
Getting started with CUDA

Edwin Carlinet, Joseph Chazalon {firstname.lastname@lrde.epita.fr}

November’19

EPITA Research & Development Laboratory (LRDE)

1

Sources and license

Much of this lesson is based on these great resources — Look them up to go further!

• The course “GPU Teaching Kit”, 2019, licensed by NVidia and the University of Illinois

under the Creative Commons Attribution-Non Commercial 4.0 International License.

• The book “Programming massively parallel processors” (Third Edition), D. Kirk and W.

Hwu, Elsevier, 2017.

• The manual “CUDA C Programming Guide”, NVidia, v10.1.243 (August 19, 2019).

This lesson is licensed by E. Carlinet and J. Chazalon under the

Creative Commons Attribution-Non Commercial 4.0 International License.

2

Lesson overview

CUDA overview

Host view of GPU computation

Compilation and Runtime

Kernel programming

Debugging, Performance analysis and Profiling

3

CUDA overview

What is CUDA?

A product

• It enables to use NVidia GPUs for computation

A C variant

• Mostly C++14-compatible, with extensions

• and also some restrictions!

A SDK

• A set of compilers and toolchains for various architectures

• Performance analysis tools

A runtime

• An assembly specification

• Computation libraries (linear algebra, etc.)

A new industry standard

• Used by every major deep learning framework

• Replacing OpenCL as Vulkan is replacing OpenGL 4

The CUDA ecosystem

Figure 1: The CUDA ecosystem
5

Libraries or Compiler Directives or Programming Language?

CUDA is mostly based on a “new” programming language: CUDA C (or C++, or Fortran).
This grants much flexibility and performance

But is also exposes much of GPU goodness through libraries.

And it supports a few compiler directives to facilitate some constructs.

#pragma unroll

for(int i = 0; i < WORK_PER_THREAD; ++i)

// Some thread work

6

The big idea: Kernels instead of loops

Without CUDA (vector addition)

// compute vector sum C = A + B

void vecAdd(float *h_A, float *h_B, float *h_C, int n)

{

for (int i = 0; i < n; ++i)

h_C[i] = h_A[i] + h_B[i];

}

int main()

{

// Allocation for A, B and C

// I/O to read n elements of A and B

vecAdd(h_A, h_B, h_C);

}

7

With CUDA (1/2): move work to the separate compute device

Figure 2: Computation on

separate device

#include <cuda.h>

void vecAdd(float *h_A, float *h_B, float *h_C, int n)

{

int size = n * sizeof(float);

float *d_A, *d_B, *d_C;

// 1.1 Allocate device memory for A, B and C

// 1.2 Copy A and B to device memory

// 2. Launch kernel code - computation done on device

// 3. Copy C (result) from device memory

// Free device vectors

}

int main() { /* Unchanged */ }

8

With CUDA (2/2): Kernel sample code

// kernel

__global__ void kvecAdd(float *d_A, float *d_B, float *d_C, int n)

{

int i = blockDim.x * blockID.x + threadId.x;

if (i >= n) return;

d_C[i] = d_A[i] + d_B[i];

}

No more for loop!

9

Arrays of parallel threads

A CUDA kernel is executed by a grid (array) of threads

• All threads in a grid run the same kernel code (Single Program Multiple Data)

• Each thread has indexes that is uses to compute memory addresses and make control

decisions

Figure 3: A thread block

10

Thread blocks

Threads are grouped into thread blocks

• Threads within a block cooperate via

• shared memory

• atomic operations

• barrier synchronization

• Threads in different blocks do not interact1

Figure 4: Independent thread blocks

1Not in this course, though there are techniques for that.

11

A multidimensional grid of computation threads (1/2)

Each thread uses indices to decide what data to work on:

• blockIdx (0 → gridDim): 1D, 2D or 3D

• threadIdx (0 → blockDim): 1D, 2D or 3D

Each index has x, y and z attributes to get the actual index in each dimension.

int i = threadIdx.x;

int j = threadIdx.y;

int k = threadIdx.z;

Simplifies memory addressing when processing multidimensional data:

• image processing

• solving PDE on volumes

• . . .

12

A multidimensional grid of computation threads (2/2)

Grid and blocks can have different dimensions,

but they usually are two levels of the same work decomposition.

Figure 5: An example of 2D grid with 3D blocks

13

Grid & block examples (1/2)

Vector addition (N elements)

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i]; /* Missing boundary check. */

}

int main()

{

...

// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C); // <-- So this is how we launch CUDA kernels!

...

}

14

Grid & block examples (2/2)

Matrix addition (N×N elements)

// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] + B[i][j]; /* Missing boundary check. */

}

int main()

{

...

// Kernel invocation with one block of N * N * 1 threads

int numBlocks = 1;

dim3 threadsPerBlock(N, N);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

} 15

Block decomposition enable automatic scalability

Because the work is divided into

independent blocs which can be run

in parallel on each streaming

multiprocessor (SM),

the same code can be automatically

scaled to architectures with more or

less SMs. . .

as long as SMs architectures are

compatibles (100% compatible with

the same Compute Capabilities version

— a family of devices, careful

otherwise).

Figure 6: Automatic scaling

16

Building and running a simple program

CUDA Hello world (hello.cu)

#include <stdio.h>

__global__ void print_kernel() {

printf(

"Hello from block %d, thread %d\n",

blockIdx.x, threadIdx.x);

}

int main() {

print_kernel<<<2, 3>>>();

cudaDeviceSynchronize();

}

Compile

$ nvcc hello.cu -o hello

Run

$./hello

Hello from block 1, thread 0

Hello from block 1, thread 1

Hello from block 1, thread 2

Hello from block 0, thread 0

Hello from block 0, thread 1

Hello from block 0, thread 2

17

What you need to get started

NVidia GPU hardware

NVidia GPU drivers, properly loaded
modprobe nvidia ...

CUDA runtime libraries
libcuda.so, libnvidia-fatbinaryloader.so, . . .

CUDA SDK (NVCC compiler in particular)
relies on a standard C/C++ compiler and toolchain

docs.nvidia.com/cuda/cuda-installation-guide-linux

Basic C/C++ knowledge

18

Summary

Host vs Device ↔ Separate memory
GPUs are computation units which require explicit usage, as opposed to a CPU

Need to load data to and fetch result from device

Replace loops with kernels
Kernel = Function computed in relative isolation on small chunks of data, on the GPU

Divide the work

Problem → Grid → Blocs → Threads

Compile and run using CUDA SDK

nvcc, libcuda.so, . . .

19

Host view of GPU computation

Calling kernels, not writing them

You do not need to write kernels to run CUDA code:

you can use kernels from a library, written by someone else.

This section is about how to properly launch CUDA kernels using their API only.

20

Sequential and parallel sections

We use the GPU(s) as co-processor(s).

Our program is made of a series of

sequential and parallel sections.

Of course, CPU code can be

multi-threaded too!

Figure 7: Heterogeneous programming 21

Host vs device: reminder

We need to transfer inputs from the host to the device and outputs the other way around.

Figure 8: Computation on separate device

22

A proper kernel invocation

Let’s fix this code!

#include <cuda.h>

void vecAdd(float *h_A, float *h_B, float *h_C, int n)

{

int size = n * sizeof(float);

float *d_A, *d_B, *d_C;

// 1.1 Allocate device memory for A, B and C

// 1.2 Copy A and B to device memory

// 2. Launch kernel code - computation done on device

// 3. Copy C (result) from device memory

// Free device vectors

}

23

CUDA memory primitives

1D 2D 3D

Allocate cudaMalloc() cudaMallocPitch() cudaMalloc3D()

Copy cudaMemcpy() cudaMemcpy2D() cudaMemcpy3D()

On-device init. cudaMemset() cudaMemset2D() cudaMemset3D()

Reclaim cudaFree()

. . . plus many others detailed in the CUDA Runtime API documentation. . .

Why 2D and 3D variants?

• Strong alignment requirements in device memory

• Enables correct loading of memory chunks to SM caches (correct bank alignment)

• Proper striding management in automated fashion

24

Host ↔ Device memory transfer

We just need the three following ones for now:

cudaError_t cudaMalloc (void** devPtr, size_t size_in_bytes)

Allocates space in the device global memory.

cudaError_t cudaMemcpy (void* dst, const void* src, size_t size_in_bytes,

cudaMemcpyKind kind)

Asynchronous data transfer. cudaMemcpyKind ≈ copy direction:

• cudaMemcpyHostToHost ← useful

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToHost ← useful

• cudaMemcpyDeviceToDevice

• cudaMemcpyDefault ← Direction inferred from pointer values. Requires unified virtual

addressing.

cudaError_t cudaFree (void* devPtr) 25

Almost complete code

#include <cuda.h>

void vecAdd(float *h_A, float *h_B, float *h_C, int n)

{

int size = n * sizeof(float);

float *d_A, *d_B, *d_C;

// 1.1 Allocate device memory for A, B and C

cudaMalloc((void **) &d_A, size); // TODO repeat for d_B and d_C

// 1.2 Copy A and B to device memory

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// 2. Launch kernel code - computation done on device

k_VecAdd<<<NB, NT>>>(d_A, d_B, d_C); // FIXME How to compute NB and NT?

