Getting started with CUDA
Part 3 - Compilation and Runtime

Edwin Carlinet, Joseph Chazalon {firstname.lastname@lrdeAepita.fr}
April 2020

EPITA Research & Development Laboratory (LRDE)

Compilation and Runtime

Compilation simplified overview

CUDA program
Host + Device code

Host code generation Device code compilation

Remove <<<...>>> Architecture-specific
Host compiler PTX cubin
g++ (or other) Assembly Binary

Packaging and Wrapping
Generate host code
Host compiler
g++ (or other)

\
fatbin
Host object with
embedded device code

Host link
with CUDA runtimes

|
Runnable binary

Figure 1: Separate compilation of host and device code

Host and devices code follow two
different compilation trajectories.

Device code is compiled into two
formats:
= PTX assembly tied to a virtual
architecture specification
= cubin binary code tied to a
particular GPU product family —
aka real architecture like Fermi,
Kepler, Maxwell, Pascal, Volta,
Turing and Ampere (soon)

The final runnable binary
= contains both host and device
code
= is linked with the CUDA
runtime(s).

Host Device

Runnable binary

PTX/cubin {3 CUDA RT

CUDA driver

(if ne%essary)
‘ JIT PTX compiler ‘

GPU driver
- Assign blocs to SMs
- Launch computations

SMs _ schedule warps
- Process instructions

CUDA Device RT

Figure 2: Transfer of code to device with optional JIT compilation 4

Two-stage compilation

= = 2110 J R — = = NVCG e
o x.cu (device code) o x.cu (device code)
=2 =2
- 2
5 el
[£
«© o
g Stage 1 2 Stage 1
a (PTX Generation) o (PTX Generaticn)
g g
3] o
E g
i =
= x.ptx s x.ptx
--- CUDA Runtime - CUDA Runtime - 5
e e
2 2 Stage 2
é Stage 2 E {Cubin Generation)
5 {Cubin Generation) 5
& &
5 g
g E X.cubin
xecubin — ¢ - Execute
Figure 3: Two-Staged (offline) Compilation with Figure 4: Just-in-Time Compilation of Device Code

Virtual and Real Architectures

PTX, cubin, fatbinary... Why?

Because NVidia wants to be able to push innovations on their hardware as soon as possible,
they do not ensure forward compatibility of binaries, unlike CPU vendors.

They break forward compatibility at each major GPU release, ie when they release a new GPU

family.

Binary code compatibility (cubin)

GPU (device) binary code is not forward (nor backward) compatible:
it is architecture-specific and can be run only by hardware with the same major version.

Example:
Binary code compiled and optimized for sm_30 cards

= can be run by sm_32 and sm_35 cards (Kepler family),
= but cannot be run by sm_5x cards (Maxwell family).

PTX code compatibility

Assembly code, however, is based on an always-increasing set of instructions (much like SSE
extensions).
This implies two things:
= PTX assembly is forward compatible with newer architectures,
= it is not backward compatible though,
= it is always possible to compile
the PTX assembly of an earlier version (like compute_30)
to a binary for the most recent architecture (like sm_75).

This is how NVidia ensures that old code will still run on newer hardware.
New code, however, will not run on old hardware unless special care is taken (more on that later).

CUDA Driver and PTX compilation

The CUDA driver (1ibcuda.so) contains the

JIT PTX compiler and is always backward e 2, 2,
compatible (this is what actually makes PTX Pugns Pugns Pugns
forward compatible).
This means that it can take assembly code from J \ / \ J
an older version anc compile it for the current 0 WD .~
version of the device on the current machine. oriver oriver
Compatible Incompatible
However, it is not forward compatible: code —_—
compiled with newer PTX assembly cannot be Figure 5: Compatibility of CUDA Versions

understood.

It may be necessary to ask the user to install a newer version of the CUDA driver on its system.

As of Nov. 2019, what is safe to use?

Maximum compatibility __CUDA_ARCH__
/usr/local/cuda/bin/nvce Use different code paths to support
-gencode=arch=compute_30,code=sm_30 previous architectures.

-gencode=arch=compute_35,code=sm_35
__device__ func()

{
#if __CUDA_ARCH__ < 350

/* Do something spectal for

-gencode=arch=compute_50,code=sm_50
-gencode=arch=compute_60,code=sm_60
-gencode=arch=compute_70,code=sm_70

-gencode=arch=compute_75,code=sm_75 - G hout 4 .
-gencode=arch=compute_75, code=compute_75 areprrectures i% out aynamuc

llelism. *
-02 -o mykernel.o -c mykernel.cu parastetusm

#else
Distribute the cudart lib (static or dynamic link) /* Do something else. */
with your application. #endif

¥

Deprecations

Kepler and Maxwell hardware are being deprecated (sm_3x, sm_5x).
10

Compilation and Runtime Summary

Host code and device code are compiled separately.

= Device code is packaged with host code to be launched.
= A host compiler (ex g++) is required.

You can select which features you want to activate in your code,
hence which compatibility you offer.

