
Getting started with CUDA

Part 1 - CUDA overview

Edwin Carlinet, Joseph Chazalon {firstname.lastname@epita.fr}

Fall 2023

EPITA Research Laboratory (LRE)

Slides generated on September 8, 2023

1

CUDA overview

What is CUDA?

A product

• It enables to use NVidia GPUs for computation

A C/C++ variant

• Mostly C++14-compatible, with extensions

• and also some restrictions!

A SDK

• A set of compilers and toolchains for various architectures

• Performance analysis tools

A runtime

• An assembly specification

• Computation libraries (linear algebra, etc.)

A new industry standard

• Used by every major deep learning framework

• Replacing OpenCL as Vulkan is replacing OpenGL 2

The CUDA ecosystem (missing L and H series)

3

The CUDA ecosystem (not so long ago)

Figure 2: The CUDA ecosystem 4

Libraries and Compiler Directives and Programming Language

CUDA is mostly based on a “new” programming language: CUDA C (or C++, or Fortran).
This grants much flexibility and performance

But is also exposes much of GPU goodness through libraries.

And it supports a few compiler directives to facilitate some constructs.

#pragma unroll

for(int i = 0; i < WORK_PER_THREAD; ++i)

// Some thread work

5

The big idea: Kernels instead of loops

Without CUDA (vector addition)

// compute vector sum C = A + B

void vecAdd(float *h_A, float *h_B, float *h_C, int n)

{

for (int i = 0; i < n; ++i)

h_C[i] = h_A[i] + h_B[i];

}

int main()

{

// MISSING: Allocation for A, B and C

// MISSING: I/O to read n elements of A and B

vecAdd(h_A, h_B, h_C, n);

}

6

With CUDA (1/2): move work to the separate compute device

Figure 3: Computation on

separate device

#include <cuda.h>

void vecAdd(float *h_A, float *h_B, float *h_C, int n)

{

int size_bytes = n * sizeof(float);

float *d_A, *d_B, *d_C;

// 1.1 Allocate device memory for A, B and C

// 1.2 Copy A and B to device memory

// 2. Launch kernel code - computation done on device

// 3. Copy C (result) from device memory

// Free device vectors

}

int main() { /* Unchanged */ }

7

With CUDA (2/2): Kernel sample code

// kernel

__global__ void kvecAdd(float *d_A, float *d_B, float *d_C, int n)

{

int i = blockDim.x * blockIDx.x + threadIdx.x;

if (i >= n) { return; }

d_C[i] = d_A[i] + d_B[i];

}

No more for loop!

8

Arrays of parallel threads

A CUDA kernel is executed by a grid (array) of threads

• All threads in a grid run the same kernel code (Single Program Multiple Data)

• Each thread has indexes that is uses to compute memory addresses and make control

decisions

Figure 4: A thread block

9

Thread blocks

Threads are grouped into thread blocks

• Threads within a block cooperate via

• shared memory

• atomic operations

• barrier synchronization

• Threads in different blocks do not interact1

Figure 5: Independent thread blocks

1Not in this course, though there are techniques for that.

10

A multidimensional grid of computation threads (1/2)

Each thread uses indices (added by the compiler) to decide what data to work on:

• blockIdx (0 → gridDim): 1D, 2D or 3D

• threadIdx (0 → blockDim): 1D, 2D or 3D

Each index has x, y and z attributes to get the actual index in each dimension.

int i = threadIdx.x;

int j = threadIdx.y;

int k = threadIdx.z;

Simplifies memory addressing when processing multidimensional data:

• image processing

• solving PDE on volumes

• . . .

11

A multidimensional grid of computation threads (2/2)

Grid and blocks can have different dimensions,

but they usually are two levels of the same work decomposition.

Figure 6: An example of 2D grid with 3D blocks

12

Grid & block examples (1/2)

Vector addition (N elements)

// Kernel definition

__global__ void VecAdd(float* d_A, float* d_B, float* d_C, int sz)

{

int i = threadIdx.x; // /!\ Assuming 1 block here

if (i >= sz) { return ; }

d_C[i] = d_A[i] + d_B[i];

}

int main()

{

...

// Kernel invocation with N threads in a single block

VecAdd<<<1, N>>>(A, B, C, sz); // <-- So this is how we launch CUDA kernels!

...

}

13

Grid & block examples (2/2)

Matrix addition (N×N elements)

// Kernel definition

__global__ void MatAdd(float d_A[N][N], float d_B[N][N], float d_C[N][N], int sz)

{

int i = threadIdx.x; // /!\ Assuming 1 block here

int j = threadIdx.y; // /!\ Assuming 1 block here

if (i >= sz || j >= sz) { return; }

d_C[i][j] = d_A[i][j] + d_B[i][j];

}

int main()

{

...

int numBlocks = 1; // grid size: 1 * 1 * 1 blocks

dim3 threadsPerBlock(N, N); // block size: N * N * 1 threads

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C, sz);

...

} 14

Block decomposition enable automatic scalability

Because the work is divided into

independent blocs which can be run

in parallel on each streaming

multiprocessor (SM),

the same code can be automatically

scaled to architectures with more or

less SMs. . .

as long as SMs architectures are

compatibles (100% compatible with

the same Compute Capabilities version

— a family of devices, careful

otherwise).

Figure 7: Automatic scaling

15

Building and running a simple program

CUDA Hello world (hello.cu)

#include <stdio.h>

__global__ void print_kernel() {

printf(

"Hello from block %d, thread %d\n",

blockIdx.x, threadIdx.x);

}

int main() {

print_kernel<<<2, 3>>>();

cudaDeviceSynchronize();

}

Compile

$ nvcc hello.cu -o hello

Run

$./hello

Hello from block 1, thread 0

Hello from block 1, thread 1

Hello from block 1, thread 2

Hello from block 0, thread 0

Hello from block 0, thread 1

Hello from block 0, thread 2

16

What you need to get started

NVidia GPU hardware

NVidia GPU drivers, properly loaded
modprobe nvidia ...

CUDA runtime libraries
libcuda.so, libnvidia-fatbinaryloader.so, . . .

CUDA SDK (NVCC compiler in particular)
relies on a standard C/C++ compiler and toolchain

docs.nvidia.com/cuda/cuda-installation-guide-linux

Basic C/C++ knowledge

17

Summary

Host vs Device ↔ Separate memory
GPUs are computation units which require explicit usage, as opposed to a CPU

Need to load data to and fetch result from device

Replace loops with kernels
Kernel = Function computed in relative isolation on small chunks of data, on the GPU

Divide the work

Problem → Grid → Blocks → Threads

Compile and run using CUDA SDK

nvcc, libcuda.so, . . .

18