// 3. Copy C (result) from device memory

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device vectors

cudaFree(d_A); // TODO repeat for d_B and d_C

}
26

Checking errors

In practice, we need to check for API errors

cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess) {

printf(“%s in %s at line %d\n”,

cudaGetErrorString(err),

__FILE__,

__LINE__);

exit(EXIT_FAILURE);

}

27

Intermission: Can I use memory management functions inside kernels?

No: cudaMalloc(), cudaMemcpy() and cudaFree() shall be called from host only.

However, kernels may allocate, use and reclaim memory dynamically using regular malloc(),

memset(), memcpy() and free() functions.

Note that if some device code allocates some memory, it must free it.

28

Fix the kernel invocation line

We want to fix this line:

k_VecAdd<<<NB, NT>>>(d_A, d_B, d_C);

Kernel invocation syntax:

kernel<<<blocks, threads_per_block, shmem, stream>>>(param1, param2, ...);

• blocks: number of blocks in the grid;

• threads_per_block: number of threads for each block;

• shmem: (opt.) amount of shared memory to allocate (in bytes);

• stream: (opt.) CUDA stream (no discussed in this lesson, see the documentation).

29

How to set gridDim and BlockDim properly?

Lvl 0: Naive trial with as many threads as possible

k_VecAdd<<<1, size>>>(d_A, d_B, d_C);

30

How to set gridDim and BlockDim properly?

Lvl 0: Naive trial with as many threads as possible

k_VecAdd<<<1, size>>>(d_A, d_B, d_C);

Will fail with large vectors.

Hardware limitation on the maximum number of threads per block (1024 for Compute Capability

3.0-7.5).

Will fail with vectors of size which is not a multiple of warp size.

30

Lvl 1: It works with just enough blocks

// Get max threads per block

int devId = 0; // There may be more devices!

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp, devId);

printf(“Maximum grid dimensions: %d x %d x %d\n”,

deviceProp.maxGridSize[0],

deviceProp.maxGridSize[1],

deviceProp.maxGridSize[2]);

printf(“Maximum block dimensions: %d x %d x %d\n”,

deviceProp.maxThreadsDim[0],

deviceProp.maxThreadsDim[1],

deviceProp.maxThreadsDim[2]);

// Compute the number of blocks

int xThreads = deviceProp.maxThreadsDim[0];

dim3 DimBlock(xThreads, 1, 1); // 1D VecAdd

int xBlocks = (int) ceil(n/xThreads);

dim3 DimGrid(xBlocks, 1, 1);

// Launch the kernel

k_VecAdd<<<DimGrid, DimBlock>>>(d_A, d_B, d_C); 31

Lvl 2: Tune block size given kernel requirements and hardware constraints
It is important to understand the difference between:

• the logical decomposition of your program:

problem ≈ grid → blocks → threads

• the scheduling of the computation on the hardware:

• assignment of each block to a Streaming Multiprocessor (SM)

• groups threads into warps

• run groups of warps concurrently

The hardware constraints are different between each Compute Capability version. See the CUDA

C programming manual, Appendix H for details about each hardware version.

In particular, the amount of memory available on each SM may limit the number of threads one

would actually want to launch. . .

But this depends on the kernel code!

The CUDA Occupancy Calculator APIs are designed to assist programmers in choosing the

best number of threads per block based on register and shared memory requirements of a given

kernel.

32

But wait. . .

#include <stdio.h>

__global__ void print_kernel() {

printf("Hello!\n");

}

int main() {

print_kernel<<<1, 1>>>();

}

This code prints nothing!

33

Kernel invocation is asynchronous

#include <stdio.h>

__global__ void print_kernel() {

printf("Hello!\n");

}

int main() {

print_kernel<<<1, 1>>>();

cudaDeviceSynchronize();

}

Host code synchronization requires

cudaDeviceSynchronize()

because kernel invocation is asynchronous

from host perspective.