= Using __CUDA_ARCH__ macro in your code to support multiple architectures.
= Using nvcc's —arch compute_xx flag.

= This controls the PTX assembly which is generated.

= PTX assembly is forward compatible thanks to JIT compilation.

You can select the hardware you want to build a precompiled binary (cubin) for.

= Accelerates application startup (do not care about it for now).
= Using nvcc's —code sm_xx flag.

You can generate multiples PTX and cubins using the following nvcc's flags repeatidly:
-gencode arch=compute_xx,code=sm_yy 11

More details

12

Real architectures vs Virtual architectures

Real architectures

Hardware version Features
sm_30 and sm_32 Basic features + Kepler support + Unified memory programming
sm_35 + Dynamic parallelism support

sm_50, sm_52 and sm_53 + Maxwell support
sm_60, sm_61 and sm_62 + Pascal support
sm_70 and sm_72 + Volta support
sm_75 + Turing support

13

Virtual architectures

Compute capability

Features

compute_30 and compute_32

compute_35

compute_50, compute_52, and
compute_53

compute_60, compute_61, and
compute_62

compute_70 and compute_72
compute_75

Basic features + Kepler support + Unified memory
programming

+ Dynamic parallelism support

+ Maxwell support

+ Pascal support

+ Volta support
+ Turing support

14

Real architectures (“code”)

Run compiled binary code (cubin)
Instantiate a virtual architecture to a
particular number of SMs per GPU
Specifies a particular SM model

Noted sm_xx

Selected using the —code parameter of

nvcc

What’s the point?

= Pre-compile your kernels for a particular

hardware and accelerate program startup.

Virtual architectures (“arch”)

Specifies an instruction set for PTX
assembly (ptx) (much like SSE extensions)
Specifies features available

Noted compute_xx

Selected using the —arch parameter of
nvce

What'’s the point?

= Limit the features you want to use to

maximize compatibility

Migrate code progressively as some
behavior may change (like Independent
Thread Scheduling in compute_70)
The __CUDA_ARCH__
accordingly in your code so you can have
different code paths for different compute

macro will be set

capabilities

15

More on compute capabilities

Excellent summaries:

= Appendix H on Compute Capabilities of CUDA C programming guide

= CUDA page on Wikipedia

= List of GPUs and their compute capability version available here:
developer.nvidia.com /cuda-gpus

16

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://en.wikipedia.org/wiki/CUDA#GPUs_supported
https://developer.nvidia.com/cuda-gpus

Feature Support

Compute Capability

(Unlisted features are supported for all compute capabilities)

35,37,50,52 | 53
Atomic functions operating on 32-bi infeger values in global memory |] Yes
“stomicExchi] operating on 32-bi Poating poirt values in giobal memary | Yer
‘Atomic functions operating on 32-bit irteger values in shared memery | y Yes
tomicExchil operating on 32 bit foating point values in shared memory [Yes
‘Atomic functions operating on B4-bit integer values i giobal memory |] Yes
‘Atomic functions operating on B-bit integr values in shared memary |] Yes
Atomic_addition operating on 32-bit laating point values in global and shared memory |) Yes
Atomc_aadition operating on 64-bit Aiaating paint values in global memery and shared memary (7
Viorp vote and ballot Functions |]
_thieadience_system() {)
synctiveads count
_syncthveads and|
_ syncthveads or) {) e
Surface functions |
3D grd of thread blocks
Unified Mermory Programming
Funne snift (see reference manuall s

Dynamic Parallelism

Half-precision floating-point operations: addition, subtrac tion, multipiication, comparison, warp shuffie functions, conversion|

Tensor Core

Figure 6: Feature Support per Compute Capability

Computs Capability
52

Technical Speciheations EC S I N N 53 5o [55 [@ [e | & | 7 7S
i s of resdert g pr devee] w e = © s = e s
Masimum drmersonaly of g of e bocks]
i 1-dmersion of 9 of thead biocks)
i -2 Smersionof 3 7 of tread boces =3
iimur dimersonaly of tread bock 3
Vi = oy dmersion o Hock Tor
Vi 2 merion o Bk Bl
Vimur e f tresds per ek Tt
Ve sue =
Vtimum somber ot ity e T 7 T
Voimurn namber of essert warps per mprocessor & =
Vst b o 13 B per IO ser 08 [oo
urmber of 3257 regeters per muliprocesser B [x| B
i e f 1.t regitrspor ead Bk T T ET3 [=¢ ET3 T BT
Vimum number of 32 0t regetrsper e @ =
Veimum st f hared memary per maproCET [[wma | e W BT | e | wm | ww
Vimum 3ot f shored memery pr tread bk [[wa | wa
Wi of shared memery banes =
Aot f focal merory per tread s
Corstor merory e B
s o 26 pr s e o cartant ey T e
Cache workingset per maliproc esorfor textre memory Betieen 12 8 anc 46K I Setween 24 K0 anc 85 8 %o | wewrs
esximum vt for + 10 txture reerence bound o CUDA aray 50
Vimum vt fo 3 10 texture rference bound to st memory =

Tesat 0

Wi v red marmber of ayers or 3 10 layared texture reference

Wasierum widh sn height for 3 2D texture reference bound to 3 CUDA aray.

