduler tracks of which warps have an instruction ready for issue

9

Zoom on the CUDA cores

1 core = 1 thread

• A warp executes 32 threads on the 32 CUDA cores
• The threads executes the same instruction (DLP)
• All instructions are SIMD
(width = 32) instructions

Each core:
• Floating point & Integer unit
• Fused multiply-add (FMA) instruction
• Logic unit
• Move, compare unit
• Branch unit
• The first IF/ID of the pipeline is done by the SM

Warning: SIMT allows to specify the execution and branching behavior of a single thread but maps to
SIMD processors!

10

The SIMT Execution Model on CUDA Cores

• Divergent code paths (branching) pile up!

A mask allow to dis/activate threads:

If branch 1 1 0 1 0 0 0 0
Else branch 0 0 1 0 1 1 1 1

11

The SIMT Execution Model on CUDA Cores

• Divergent code paths (branching) pile up!

A mask allow to dis/activate threads:

If branch 1 1 0 1 0 0 0 0
Else branch 0 0 1 0 1 1 1 1

11

The SIMT Execution Model on CUDA Cores

What is the latency (in term of inst) of this code in the better and worst case ?

if a > 0:
inst-a
if b > 0:

inst-b;
else

inst-c
else:

inst-d

• Best case: a > 0 is false for every thread. For all threads: inst-d
• Worst case: a > 0 and b > 0 is true for some but not all threads. For all threads:

inst-a
inst-b
inst-c
inst-d

12

The SIMT Execution Model on CUDA Cores

What is the latency (in term of inst) of this code in the better and worst case ?

if a > 0:
inst-a
if b > 0:

inst-b;
else

inst-c
else:

inst-d

• Best case: a > 0 is false for every thread. For all threads: inst-d
• Worst case: a > 0 and b > 0 is true for some but not all threads. For all threads:

inst-a
inst-b
inst-c
inst-d

12

The SIMT Execution Model on CUDA Cores

Loops
i = 0
while i < thread_id:

i += 1

Unrollable loops cost = max iterations, ie:

• Keep looping until all threads exit
• Mask out threads that have exited the loop

Execution trace T0 T1 T2 T3

i = 0 0 0 0 0
i < tid 0 1 1 1
i++ 0 1 1 1
i < tid 0 0 1 1
i++ 0 1 2 2
i < tid 0 0 0 1
i++ 0 1 2 3
i < tid 0 0 0 0

13

The SIMT Execution Model on CUDA Cores

Loops
i = 0
while i < thread_id:

i += 1

Unrollable loops cost = max iterations, ie:

• Keep looping until all threads exit
• Mask out threads that have exited the loop

Execution trace T0 T1 T2 T3

i = 0 0 0 0 0
i < tid 0 1 1 1
i++ 0 1 1 1
i < tid 0 0 1 1
i++ 0 1 2 2
i < tid 0 0 0 1
i++ 0 1 2 3
i < tid 0 0 0 0

13

Occupancy: ILP vs TLP (1/2)

Occupancy
number of warps executed at the same time divided by the maximum number of warps that can
be executed at the same time.

Generation Warps per SM Warps per scheduler Issue rate Issue width

G80 24 24 2 1
GT 200 32 32 2 1
Fermi 48 24 2 2
Kepler/Maxwell 64 16 1 2

Occuppancy (warps/SM) G80 GT200 Fermi Kepler Maxwell

100 % 24 32 48 64 64
50 % … 12 16 24 32 32

CUDA Best Practice
It is a common and recommended practice to launch many more thread blocks than can be
executed at the same time.

No, increasing ILP is another way

14

Occupancy: ILP vs TLP (1/2)

Occupancy
number of warps executed at the same time divided by the maximum number of warps that can
be executed at the same time.

Generation Warps per SM Warps per scheduler Issue rate Issue width

G80 24 24 2 1
GT 200 32 32 2 1
Fermi 48 24 2 2
Kepler/Maxwell 64 16 1 2

Occuppancy (warps/SM) G80 GT200 Fermi Kepler Maxwell

100 % 24 32 48 64 64
50 % … 12 16 24 32 32

CUDA Best Practice
It is a common and recommended practice to launch many more thread blocks than can be
executed at the same time.