On the device, kernel invocations are strictly

sequential (unless you schedule them on

different streams).

34

Intermission: Can I call kernels inside kernels?

Yes: This is the basis of dynamic parallelism.

Some restrictions over the stack size apply.

Remember that the device runtime is a functional subset of the host runtime, ie you can perform

device management, kernel launching, device memcpy, etc., but with some restrictions (see the

documentation for details).

The compiler may inline some of those calls, though.

35

Conclusion about the host-only view

A host-only view of the computation is sufficient for most of the cases:

1. upload input data to the device

2. fire a kernel

3. download output data from the device

Advanced CUDA requires to make sure we saturate the SMs, and may imply some kernel study

to determine the best:

• amount of threads per blocks

• amount of blocks per grid

• work per thread (if applicable)

• . . .

This depends on:

• hardware specifications: maximum gridDim and blockDim, etc.

• kernel code: amount of register and shared memory used by each thread

36

Compilation and Runtime

Compilation simplified overview

Figure 9: Separate compilation of host and device code

Host and devices code follow two

different compilation trajectories.

Device code is compiled into two

formats:

• PTX assembly tied to a virtual

architecture specification

• cubin binary code tied to a

particular GPU product family —

aka real architecture like Fermi,

Kepler, Maxwell, Pascal, Volta,

Turing and Ampere (soon)

The final runnable binary

• contains both host and device

code

• is linked with the CUDA

runtime(s).
37

Runtime

Figure 10: Transfer of code to device with optional JIT compilation 38

PTX, cubin, fatbinary. . . Why?

Because NVidia wants to be able to push innovations on their hardware as soon as possible,

they do not ensure forward compatibility of binaries, unlike CPU vendors.

They break forward compatibility at each major GPU release, ie when they release a new GPU

family.

39

Real architectures vs Virtual architectures

Real architectures

Hardware version Features

sm_30 and sm_32 Basic features + Kepler support + Unified memory programming

sm_35 + Dynamic parallelism support

sm_50, sm_52 and sm_53 + Maxwell support

sm_60, sm_61 and sm_62 + Pascal support

sm_70 and sm_72 + Volta support

sm_75 + Turing support

40

Virtual architectures

Compute capability Features

compute_30 and compute_32 Basic features + Kepler support + Unified memory

programming

compute_35 + Dynamic parallelism support

compute_50, compute_52, and

compute_53

+ Maxwell support

compute_60, compute_61, and

compute_62

+ Pascal support

compute_70 and compute_72 + Volta support

compute_75 + Turing support

41

Real architectures (“code”)

• Run compiled binary code (cubin)

• Instantiate a virtual architecture to a

particular number of SMs per GPU

• Specifies a particular SM model

• Noted sm_xx

• Selected using the -code parameter of

nvcc

What’s the point?

• Pre-compile your kernels for a particular

hardware and accelerate program startup.

Virtual architectures (“arch”)

• Specifies an instruction set for PTX

assembly (ptx) (much like SSE extensions)

• Specifies features available

• Noted compute_xx

• Selected using the -arch parameter of

nvcc

What’s the point?

• Limit the features you want to use to

maximize compatibility

• Migrate code progressively as some

behavior may change (like Independent

Thread Scheduling in compute_70)

• The __CUDA_ARCH__ macro will be set

accordingly in your code so you can have

different code paths for different compute

capabilities

42

More on compute capabilities

Excellent summaries:

• Appendix H on Compute Capabilities of CUDA C programming guide

• CUDA page on Wikipedia

• List of GPUs and their compute capability version available here:

developer.nvidia.com/cuda-gpus

43

Figure 11: Feature Support per Compute Capability

44

Figure 12: Technical Specifications per Compute Capability

45

Documentation excerpt

Compute Capability 3.x:

• Architecture

A multiprocessor consists of:

• 192 CUDA cores for arithmetic operations

(see Arithmetic Instructions for

throughputs of arithmetic operations),

• 32 special function units for

single-precision floating-point

transcendental functions,

• 4 warp schedulers.

• Global Memory

• Global memory accesses for devices of

compute capability 3.x are cached in

L2. . .

• A cache line is 128 bytes and maps to a

128 byte aligned segment in device

memory. . .

