
Getting started with CUDA
Part 3 - Compilation and Runtime

Edwin Carlinet, Joseph Chazalon {firstname.lastname@lrde.epita.fr}

April 2020

EPITA Research & Development Laboratory (LRDE)

1



Compilation and Runtime

2



Compilation simplified overview

Figure 1: Separate compilation of host and device code

Host and devices code follow two
different compilation trajectories.

Device code is compiled into two
formats:

• PTX assembly tied to a virtual
architecture specification

• cubin binary code tied to a
particular GPU product family —
aka real architecture like Fermi,
Kepler, Maxwell, Pascal, Volta,
Turing and Ampere (soon)

The final runnable binary
• contains both host and device

code
• is linked with the CUDA

runtime(s). 3



Runtime

Figure 2: Transfer of code to device with optional JIT compilation 4



Two-stage compilation

Figure 3: Two-Staged (offline) Compilation with
Virtual and Real Architectures

Figure 4: Just-in-Time Compilation of Device Code

5



PTX, cubin, fatbinary. . . Why?

Because NVidia wants to be able to push innovations on their hardware as soon as possible,
they do not ensure forward compatibility of binaries, unlike CPU vendors.

They break forward compatibility at each major GPU release, ie when they release a new GPU
family.

6



Binary code compatibility (cubin)

GPU (device) binary code is not forward (nor backward) compatible:
it is architecture-specific and can be run only by hardware with the same major version.

Example:
Binary code compiled and optimized for sm_30 cards

• can be run by sm_32 and sm_35 cards (Kepler family),
• but cannot be run by sm_5x cards (Maxwell family).

7



PTX code compatibility

Assembly code, however, is based on an always-increasing set of instructions (much like SSE
extensions).
This implies two things:

• PTX assembly is forward compatible with newer architectures,
• it is not backward compatible though,
• it is always possible to compile

the PTX assembly of an earlier version (like compute_30)
to a binary for the most recent architecture (like sm_75).

This is how NVidia ensures that old code will still run on newer hardware.
New code, however, will not run on old hardware unless special care is taken (more on that later).

8



CUDA Driver and PTX compilation

The CUDA driver (libcuda.so) contains the
JIT PTX compiler and is always backward
compatible (this is what actually makes PTX
forward compatible).

This means that it can take assembly code from
an older version anc compile it for the current
version of the device on the current machine.

However, it is not forward compatible: code
compiled with newer PTX assembly cannot be
understood.

Figure 5: Compatibility of CUDA Versions

It may be necessary to ask the user to install a newer version of the CUDA driver on its system.

9



As of Nov. 2019, what is safe to use?

Maximum compatibility
/usr/local/cuda/bin/nvcc

-gencode=arch=compute_30,code=sm_30
-gencode=arch=compute_35,code=sm_35
-gencode=arch=compute_50,code=sm_50
-gencode=arch=compute_60,code=sm_60
-gencode=arch=compute_70,code=sm_70
-gencode=arch=compute_75,code=sm_75
-gencode=arch=compute_75,code=compute_75
-O2 -o mykernel.o -c mykernel.cu

Distribute the cudart lib (static or dynamic link)
with your application.

__CUDA_ARCH__

Use different code paths to support
previous architectures.

__device__ func()
{
#if __CUDA_ARCH__ < 350

/* Do something special for
architectures without dynamic
parallelism. */

#else
/* Do something else. */

#endif
}

Deprecations

Kepler and Maxwell hardware are being deprecated (sm_3x, sm_5x).
10



Compilation and Runtime Summary

Host code and device code are compiled separately.

• Device code is packaged with host code to be launched.
• A host compiler (ex g++) is required.

You can select which features you want to activate in your code,
hence which compatibility you offer.

• Using __CUDA_ARCH__ macro in your code to support multiple architectures.
• Using nvcc’s -arch compute_xx flag.
• This controls the PTX assembly which is generated.
• PTX assembly is forward compatible thanks to JIT compilation.

You can select the hardware you want to build a precompiled binary (cubin) for.

• Accelerates application startup (do not care about it for now).
• Using nvcc’s -code sm_xx flag.