=

Wasimum width and height for a 20 texture reference bound to inear memary

65000 63000

Wasimum with and height for 3 2D textur reference bound to a CUDR aray supporing texiurs
gater

1638« 16384

Wasirmum wih, height, 3nd nmber of Byers for 3 2D ayered toxtue reference

6380 x 16364 2008

Viasirvur v, height, and depth for 2 30 texture reference bound to 3 CUDA amay

1056 4006 x 4096

Wiasirmum vk (and eight)fo 3 cubemap textre reference =)
Wazimum width (and height) and number of layers for a cubemap layered texture reference. 16389 x 2008
Wasimum number of textures that can be bound 1o 3 kemel =50
Waximum with for 3 1D surface reference bound o a CUDA aray 5%
53 % 200

Wi vidth and mumber of ayers or 3 1D layered suface reference

Wasimum v 31 heightfor 3 2D suface reference bound 1o 3 CUDA amy

5536 ¢ 32768

Visirmum v, height, and rumber of ayers for 3 2D lyered suface reference.

G553 x 32768 x 2008

Wasirvur v, height, and depth for 2 3D suface reference bound £ 3 CUDA aray.

65536 x 32768 x 2008

Wasirvu widkh (and height]for 3 cubamap suface reference bound o 3 CUDA amay 768
Wasimum vodih (and heght] and namber of layers for a cubemap layered suface reference S276E x 208
Wasimum number of sufaces tht can be bound to a kemel 16

512 milon

Masimum number of instuctons per kemel

Figure 7: Technical Specifications per Compute Capability

18

Documentation excerpt

Compute Capability 3.x:
= Architecture
A multiprocessor consists of:
= 192 CUDA cores for arithmetic operations
(see Arithmetic Instructions for
throughputs of arithmetic operations),
= 32 special function units for
single-precision floating-point
transcendental functions,
= 4 warp schedulers.
= Global Memory
= Global memory accesses for devices of
compute capability 3.x are cached in
L2...
= A cache line is 128 bytes and maps to a
128 byte aligned segment in device
memory. . .
= Shared Memory
= Shared memory has 32 banks. ..

Compute Capability 5.x:

Architecture
A multiprocessor consists of:
= 128 CUDA cores for arithmetic operations
(see Arithmetic Instructions for
throughputs of arithmetic operations),
= 32 special function units for
single-precision floating-point
transcendental functions,
= 4 warp schedulers.

19

CUDA Runtime and SDK support

The CUDA runtime (1libcudart.so) is bundled with your SDK an provides high-level
functionnality.

= You should distribute the CUDA runtime with your application.
= |t is compatible with a certain range of GPU driver versions.
= |t supports a certain range of hardware (GPU families):
= CUDA SDK 6.5 support for compute capability 1.1 - 5.x (Tesla, Fermi, Kepler, Maxwell). Last
version with support for compute capability 1.x (Tesla)
= CUDA SDK 7.0 - 7.5 support for compute capability 2.0 - 5.x (Fermi, Kepler, Maxwell)
= CUDA SDK 8.0 support for compute capability 2.0 - 6.x (Fermi, Kepler, Maxwell, Pascal).
Last version with support for compute capability 2.x (Fermi)
= CUDA SDK 9.0 - 9.2 support for compute capability 3.0 - 7.2 (Kepler, Maxwell, Pascal, Volta)
= CUDA SDK 10.0 - 10.2 support for compute capability 3.0 - 7.5 (Kepler, Maxwell, Pascal,
Volta, Turing). Last version with support for compute capability 3.x (Kepler)

20

The complete compilation trajectory

C++ Preprocessor

cppaii

cudafel.cpp o

G++ Compiler
0/.0bj

A .8
C++ Preprocessor
Als passed to B as an input file.

cppl.ii Asooooooooooooos °B
Als #include'd in B.
—.cudafet .stub. —
e “ «Repeat | | for each .cu input file.
|
I pix « Repeat D for each virtual architecture.

« Repeat ptxas and nvlink for each virtual/real

pixas architecture combination.

« Device linker consists of steps in

.cubin

fatbinary

[fatbin.c
—— adinkregc
)
i
a_dlink.cubin i
i
I
|
i
b o
a_dinkfatbine — — — — o linkstub

a_dlink.0/ a_dlink.obj

Host Linker

executable

Figure 8: CUDA compilation trajectory

21

hole program compilation vs Separate compilation (of d

Separate compilation of source code is possible.

X.cu y.cu z.cpp

' '

[nvcc 77deViceic] [Cr Compler j

y.0 / y.obj

X.0/ X.obj

2.0/ z.0bj

Device Linker

a_dlink.o / a_dlink.obj

Host Linker

executable / library

Figure 9: CUDA Separate Compilation Trajectory

22

	Compilation and Runtime
	More details

