
Getting started with CUDA

Part 3 - Kernel programming

Edwin Carlinet, Joseph Chazalon {firstname.lastname@epita.fr}

Fall 2023

EPITA Research Laboratory (LRE)

Slides generated on September 8, 2023

1

Kernel programming

(Reminder) 3 simple abstractions for a scalable programming model

CUDA is based at its core on 3 key abstractions:

• a hierarchy of thread groups

• shared memories

• barrier synchronization

This enables a CUDA program to be:

• partitionned in blocks

• run on devices with different computation

resources

Figure 1: Automatic scaling

2

Several API levels

We now want to program kernels.

There are several APIs available:

• PTX assembly

• Driver API (C)

• Runtime C++ API ← let us use this one

We will first focus on the language extensions added to support kernel programming.

They are described in detail in Appendix B of the CUDA C Programming Guide.

3

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-language-extensions

Function Execution Space Specifiers

Executed on the: Only callable from the:

__host__ float HostFunc() host host

__global__ void KernelFunc() device host⋆

__device__ float DeviceFunc() device device

• __global__ defines a kernel function

• Each “__” consists of two underscore characters

• A kernel function must return void

•
⋆It may be called from another kernel for devices of compute capability 3.2 or higher

(Dynamic Parallelism support)

• __device__ and __host__ can be used together

• __host__ is optional if used alone

4

Built-in Vector Types (1/2)

They make is easy to work with data like images.

Alignement must be respected in all operations.

Type Align.

char1, uchar1 1

char2, uchar2 2

char3, uchar3 1

char4, uchar4 4

short1, ushort1 2

short2, ushort2 4

short3, ushort3 2

short4, ushort4 8

Type Align.

int1, uint1 4

int2, uint2 8

int3, uint3 4

int4, uint4 16

long1, ulong1 4 if sizeof(long)

is equal to sizeof(int)

8, otherwise

long2, ulong2 8 if sizeof(long)

is equal to sizeof(int)

16, otherwise

long3, ulong3 4 if sizeof(long)

is equal to sizeof(int)

8, otherwise

long4, ulong4 16

Type Align.

longlong1, ulonglong1 8

longlong2, ulonglong2 16

longlong3, ulonglong3 8

longlong4, ulonglong4 16

float1 4

float2 8

float3 4

float4 16

double1 8

double2 16

double3 8

double4 16

5

Built-in Vector Types (2/2)

They all are structures.

They all come with a constructor function of the form make_<type name>:

int2 make_int2(int x, int y);

The 1st, 2nd, 3rd, and 4th components are accessible through the fields x, y, z, and w,

respectively.

uint4 p = make_uint4(128, 128, 128, 255);

// or uint4 p(128, 128, 128, 255);

uint r = p.x, g = p.y, b = p.z, a = p.w;

dim3 is an alias of uint3 for which any component left unspecified is initialized to 1.

Used to specify grid and block sizes.

dim3 blockSize(32, 32);

6

Built-in Variables

Some variables are pre-defined in a kernel and can be used directly.

Name Type Description

gridDim dim3 dimensions of the grid

blockIdx uint3 block index within the grid

blockDim dim3 dimensions of the block

threadIdx uint3 thread index within the block

warpSize int warp size in threads

Example:

__global__ void MatAdd(float* A, float* B, float* C, int rows, int cols)

{

int j = threadIdx.x + blockIdx.x * blockDim.x;

int i = threadIdx.y + blockIdx.y * blockDim.y;

if (i < rows && j < cols)

C[i][j] = A[i][j] + B[i][j];

}
7

Memory Hierarchy

Figure 2: Programmer view of CUDA memories
Figure 3: Cache hierarchy

8

Types of Memory

Registers Used to store parameters, local variables, etc.

Very fast

Private to each thread

Lots of threads =⇒ little memory per thread (spills in global memory if needed)

Shared Used to store temporary data

Very fast

Shared among all threads in a block

Constant A special cache for read-only values

Slow at first then very fast

Global Large and slow

Shared among all threads in all blocks (in all kernels)

Caches Transparent use

Local Local thread memory cached to L2 and/or L1

Ultimately stored in global memory if needed

9

Salient Features of Device Memory

Memory Location on/off chip Cached Access Scope Lifetime

Register On n/a R/W 1 thread Thread

Local Off Yes‡ R/W 1 thread Thread

Shared On n/a R/W All threads in block Block

Global Off Yes† R/W All threads + host Host allocation

Constant Off Yes R All threads + host Host allocation

† Cached in L1 and L2 by default on devices of compute capability 6.0 and 7.x; cached only in L2 by

default on devices of lower compute capabilities, though some allow opt-in to caching in L1 as well via

compilation flags.

