Getting started with CUDA
Part 4 - Compilation and Runtime

Edwin Carlinet, Joseph Chazalon {firstname.lastname@epita.fr}
Fall 2023

EPITA Research Laboratory (LRE)

Slides generated on September 8, 2023

Compilation and Runtime

Compilation simplified overview

CUDA program Host and devices code follow two
Host + Device code

different compilation trajectories.

Host code generation Device code compilation Device code is compiled into two
Remove <<<...>>> Architecture-specific
formats:
= PTX assembly tied to a virtual
Host compiler PTX cubin . e .
g+ (or other) Assembly Binary architecture specification

T e STy = cubin binary code tied to a
Generate host code particular GPU product family —

Host compiler aka real architecture like Fermi,
g++ (or other)
| Kepler, Maxwell, Pascal, Volta,
fatbin
Host object with
embedded device code

Turing and Ampere

| The final runnable binary

Host link = contains both host and device
with CUDA runtimes
| code
= s linked with the CUDA
Figure 1: Separate compilation of host and device code runtlme(s). 2

Host Device

Runnable binary

-------------------- -

CUDA driver

(if ne{:essary)
‘ JIT PTX compiler ‘

GPU driver
- Assign blocs to SMs
- Launch computations

SMs _ schedule warps
- Process instructions

CUDA Device RT

Figure 2: Transfer of code to device with optional JIT compilation 3

Two-stage compilation

= = 2110 J R — = = NVCG e
o x.cu (device code) o x.cu (device code)
=2 =2
- 2
5 el
i 2
«© «
g Stage 1 g Stage 1
a (PTX Generation) o (PTX Generaticn)
g g
3] o
E g
i =
= x.ptx s x.ptx
--- CUDA Runtime - CUDA Runtime - 5
e e
2 2 Stage 2
é Stage 2 E {Cubin Generation)
5 {Cubin Generation) 5
& &
5 g
g E X.cubin
xeubin — ¢ . Execute
Figure 3: Two-Staged (offline) Compilation with Figure 4: Just-in-Time Compilation of Device Code

Virtual and Real Architectures

PTX, cubin, fatbinary... Why?

Because NVidia wants to be able to push innovations on their hardware as soon as possible,
they do not ensure forward compatibility of binaries, unlike CPU vendors.

They break forward compatibility at each major GPU release, ie when they release a new GPU

family.

Binary code compatibility (cubin)

GPU (device) binary code is not forward (nor backward) compatible:
it is architecture-specific and can be run only by hardware with the same major version.

Example:
Binary code compiled and optimized for sm_30 cards

= can be run by sm_32 and sm_35 cards (Kepler family),
= but cannot be run by sm_5x cards (Maxwell family).

PTX code compatibility

Assembly code, however, is based on an always-increasing set of instructions (much like SSE
extensions).
This implies two things:

= PTX assembly is forward compatible with newer architectures,

= it is not backward compatible though,

= it is always possible to compile
the PTX assembly of an earlier version (like compute_30)
to a binary for the most recent architecture (like sm_75).

This is how NVidia ensures that old code will still run on newer hardware.
New code, however, will not run on old hardware unless special care is taken (more on that later).

CUDA Driver and PTX compilation

The CUDA driver (1ibcuda.so) contains the

JIT PTX compiler and is always backward e 2, 2,

; L Libs & Libs & Libs &
compatible (this is what actually makes PTX Plug-ns Plugins | | Plugins
forward compatible).
This means that it can take assembly code from \ \ 4
an older version anc compile it for the current 10 WD 20
version of the device on the current machine. oriver oriver

Compatible Incompatible

However, it is not forward compatible: code >
compiled with newer PTX assembly cannot be Figure 5: Compatibility of CUDA Versions

understood.

It may be necessary to ask the user to install a newer version of the CUDA driver on its system,
or to add some compatibility code for older architectures / CUDA drivers.

As of Nov. 2019, what is safe to use?

Maximum compatibility __CUDA_ARCH__
/usr/local/cuda/bin/nvce Use different code paths to support
-gencode=arch=compute_30,code=sm_30 previous architectures.

-gencode=arch=compute_35, code=sm_35
__device__ func()

{
#if __CUDA_ARCH__ < 350

/* Do something spectal for

-gencode=arch=compute_50,code=sm_50
-gencode=arch=compute_60,code=sm_60
-gencode=arch=compute_70,code=sm_70

-gencode=arch=compute_75,code=sm_75 - G hout 4 .
-gencode=arch=compute_75, code=compute_75 areprrectures il out aynamuc

llelism. *
-02 -o mykernel.o -c mykernel.cu parastetusm

#else
Distribute the cudart lib (static or dynamic link) /* Do something else. */
with your application. #endif

¥

Deprecations

Kepler and Maxwell hardware are being deprecated (sm_3x, sm_5x).
2022 update: sm_3x, sm_5x and sm_6x ARE deprecated now. 9

Compilation and Runtime Summary

Host code and device code are compiled separately.

= Device code is packaged with host code to be launched.
= A host compiler (ex g++) is required.

You can select which features you want to activate in your code,
hence which compatibility you offer.

