
Getting started with CUDA

Part 4 - Compilation and Runtime

Edwin Carlinet, Joseph Chazalon {firstname.lastname@epita.fr}

Fall 2023

EPITA Research Laboratory (LRE)

Slides generated on September 8, 2023

1



Compilation and Runtime



Compilation simplified overview

Figure 1: Separate compilation of host and device code

Host and devices code follow two

different compilation trajectories.

Device code is compiled into two

formats:

• PTX assembly tied to a virtual

architecture specification

• cubin binary code tied to a

particular GPU product family —

aka real architecture like Fermi,

Kepler, Maxwell, Pascal, Volta,

Turing and Ampere

The final runnable binary

• contains both host and device

code

• is linked with the CUDA

runtime(s).
2



Runtime

Figure 2: Transfer of code to device with optional JIT compilation 3



Two-stage compilation

Figure 3: Two-Staged (offline) Compilation with

Virtual and Real Architectures

Figure 4: Just-in-Time Compilation of Device Code

4



PTX, cubin, fatbinary. . . Why?

Because NVidia wants to be able to push innovations on their hardware as soon as possible,

they do not ensure forward compatibility of binaries, unlike CPU vendors.

They break forward compatibility at each major GPU release, ie when they release a new GPU

family.

5



Binary code compatibility (cubin)

GPU (device) binary code is not forward (nor backward) compatible:

it is architecture-specific and can be run only by hardware with the same major version.

Example:

Binary code compiled and optimized for sm_30 cards

• can be run by sm_32 and sm_35 cards (Kepler family),

• but cannot be run by sm_5x cards (Maxwell family).

6



PTX code compatibility

Assembly code, however, is based on an always-increasing set of instructions (much like SSE

extensions).

This implies two things:

• PTX assembly is forward compatible with newer architectures,

• it is not backward compatible though,

• it is always possible to compile

the PTX assembly of an earlier version (like compute_30)

to a binary for the most recent architecture (like sm_75).

This is how NVidia ensures that old code will still run on newer hardware.

New code, however, will not run on old hardware unless special care is taken (more on that later).

7



CUDA Driver and PTX compilation

The CUDA driver (libcuda.so) contains the

JIT PTX compiler and is always backward

compatible (this is what actually makes PTX

forward compatible).

This means that it can take assembly code from

an older version anc compile it for the current

version of the device on the current machine.

However, it is not forward compatible: code

compiled with newer PTX assembly cannot be

understood.

Figure 5: Compatibility of CUDA Versions

It may be necessary to ask the user to install a newer version of the CUDA driver on its system,

or to add some compatibility code for older architectures / CUDA drivers.

8



As of Nov. 2019, what is safe to use?

Maximum compatibility

/usr/local/cuda/bin/nvcc

-gencode=arch=compute_30,code=sm_30

-gencode=arch=compute_35,code=sm_35

-gencode=arch=compute_50,code=sm_50

-gencode=arch=compute_60,code=sm_60

-gencode=arch=compute_70,code=sm_70

-gencode=arch=compute_75,code=sm_75

-gencode=arch=compute_75,code=compute_75

-O2 -o mykernel.o -c mykernel.cu

Distribute the cudart lib (static or dynamic link)

with your application.

__CUDA_ARCH__

Use different code paths to support

previous architectures.

__device__ func()

{

#if __CUDA_ARCH__ < 350

/* Do something special for

architectures without dynamic

parallelism. */

#else

/* Do something else. */

#endif

}

Deprecations

Kepler and Maxwell hardware are being deprecated (sm_3x, sm_5x).

2022 update: sm_3x, sm_5x and sm_6x ARE deprecated now. 9



Compilation and Runtime Summary

Host code and device code are compiled separately.

• Device code is packaged with host code to be launched.

• A host compiler (ex g++) is required.

You can select which features you want to activate in your code,

hence which compatibility you offer.

• Using __CUDA_ARCH__ macro in your code to support multiple architectures.

• Using nvcc’s -arch compute_xx flag.

• This controls the PTX assembly which is generated.

• PTX assembly is forward compatible thanks to JIT compilation.

You can select the hardware you want to build a precompiled binary (cubin) for.

• Accelerates application startup (do not care about it for now).

• Using nvcc’s -code sm_xx flag.

