
Getting started with CUDA
Part 4 - Kernel programming

Edwin Carlinet, Joseph Chazalon {firstname.lastname@lrde.epita.fr}

April 2020

EPITA Research & Development Laboratory (LRDE)

1

Kernel programming

2

(Reminder) 3 simple abstractions for a scalable programming model

CUDA is based at its core on 3 key abstractions:
• a hierarchy of thread groups
• shared memories
• barrier synchronization

This enables a CUDA program to be:
• partitionned in blocks
• run on devices with different computation

resources

Figure 1: Automatic scaling

3

Several API levels

We now want to program kernels.
There are several APIs available:

• PTX assembly
• Driver API (C)
• Runtime C++ API ← let us use this one

We will first focus on the language extensions added to support kernel programming.
They are described in detail in Appendix B of the CUDA C Programming Guide.

4

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-language-extensions

Function Execution Space Specifiers

Executed on the: Only callable from the:

__host__ float HostFunc() host host
__global__ void KernelFunc() device host?

__device__ float DeviceFunc() device device

• __global__ defines a kernel function

• Each “__” consists of two underscore characters
• A kernel function must return void
• ?It may be called from another kernel for devices of compute capability 3.2 or higher

(Dynamic Parallelism support)

• __device__ and __host__ can be used together

• __host__ is optional if used alone

5

Built-in Vector Types (1/2)

They make is easy to work with data like images.
Alignement must be respected in all operations.

Type Align.

char1, uchar1 1
char2, uchar2 2
char3, uchar3 1
char4, uchar4 4
short1, ushort1 2
short2, ushort2 4
short3, ushort3 2
short4, ushort4 8

Type Align.

int1, uint1 4
int2, uint2 8
int3, uint3 4
int4, uint4 16
long1, ulong1 4 if sizeof(long)

is equal to sizeof(int)
8, otherwise

long2, ulong2 8 if sizeof(long)
is equal to sizeof(int)
16, otherwise

long3, ulong3 4 if sizeof(long)
is equal to sizeof(int)
8, otherwise

long4, ulong4 16

Type Align.

longlong1, ulonglong1 8
longlong2, ulonglong2 16
longlong3, ulonglong3 8
longlong4, ulonglong4 16
float1 4
float2 8
float3 4
float4 16
double1 8
double2 16
double3 8
double4 16

6

Built-in Vector Types (2/2)

They all are structures.

They all come with a constructor function of the form make_<type name>:

int2 make_int2(int x, int y);

The 1st, 2nd, 3rd, and 4th components are accessible through the fields x, y, z, and w,
respectively.

uint4 p = make_uint4(128, 128, 128, 255);
// or uint4 p(128, 128, 128, 255);
uint r = p.x, g = p.y, b = p.z, a = p.w;

dim3 is an alias of uint3 for which any component left unspecified is initialized to 1.
Used to specify grid and block sizes.

dim3 blockSize(32, 32);

7

Built-in Variables

Some variables are pre-defined in a kernel and can be used directly.

Name Type Description

gridDim dim3 dimensions of the grid
blockIdx uint3 block index within the grid
blockDim dim3 dimensions of the block
threadIdx uint3 thread index within the block
warpSize int warp size in threads

Example:

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])
{

int i = threadIdx.x;
int j = threadIdx.y;
C[i][j] = A[i][j] + B[i][j]; /* Missing boundary check. */

} 8

Memory Hierarchy

Figure 2: Programmer view of CUDA memories
Figure 3: Cache hierarchy

9

Types of Memory

Registers Used to store parameters, local variables, etc.
Very fast
Private to each thread
Lots of threads =⇒ little memory per thread (spills in global memory if needed)

Shared Used to store temporary data
Very fast
Shared among all threads in a block

Constant A special cache for read-only values
Slow at first then very fast

Global Large and slow
Shared among all threads in all blocks (in all kernels)

Caches Transparent use
Local Local thread memory cached to L2 and/or L1

Ultimately stored in global memory if needed

10

Salient Features of Device Memory

Memory Location on/off chip Cached Access Scope Lifetime

Register On n/a R/W 1 thread Thread
Local Off Yes‡ R/W 1 thread Thread
Shared On n/a R/W All threads in block Block
Global Off Yes† R/W All threads + host Host allocation
Constant Off Yes R All threads + host Host allocation

† Cached in L1 and L2 by default on devices of compute capability 6.0 and 7.x; cached only in L2 by
default on devices of lower compute capabilities, though some allow opt-in to caching in L1 as well via
compilation flags.
‡ Cached in L1 and L2 by default except on devices of compute capability 5.x; devices of compute
capability 5.x cache locals only in L2.

11

Cost to Access Memory

Space Time Notes

Register 0
Shared 0
Constant 0 Amortized cost is low, first access is high
Local > 100 clocks
Parameter 0
Global > 100 clocks

12

Variable Memory Space Specifiers

How to declaring CUDA variables

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

Remarks:

• __device__ is optional when used with __shared__, or __constant__
• Automatic variables reside in a register

Where to declare variables?
Can host access it?
• Yes: global and constant

Declare outside of any function
• No: register and shared

Use or declare in the kernel
13

Example: Shared Variable Declaration

__global__ MatMulKernel(Matrix A, Matrix B, Matrix C)
{

// ...
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// ...
}

Can also be declared to use dynamically allocated memory.
See the documentation for further details.

14

What can be shared by who?