= Using __CUDA_ARCH__ macro in your code to support multiple architectures.
= Using nvcc's —arch compute_xx flag.

= This controls the PTX assembly which is generated.

= PTX assembly is forward compatible thanks to JIT compilation.

You can select the hardware you want to build a precompiled binary (cubin) for.

= Accelerates application startup (do not care about it for now).
= Using nvcc's —code sm_xx flag.

You can generate multiples PTX and cubins using the following nvcc's flags repeatidly:

-gencode arch=compute_xx,code=sm_yy 10

More details

Real architectures vs ual architectures

Real architectures

Hardware version Features
sm_30 and sm_32 Basic features + Kepler support + Unified memory programming
sm_35 + Dynamic parallelism support

sm_50, sm_52 and sm_53 + Maxwell support
sm_60, sm_61 and sm_62 + Pascal support
sm_70 and sm_72 + Volta support
sm_75 + Turing support

11

Virtual architectures

Compute capability

Features

compute_30 and compute_32

compute_35

compute_50, compute_52, and
compute_53

compute_60, compute_61, and
compute_62

compute_70 and compute_72

compute_75

Basic features + Kepler support + Unified memory
programming

+ Dynamic parallelism support

+ Maxwell support

+ Pascal support

+ Volta support
+ Turing support

12

Real architectures (“code”)

Run compiled binary code (cubin)
Instantiate a virtual architecture to a
particular number of SMs per GPU
Specifies a particular SM model

Noted sm_xx

Selected using the —-code parameter of

nvcc

What’s the point?

= Pre-compile your kernels for a particular

hardware and accelerate program startup.

Virtual architectures (“arch”)

Specifies an instruction set for PTX
assembly (ptx) (much like SSE extensions)
Specifies features available

Noted compute_xx

Selected using the —arch parameter of
nvce

What'’s the point?

= Limit the features you want to use to

maximize compatibility

Migrate code progressively as some
behavior may change (like Independent
Thread Scheduling in compute_70)

The __CUDA_ARCH__ macro will be set
accordingly in your code so you can have
different code paths for different compute
capabilities

13

More on compute capabilities

Excellent summaries:

= Appendix H on Compute Capabilities of CUDA C programming guide

= CUDA page on Wikipedia

= List of GPUs and their compute capability version available here:
developer.nvidia.com /cuda-gpus

14

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://en.wikipedia.org/wiki/CUDA#GPUs_supported
https://developer.nvidia.com/cuda-gpus

Feature Support

Compute Capability
{Unlisted features are supported for all compute capabilities) 35,3.7,5.0,52 | 5.3
Atomic functions operating on 32-bit integer values in giobal memory |) Yes
“StomicExchi] operating on 32-Bit Roating point walues in giobal memary |) Yes

‘Atomic functions operating on 32-bit integer values in shared memary | Y Yes

‘atomic Exchi) operating on 32.bit floating point values in shared memory [Yes

“Atomic funtions cperating on B0-bi integar values in global memary |] Yes

“Atomic functions cperating on 60-bt integer valuss in shared memary [] Yes

Atomic addition operating on 32 bit floating point values in global and shared memory |) Yes

Atomic sadition operating on 64-bit Aiasting paint values in giohal memary and shared memary | 1

Viarp vote and ballot functions ()

" threadlence. systemi) |)

oy threads count]

_syncthreads_and(),

_ syncthveads or) {) e

Surface functions (!

3D gnid of thread blocks

Unified Memary Programming

Funnel shift (see reference manual) Yes

Dynamic Parallelism.

Half-precision floating-point operations: addition, subtrac tion, multipiication, comparison, warp shuffie functions, conversion|
Tenscr Core

Figure 6: Feature Support per Compute Capability

Tachnical Spe cifications

EC I I N N 37

‘Compute Capability
53 [53 | e

a2

70

75

Vi number of resdent grids per device {

W]

% [w

1

%

Viasirmim dimansoraity of gad of thresd bocke,

Maximum x-imension of a g of thread bocks

Vi - or - dimersion of 3 o7 of fvesd biecks

Wiasirmum dmersionalty of tread block

Vasirmum = or y-dimersion of bock

Wasirnum = dmension of = biock

Wasirmum number of feads per bock

Ve size

Wasimum romber o

it
Waximum number of resKent warps per mutiprocessor

Wasirrir nurber f resdant Breacs par mulprocessar

EL3 [mx]

K

Wiasierim rumber of 32.b# regiters per hread Black

CTS BT T

[=x

e T

Vasimum number of 321t egiiers per thisad

255

Wasimum amountaf shared memary per muliprocessor

[[wma]

o W EIS]

W |

)

ke

Wasimum amourt of shared memory per tfvead block

K

w5

60 KE

Nurnber of shared memory banks

Rrmount of foeal memory par tread

Sake

Constart memary a2

wve

Cache working set per mtproc sor or corstart memary

xa

‘Cache working st per muliprocessor for texture memory

Between 12 KB and 45K

Between 24 KB and 48 K8

212k

2o oike

Wasirmum width for 3 1D texture eferenee bound 1o 3 CUDA amay

6553

Wasimum wih for 3 1D texture referenc e bound 1 inear memory.