You can generate multiples PTX and cubins using the following nvcc’s flags repeatidly:

-gencode arch=compute_xx,code=sm_yy 10



More details



Real architectures vs Virtual architectures

Real architectures

Hardware version Features

sm_30 and sm_32 Basic features + Kepler support + Unified memory programming

sm_35 + Dynamic parallelism support

sm_50, sm_52 and sm_53 + Maxwell support

sm_60, sm_61 and sm_62 + Pascal support

sm_70 and sm_72 + Volta support

sm_75 + Turing support

11



Virtual architectures

Compute capability Features

compute_30 and compute_32 Basic features + Kepler support + Unified memory

programming

compute_35 + Dynamic parallelism support

compute_50, compute_52, and

compute_53

+ Maxwell support

compute_60, compute_61, and

compute_62

+ Pascal support

compute_70 and compute_72 + Volta support

compute_75 + Turing support

12



Real architectures (“code”)

• Run compiled binary code (cubin)

• Instantiate a virtual architecture to a

particular number of SMs per GPU

• Specifies a particular SM model

• Noted sm_xx

• Selected using the -code parameter of

nvcc

What’s the point?

• Pre-compile your kernels for a particular

hardware and accelerate program startup.

Virtual architectures (“arch”)

• Specifies an instruction set for PTX

assembly (ptx) (much like SSE extensions)

• Specifies features available

• Noted compute_xx

• Selected using the -arch parameter of

nvcc

What’s the point?

• Limit the features you want to use to

maximize compatibility

• Migrate code progressively as some

behavior may change (like Independent

Thread Scheduling in compute_70)

• The __CUDA_ARCH__ macro will be set

accordingly in your code so you can have

different code paths for different compute

capabilities

13



More on compute capabilities

Excellent summaries:

• Appendix H on Compute Capabilities of CUDA C programming guide

• CUDA page on Wikipedia

• List of GPUs and their compute capability version available here:

developer.nvidia.com/cuda-gpus

14

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://en.wikipedia.org/wiki/CUDA#GPUs_supported
https://developer.nvidia.com/cuda-gpus


Figure 6: Feature Support per Compute Capability

15



Figure 7: Technical Specifications per Compute Capability

16



Documentation excerpt

Compute Capability 3.x:

• Architecture

A multiprocessor consists of:

• 192 CUDA cores for arithmetic operations

(see Arithmetic Instructions for

throughputs of arithmetic operations),

• 32 special function units for

single-precision floating-point

transcendental functions,

• 4 warp schedulers.

• Global Memory

• Global memory accesses for devices of

compute capability 3.x are cached in

L2. . .

• A cache line is 128 bytes and maps to a

128 byte aligned segment in device

memory. . .

• Shared Memory

• Shared memory has 32 banks. . .

Compute Capability 5.x:

• Architecture

A multiprocessor consists of:

• 128 CUDA cores for arithmetic operations

(see Arithmetic Instructions for

throughputs of arithmetic operations),

• 32 special function units for

single-precision floating-point

transcendental functions,

• 4 warp schedulers.

• . . .

17



CUDA Runtime and SDK support

The CUDA runtime (libcudart.so) is bundled with your SDK an provides high-level

functionnality.

• You should distribute the CUDA runtime with your application.

• It is compatible with a certain range of GPU driver versions.

• It supports a certain range of hardware (GPU families):

• . . .

• CUDA SDK 6.5 support for compute capability 1.1 - 5.x (Tesla, Fermi, Kepler, Maxwell). Last

version with support for compute capability 1.x (Tesla)

• CUDA SDK 7.0 - 7.5 support for compute capability 2.0 - 5.x (Fermi, Kepler, Maxwell)

• CUDA SDK 8.0 support for compute capability 2.0 - 6.x (Fermi, Kepler, Maxwell, Pascal).

Last version with support for compute capability 2.x (Fermi)

• CUDA SDK 9.0 - 9.2 support for compute capability 3.0 - 7.2 (Kepler, Maxwell, Pascal, Volta)

• CUDA SDK 10.0 - 10.2 support for compute capability 3.0 - 7.5 (Kepler, Maxwell, Pascal,

Volta, Turing). Last version with support for compute capability 3.x (Kepler)

18



The complete compilation trajectory

Figure 8: CUDA compilation trajectory 19



Whole program compilation vs Separate compilation (of device code)

Separate compilation of source code is possible.

Figure 9: CUDA Separate Compilation Trajectory

20


	Compilation and Runtime
	More details