No, increasing ILP is another way 14

Occupancy: ILP vs TLP (2/2)

Check it on the GTX 480

ILP = 1
#pragma unroll UNROLL
for(int i = 0; i < N_ITERATIONS; i++)
{

u = a * u + b;

}

0 256 512 768 1024
Thread Parallelism

0

20

40

60

80

100
Pe

ak
 P

er
fo

rm
an

ce

Fixed ILP

ILP = 2 and more
#pragma unroll UNROLL
for(int i = 0; i < N_ITERATIONS; i++)
{

u = a * u + b;
v = a * v + b;
...

}

1 2 3 4 5 6
Instruction Parallelism

40

50

60

70

80

90

100

Pe
ak

 P
er

fo
rm

an
ce

Fixed TLP
(12.5% occupancy)

15

Final note about terminology

NVidia/CUDA AMD/OpenCL “CPU”

Thread Cuda Processor Processing Element Lane
Cuda Core SIMD unit Vector

GPU Core Streaming Multiprocessor Compute Unit Core
GPU Device GPU Device Device

16

GPU memory model

Computation cost vs. memory cost

• Power measurements on NVIDIA GT200

Energy/op (nJ) Total power (W)

Instruction Control 1.8 18
Mult-add 32-wide warp 3.6 36
Load 128B from DRAM 80 90

With the same amount of energy:

• Load 1 word from external memory (DRAM)
• Compute 44 flops

→ Must optimize memory first

17

External memory: discrete GPU

Classical CPU-GPU model

• Split memory space
• Highest bandwidth from GPU memory
• Transfers to main memory are slower

CPU GPU

Main memory
8GB

Grapic memory
3GB

26 GB/s 290 GB/s

PCI
Express

16 GB/s

Intel i7 4770 / GTX 780

18

External memory: embedded GPU

Most GPUs today:

• Same memory
• May support memory coherence (GPU can read directly from CPU caches)
• More contention on external memory

CPU

Cache

GPU

Main memory
8GB

26 GB/s

19

GPU: on-chip memory

Cache area in CPU vs GPU:

But if we include registers:

GPU Registers files + caches

NVidia Maxwell 8.3 MB
AMD Hawaii GPU 15.8 MB
Core i7 CPU 9.3 MB

CPU GPU

Register / Core 256 65K

→ GPU has many more registers but made of simpler memory

20

GPU: on-chip memory

Cache area in CPU vs GPU:

But if we include registers:

GPU Registers files + caches

NVidia Maxwell 8.3 MB
AMD Hawaii GPU 15.8 MB
Core i7 CPU 9.3 MB

CPU GPU

Register / Core 256 65K

→ GPU has many more registers but made of simpler memory 20

Memory model hierarchy (hardware)

Cache hierarchy:

• Keep frequently-accessed data Core
• Reduce throughput demand on main memory L1
• Managed by hardware (L1, L2) or software (shared memory)

• On CPU, caches are designed to avoid memory latency
• On GPU, multi-threading deals with memory latency
Caches are used to improve throughput (and energy)

21

Memory model hierarchy (software)

Mémoire partagée
de chaque bloc
(« Shared »)

Registres de chaque
thread

Mémoire privée du thread (« Local »)!
Mémoire global du GPU (« Global »)

Mémoire vive du PC

Memory On chip Cached Access Scope Lifetime

Register 3 n/a RW 1 thread Thread
Local 7 3 RW 1 thread Thread
Shared 3 n/a RW All threads block Block
Global 7 3 RW All threads + host Host
Constant 7 3 R All threads + host Host
Texture 7 3 R All threads + host Host 22

Non-aligned and strided load in L1 & L2

Q: how to make aligned-load with 2D-arrays ?

ima(x,y) = y * width + x

To have coalesced access, you need to have a multiple of 32 (warp size) for:

• the array width (it means padding)
• the thread block size

ima(x,y) = y * stride + x

23

Non-aligned and strided load in L1 & L2

Q: how to make aligned-load with 2D-arrays ?

ima(x,y) = y * width + x

To have coalesced access, you need to have a multiple of 32 (warp size) for:

• the array width (it means padding)
• the thread block size

ima(x,y) = y * stride + x

23

Shared Memory & conflicts

Used a lot for local copy and fast-access

• Organized in memory bank (accessed concurrently)
• Every bank can provide 64 bits every cycle
• Only two modes:

• Change after 32 bits
• Change after 64 bits

No conflict 2-way conflict No conflict (broadcast)

Conflict = Serialized access (bad!)

24

Next time…

CUDA crash course

25