2

Wi v ared marmber of nyers for 3 1D layared texturs rference

16381 x 2008

Wasirrum widh an height for 3 2D texture reference bound to 3 CUDA aray.

=

Viasimum vidth and height for a 20 texture reference bound to inear memary

65000 x 63000

Waimum am bound 102 CUDA
ather

1638« 16384

Viaximum v, Feight, 3nd number of Byers for 7D yered textue reference

38 ¢ 16364 2008

Visievurn v, height, and depth for 2 30 texture reference bound to 3 CUDA amay

1056 4006 x 4096

Visiemum v (and height) fo 3 cubemap texture reference 16381
Viasimum v (and height) and number f ayes fr a cbemap layered texture reference. 16380 % 2008
Wasimum numberof textures that can be bound 1o 3 kemel 250
Wasimum wilth for 3 1D suface reference bound o a CUDA aray 5%
Wi vodih and rumbe of ayers or 3 LD ayered suface relerence

530X 200

Waxirmum vodh anc heightfor 3 2D suface eferance bound 1.3 CUDA amy

5536 ¢ 32768

Wiasirmurm v, besght. ard rurber oflayers for 3 2D layered suface reference.

G553 x 32768 2008

Wasirrum vk, height. and depth for 2 3D suface reference bound £ 3 CUDA aray.

65536 x 32768 x 2048

Wasierur vk (ad eight]for 3 cubemap surface reference bound 2 3 CUDA amay B
Wasimum vodh (and heghi] and namber of layers fo a cubemap layered suface eference. 2768 5 2008
Wasimum numberof sufaces that can be bound to a kemel is
Wasimum number of instucons per keme! 512 mifon

Figure 7: Technical Specifications per Compute Capability

16

Documentation excerpt

Compute Capability 3.x:
= Architecture
A multiprocessor consists of:
= 192 CUDA cores for arithmetic operations
(see Arithmetic Instructions for
throughputs of arithmetic operations),
= 32 special function units for
single-precision floating-point
transcendental functions,
= 4 warp schedulers.
= Global Memory
= Global memory accesses for devices of
compute capability 3.x are cached in
L2...
= A cache line is 128 bytes and maps to a
128 byte aligned segment in device
memory. . .
= Shared Memory
= Shared memory has 32 banks. ..

Compute Capability 5.x:

Architecture
A multiprocessor consists of:
= 128 CUDA cores for arithmetic operations
(see Arithmetic Instructions for
throughputs of arithmetic operations),
= 32 special function units for
single-precision floating-point
transcendental functions,
= 4 warp schedulers.

17

CUDA Runtime and SDK support

The CUDA runtime (libcudart.so) is bundled with your SDK an provides high-level
functionnality.

= You should distribute the CUDA runtime with your application.
= |t is compatible with a certain range of GPU driver versions.
= |t supports a certain range of hardware (GPU families):
= CUDA SDK 6.5 support for compute capability 1.1 - 5.x (Tesla, Fermi, Kepler, Maxwell). Last
version with support for compute capability 1.x (Tesla)
= CUDA SDK 7.0 - 7.5 support for compute capability 2.0 - 5.x (Fermi, Kepler, Maxwell)
= CUDA SDK 8.0 support for compute capability 2.0 - 6.x (Fermi, Kepler, Maxwell, Pascal).
Last version with support for compute capability 2.x (Fermi)
= CUDA SDK 9.0 - 9.2 support for compute capability 3.0 - 7.2 (Kepler, Maxwell, Pascal, Volta)
= CUDA SDK 10.0 - 10.2 support for compute capability 3.0 - 7.5 (Kepler, Maxwell, Pascal,
Volta, Turing). Last version with support for compute capability 3.x (Kepler)

18

The complete compilation trajectory

C++ Preprocessor

cppaii

cudafes+

cudafel.cpp o

G++ Compiler

0/.0bj

A .8
C++ Preprocessor
Als passed to B as an input file.

cppl.ii Acooooooooooooos °B
Als #include'd in B.
—.cudafet stub. —
e “ «Repeat | | for each .cu input file.
|
I pix « Repeat D for each virtual architecture.

« Repeat ptxas and nviink for each virtual/real

pixas architecture combination.

« Device linker consists of steps in

.cubin

fatoinary

,,,,,,, fatbin.c
—— adinkregc
)
i
a_dlink.cubin i
i
I
|
i
b o
a_dinkfatbine — — — — o linkStub

a_dlink.o/ a_dlink.obj

Host Linker

executable

Figure 8: CUDA compilation trajectory

19

Whole program compilation vs Separate compilation (of device code)

Separate compilation of source code is possible.

X.cu y.cu z.cpp

' '

[nvcc __dEVice_C] [Cr Compler j

y.0 / y.obj

X.0/ X.obj

2.0/ z.0bj

Device Linker

a_dlink.o / a_dlink.obj

Host Linker

executable / library

Figure 9: CUDA Separate Compilation Trajectory

20

	Compilation and Runtime
	More details