‡ Cached in L1 and L2 by default except on devices of compute capability 5.x; devices of compute

capability 5.x cache locals only in L2.

10

Cost to Access Memory

Space Time Notes

Register 0

Shared 0

Constant 0 Amortized cost is low, first access is high

Local > 100 clocks

Parameter 0

Global > 100 clocks

11

Variable Memory Space Specifiers

How to declaring CUDA variables

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

Remarks:

• __device__ is optional when used with __shared__, or __constant__

• Automatic variables reside in a register

Where to declare variables?

Can host access it?

• Yes: global and constant

Declare outside of any function

• No: register and shared

Use or declare in the kernel
12

Example: Shared Variable Declaration

__global__ MatMulKernel(Matrix A, Matrix B, Matrix C, int rows, int cols)

{

// ...

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// ...

}

Can also be declared to use dynamically allocated memory.

See the documentation for further details.

13

What can be shared, among what?

Figure 4: Memory sharing among threads, blocks

and grids

Possible memory access:

• Among threads in the same grid

(a kernel invocation):

• Global memory

14

What can be shared, among what?

Figure 4: Memory sharing among threads, blocks

and grids

Possible memory access:

• Among threads in the same grid

(a kernel invocation):

• Global memory

• Among threads in the same block:

• Global memory

• Shared memory (efficient)

14

What can be shared, among what?

Figure 4: Memory sharing among threads, blocks

and grids

Possible memory access:

• Among threads in the same grid

(a kernel invocation):

• Global memory

• Among threads in the same block:

• Global memory

• Shared memory (efficient)

• Per threads:

• Global (not efficient)

• Shared memory

• Registers and local

14

Relaxed consistency memory model

The CUDA programming model assumes a device with a weakly-ordered memory model,

that is the order in which a CUDA thread writes data to shared memory or global memory,

is not necessarily the order in which the data is observed being written by another CUDA or host

thread. Think register/cache consistency, buffer flush. . .

Example:

__device__ volatile int X = 1, Y = 2;

__device__ void write_from_thread1()

{

X = 10;

Y = 20;

}

__device__ void read_from_thread2()

{

int A = X;

int B = Y;

}

Possible outcomes for thread 2

15

Relaxed consistency memory model

The CUDA programming model assumes a device with a weakly-ordered memory model,

that is the order in which a CUDA thread writes data to shared memory or global memory,

is not necessarily the order in which the data is observed being written by another CUDA or host

thread. Think register/cache consistency, buffer flush. . .

Example:

__device__ volatile int X = 1, Y = 2;

__device__ void write_from_thread1()

{

X = 10;

Y = 20;

}

__device__ void read_from_thread2()

{

int A = X;

int B = Y;

}

Possible outcomes for thread 2

Strongly-ordered memory model:

• A = 1 and B = 2

• A = 10 and B = 2

• A = 10 and B = 20 15

Relaxed consistency memory model

The CUDA programming model assumes a device with a weakly-ordered memory model,

that is the order in which a CUDA thread writes data to shared memory or global memory,

is not necessarily the order in which the data is observed being written by another CUDA or host

thread. Think register/cache consistency, buffer flush. . .

Example:

__device__ volatile int X = 1, Y = 2;

__device__ void write_from_thread1()

{

X = 10;

Y = 20;

}

__device__ void read_from_thread2()

{

int A = X;

int B = Y;

}

Possible outcomes for thread 2

Strongly-ordered memory model:

• A = 1 and B = 2

• A = 10 and B = 2

• A = 10 and B = 20

Weakly-ordered memory model (like CUDA):

• All the previous

• And also A = 1 and B = 20!

15

Memory Fence Functions

Memory fence functions can be used to enforce some ordering on memory accesses.

void __threadfence_block(); // Among threads in a block

ensures that:

• All writes to all memory made by the calling thread before the call to

__threadfence_block() are observed by all threads in the block of the calling thread as

occurring before all writes to all memory made by the calling thread after the call to

__threadfence_block();

• All reads from all memory made by the calling thread before the call to

__threadfence_block() are ordered before all reads from all memory made by the calling

thread after the call to __threadfence_block().

Like a flush of read and write queues.

void __threadfence(); // Among all threads in a grid

acts as __threadfence_block() but also ensure that threads from others blocks observe

writes in order. This requires to read an uncached value and implies the use of the volatile

keywords.
16

Synchronization Functions

void __syncthreads();

waits until all threads in the thread block have reached this point

and all global and shared memory accesses made by these threads prior to __syncthreads()

are visible to all threads in the block.