Figure 4: Memory sharing among threads, blocks
and grids

Possible memory access:
• Among threads in the same grid

(a kernel invocation):
• Global memory

• Among threads in the same block:
• Global memory
• Shared memory (efficient)

• Per threads:
• Global (not efficient)
• Shared memory
• Registers and local

15

Relaxed consistency memory model

The CUDA programming model assumes a device with a weakly-ordered memory model,
that is the order in which a CUDA thread writes data to shared memory or global memory,
is not necessarily the order in which the data is observed being written by another CUDA or host
thread.

Example:

__device__ volatile int X = 1, Y = 2;
__device__ void write_from_thread1()
{

X = 10;
Y = 20;

}

__device__ void read_from_thread2()
{

int A = X;
int B = Y;

}

Possible outcomes for thread 2
Strongly-ordered memory model:

• A = 1 and B = 2
• A = 10 and B = 2
• A = 10 and B = 20

Weakly-ordered memory model (like CUDA):
• All the previous
• And also A = 1 and B = 20!

16

Memory Fence Functions

Memory fence functions can be used to enforce some ordering on memory accesses.

void __threadfence_block();

ensures that:

• All writes to all memory made by the calling thread before the call to
__threadfence_block() are observed by all threads in the block of the calling thread as
occurring before all writes to all memory made by the calling thread after the call to
__threadfence_block();

• All reads from all memory made by the calling thread before the call to
__threadfence_block() are ordered before all reads from all memory made by the calling
thread after the call to __threadfence_block().

Like a flush of read and write queues.

void __threadfence();

acts as __threadfence_block() but also ensure that threads from others blocks observe
writes in order. This requires to read an uncached value and implies the use of the
volatile keywords. 17

Synchronization Functions

void __syncthreads();

waits until all threads in the thread block have reached this point
and all global and shared memory accesses made by these threads prior to __syncthreads()
are visible to all threads in the block.

Stronger than __threadfence() because it also synchronizes the execution.

__syncthreads() is used to coordinate communication between the threads of the same block.

__syncthreads() is allowed in conditional code but only if the conditional evaluates identically
across the entire thread block, otherwise the code execution is likely to hang or produce
unintended side effects.

18

Atomic Functions (1/2)

Atomic functions perform a read-modify-write atomic operation on one 32-bit or 64-bit word
residing in global or shared memory.

Most of the atomic functions are available for all the numerical types:
int, unsigned int, unsigned long long int, float, double, half, etc.

Arithmetic functions

int atomicAdd(int* address, int val);
//int atomicSub(int* address, int val);

Read old at address, computes (old + val) and stores it back to address, returns old.

int atomicExch(int* address, int val);

Read old at address, stores val to address, and returns old.

int atomicMin(int* address, int val);
// int atomicMax(int* address, int val);

Compute and store min (max). 19

Atomic Functions (2/2)

Arithmetic functions (cont’d)

unsigned int atomicInc(unsigned int* address, unsigned int val);
//unsigned int atomicDec(unsigned int* address, unsigned int val);

Computes (((old == 0) || (old > val)) ? val : (old-1)

int atomicCAS(int* address, int compare, int val);

Computes (old == compare ? val : old)

Bitwise functions

int atomicAnd(int* address, int val);
int atomicOr(int* address, int val);
int atomicXor(int* address, int val);

20

Debugging, Performance analysis and Profiling

21

printf

Possible since Fermi devices (Compute Capability 2.x and higher).

Limited amount of lines:

• circular buffer flushed at particular times
• but not at program exit: must include call to cudaDeviceSynchronize() before exiting

Example:

#include <stdio.h>
__global__ void helloCUDA(float f) {

if (threadIdx.x == 0)
printf("Hello thread %d, f=%f\n",

threadIdx.x, f) ;
}

int main() {
helloCUDA<<<1, 5>>>(1.2345f);
cudaDeviceSynchronize();
return 0;

}

OUTPUT:
Hello thread 0, f=1.2345

22

Global memory write

To dump then inspect a larger amount of intermediate data.
Analysis code should be removed for production.

Example:

__global__ void mykernel(float *input, float *output, float *intermediate) {
// ...
intermediate[threadIdx.x] = intermediate_result;
// ...

}

int main() {
// allocate input, output AND intermediate
// ...
mykernel<<<GS, BS>>>(input, output, intermediate);
// ...
// analyse intermediate results
// ...

}
23

Check error messages

Did you check the error codes?

cudaError_t err = cudaMalloc((void **) &d_A, size);
if (err != cudaSuccess) {

printf(“%s in %s at line %d\n”,
cudaGetErrorString(err),
__FILE__,
__LINE__);

exit(EXIT_FAILURE);
}

24

CUDA tools

CUDA-GDB debugger

Debugging flags:

• -g: include host debugging information
• -G: include device debugging information
• -lineinfo: include line information with

symbols

Based on GDB.
CUDA-MEMCHECK memory debugging
tool

• No recompilation necessary
cuda-memcheck myprogram

• Can detect the following errors: memory
leaks, memory errors (like alignment
issues), race conditions, illegal barriers. . .

nvprof profiler
nvprof myprogram

NSight

• Visual tool
• Great visualization of profiling results
• Other tools integrated

Other tools

• cuobjdump: host and device obj
disassemble and overview

• nvdisasm: advanced analysis of device
binaries

• nvprune: prunes host object files and
libraries to only contain device code for the
specified targets

25

	Kernel programming
	Debugging, Performance analysis and Profiling