You can generate multiples PTX and cubins using the following nvcc’s flags repeatidly:
-gencode arch=compute_xx,code=sm_yy 11



More details

12



Real architectures vs Virtual architectures

Real architectures

Hardware version Features

sm_30 and sm_32 Basic features + Kepler support + Unified memory programming
sm_35 + Dynamic parallelism support
sm_50, sm_52 and sm_53 + Maxwell support
sm_60, sm_61 and sm_62 + Pascal support
sm_70 and sm_72 + Volta support
sm_75 + Turing support

13



Virtual architectures

Compute capability Features

compute_30 and compute_32 Basic features + Kepler support + Unified memory
programming

compute_35 + Dynamic parallelism support
compute_50, compute_52, and
compute_53

+ Maxwell support

compute_60, compute_61, and
compute_62

+ Pascal support

compute_70 and compute_72 + Volta support
compute_75 + Turing support

14



Real architectures (“code”)
• Run compiled binary code (cubin)
• Instantiate a virtual architecture to a

particular number of SMs per GPU
• Specifies a particular SM model
• Noted sm_xx
• Selected using the -code parameter of

nvcc

What’s the point?

• Pre-compile your kernels for a particular
hardware and accelerate program startup.

Virtual architectures (“arch”)
• Specifies an instruction set for PTX

assembly (ptx) (much like SSE extensions)
• Specifies features available
• Noted compute_xx
• Selected using the -arch parameter of

nvcc

What’s the point?

• Limit the features you want to use to
maximize compatibility

• Migrate code progressively as some
behavior may change (like Independent
Thread Scheduling in compute_70)

• The __CUDA_ARCH__ macro will be set
accordingly in your code so you can have
different code paths for different compute
capabilities

15



More on compute capabilities

Excellent summaries:

• Appendix H on Compute Capabilities of CUDA C programming guide
• CUDA page on Wikipedia
• List of GPUs and their compute capability version available here:

developer.nvidia.com/cuda-gpus

16

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://en.wikipedia.org/wiki/CUDA#GPUs_supported
https://developer.nvidia.com/cuda-gpus


Figure 6: Feature Support per Compute Capability

17



Figure 7: Technical Specifications per Compute Capability

18



Documentation excerpt
Compute Capability 3.x:

• Architecture
A multiprocessor consists of:

• 192 CUDA cores for arithmetic operations
(see Arithmetic Instructions for
throughputs of arithmetic operations),

• 32 special function units for
single-precision floating-point
transcendental functions,

• 4 warp schedulers.
• Global Memory

• Global memory accesses for devices of
compute capability 3.x are cached in
L2. . .

• A cache line is 128 bytes and maps to a
128 byte aligned segment in device
memory. . .

• Shared Memory
• Shared memory has 32 banks. . .

Compute Capability 5.x:
• Architecture

A multiprocessor consists of:
• 128 CUDA cores for arithmetic operations

(see Arithmetic Instructions for
throughputs of arithmetic operations),

• 32 special function units for
single-precision floating-point
transcendental functions,

• 4 warp schedulers.
• . . .

19



CUDA Runtime and SDK support

The CUDA runtime (libcudart.so) is bundled with your SDK an provides high-level
functionnality.

• You should distribute the CUDA runtime with your application.
• It is compatible with a certain range of GPU driver versions.
• It supports a certain range of hardware (GPU families):

• . . .
• CUDA SDK 6.5 support for compute capability 1.1 - 5.x (Tesla, Fermi, Kepler, Maxwell). Last

version with support for compute capability 1.x (Tesla)
• CUDA SDK 7.0 - 7.5 support for compute capability 2.0 - 5.x (Fermi, Kepler, Maxwell)
• CUDA SDK 8.0 support for compute capability 2.0 - 6.x (Fermi, Kepler, Maxwell, Pascal).

Last version with support for compute capability 2.x (Fermi)
• CUDA SDK 9.0 - 9.2 support for compute capability 3.0 - 7.2 (Kepler, Maxwell, Pascal, Volta)
• CUDA SDK 10.0 - 10.2 support for compute capability 3.0 - 7.5 (Kepler, Maxwell, Pascal,

Volta, Turing). Last version with support for compute capability 3.x (Kepler)

20



The complete compilation trajectory

Figure 8: CUDA compilation trajectory 21



Whole program compilation vs Separate compilation (of device code)

Separate compilation of source code is possible.

Figure 9: CUDA Separate Compilation Trajectory

22


	Compilation and Runtime
	More details