Stronger than __threadfence() because it also synchronizes the execution.

__syncthreads() is used to coordinate communication between the threads of the same block.

__syncthreads() is allowed in conditional code but only if the conditional evaluates identically

across the entire thread block, otherwise the code execution is likely to hang or produce

unintended side effects.

17

Atomic Functions (1/2)

Atomic functions perform a read-modify-write atomic operation on one 32-bit or 64-bit word

residing in global or shared memory.

Most of the atomic functions are available for all the numerical types:

int, unsigned int, unsigned long long int, float, double, half, etc.

Arithmetic functions

int atomicAdd(int* address, int val);

//int atomicSub(int* address, int val);

Read old at address, computes (old + val) and stores it back to address, returns old.

int atomicExch(int* address, int val);

Read old at address, stores val to address, and returns old.

int atomicMin(int* address, int val);

// int atomicMax(int* address, int val);

Compute and store min (max). 18

Atomic Functions (2/2)

Arithmetic functions (cont’d)

unsigned int atomicInc(unsigned int* address, unsigned int val);

//unsigned int atomicDec(unsigned int* address, unsigned int val);

Computes (((old == 0) || (old > val)) ? val : (old-1)

int atomicCAS(int* address, int compare, int val);

Computes (old == compare ? val : old)

Bitwise functions

int atomicAnd(int* address, int val);

int atomicOr(int* address, int val);

int atomicXor(int* address, int val);

19

Hardware, API, developper views

The API enables task scheduling on homogeneous hardware

API logical units map to hardware units, enabling work division, parallelization, and compatibility.

Hardware view

ALU/core SIMD unit SM Device

API view

thread ✓

warp ✓

block ✓

grid ✓

20

Developers chose how to map their problem to API units

Everything is possible by default, but some choices are better than others in practice.

API view

thread warp block grid

Data view

pixel ✓ ?

line ? ✓ ?

tile ? ? ✓ ?

image ? ✓

...

Computation view

unit comparison ✓ ?

wave propagation ? ✓ ✓ ?

...

21

Designing kernels in practice

1. Split the work (based on some standard algorithm, ideally)

2. Assign the work to compute abstraction (e.g. 3 pixels for each thread, 3 × 1024 pixels per

block. . .)

3. Properly call the kernel depending on the expected block/grid sizes it expects

22

Debugging, Performance analysis

and Profiling

printf

Possible since Fermi devices (Compute Capability 2.x and higher).

Limited amount of lines:

• circular buffer flushed at particular times

• but not at program exit: must include call to cudaDeviceSynchronize() before exiting

Example:

#include <stdio.h>

__global__ void helloCUDA(float f) {

if (threadIdx.x == 0)

printf("Hello thread %d, f=%f\n",

threadIdx.x, f) ;

}

int main() {

helloCUDA<<<1, 5>>>(1.2345f);

cudaDeviceSynchronize();

return 0;

}

OUTPUT:

Hello thread 0, f=1.2345

23

Global memory write

To dump then inspect a larger amount of intermediate data.

Analysis code should be removed for production.

Example:

__global__ void mykernel(float *input, float *output, float *intermediate) {

// ...

intermediate[threadIdx.x] = intermediate_result;

// ...

}

int main() {

// allocate input, output AND intermediate

// ...

mykernel<<<GS, BS>>>(input, output, intermediate);

// ...

// analyse intermediate results

// ...

}

24

Check error messages

Did you check the error codes?

cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess) {

printf(“%s in %s at line %d\n”,

cudaGetErrorString(err),

__FILE__,

__LINE__);

exit(EXIT_FAILURE);

}

25

CUDA tools

CUDA-GDB debugger

Debugging flags:

• -g: include host debugging information

• -G: include device debugging information

• -lineinfo: include line information with

symbols

Based on GDB.

CUDA-MEMCHECK memory debugging

tool

• No recompilation necessary

cuda-memcheck myprogram

• Can detect the following errors: memory

leaks, memory errors (like alignment

issues), race conditions, illegal barriers. . .

nvprof profiler

nvprof myprogram

NSight

• Visual tool

• Great visualization of profiling results

• Other tools integrated

Other tools

• cuobjdump: host and device obj

disassemble and overview

• nvdisasm: advanced analysis of device

binaries

• nvprune: prunes host object files and

libraries to only contain device code for the

specified targets

26

	Kernel programming
	Hardware, API, developper views
	Debugging, Performance analysis and Profiling