• Shared Memory

• Shared memory has 32 banks. . .

Compute Capability 5.x:

• Architecture

A multiprocessor consists of:

• 128 CUDA cores for arithmetic operations

(see Arithmetic Instructions for

throughputs of arithmetic operations),

• 32 special function units for

single-precision floating-point

transcendental functions,

• 4 warp schedulers.

• . . .

46

Binary code compatibility (cubin)

GPU (device) binary code is not forward (nor backward) compatible:

it is architecture-specific and can be run only by hardware with the same major version.

Example:

Binary code compiled and optimized for sm_30 cards

• can be run by sm_32 and sm_35 cards (Kepler family),

• but cannot be run by sm_5x cards (Maxwell family).

47

PTX code compatibility

Assembly code, however, is based on an always-increasing set of instructions (much like SSE

extensions).

This implies two things:

• PTX assembly is forward compatible with newer architectures,

• it is not backward compatible though,

• it is always possible to compile

the PTX assembly of an earlier version (like compute_30)

to a binary for the most recent architecture (like sm_75).

This is how NVidia ensures that old code will still run on newer hardware.

New code, however, will not run on old hardware unless special care is taken (more on that later).

48

CUDA Driver and PTX compilation

The CUDA driver (libcuda.so) contains the

JIT PTX compiler and is always backward

compatible (this is what actually makes PTX

forward compatible).

This means that it can take assembly code from

an older version anc compile it for the current

version of the device on the current machine.

However, it is not forward compatible: code

compiled with newer PTX assembly cannot be

understood.

Figure 13: Compatibility of CUDA Versions

It may be necessary to ask the user to install a newer version of the CUDA driver on its system.

49

CUDA Runtime and SDK support

The CUDA runtime (libcudart.so) is bundled with your SDK an provides high-level

functionnality.

• You should distribute the CUDA runtime with your application.

• It is compatible with a certain range of GPU driver versions.

• It supports a certain range of hardware (GPU families):

• . . .

• CUDA SDK 6.5 support for compute capability 1.1 - 5.x (Tesla, Fermi, Kepler, Maxwell). Last

version with support for compute capability 1.x (Tesla)

• CUDA SDK 7.0 - 7.5 support for compute capability 2.0 - 5.x (Fermi, Kepler, Maxwell)

• CUDA SDK 8.0 support for compute capability 2.0 - 6.x (Fermi, Kepler, Maxwell, Pascal).

Last version with support for compute capability 2.x (Fermi)

• CUDA SDK 9.0 - 9.2 support for compute capability 3.0 - 7.2 (Kepler, Maxwell, Pascal, Volta)

• CUDA SDK 10.0 - 10.2 support for compute capability 3.0 - 7.5 (Kepler, Maxwell, Pascal,

Volta, Turing). Last version with support for compute capability 3.x (Kepler)

50

Two-stage compilation

Figure 14: Two-Staged (offline) Compilation with

Virtual and Real Architectures

Figure 15: Just-in-Time Compilation of Device

Code

51

The complete compilation trajectory

Figure 16: CUDA compilation trajectory 52

Whole program compilation vs Separate compilation (of device code)

Separate compilation of source code is possible.

Figure 17: CUDA Separate Compilation Trajectory

53

As of Nov. 2019, what is safe to use?

Maximum compatibility

/usr/local/cuda/bin/nvcc

-gencode=arch=compute_30,code=sm_30

-gencode=arch=compute_35,code=sm_35

-gencode=arch=compute_50,code=sm_50

-gencode=arch=compute_60,code=sm_60

-gencode=arch=compute_70,code=sm_70

-gencode=arch=compute_75,code=sm_75

-gencode=arch=compute_75,code=compute_75

-O2 -o mykernel.o -c mykernel.cu

Distribute the cudart lib (static or dynamic link)

with your application.

__CUDA_ARCH__

Use different code paths to support

previous architectures.

__device__ func()

{

#if __CUDA_ARCH__ < 350

/* Do something special for

architectures without dynamic

parallelism. */

#else

/* Do something else. */

#endif

}

Deprecations

Kepler and Maxwell hardware will be deprecated (sm_3x, sm_5x) in the next CUDA versions.

54

Compilation and Runtime Summary

Host code and device code are compiled separately.

• Device code is packaged with host code to be launched.

• A host compiler (ex g++) is required.

You can select which features you want to activate in your code,

hence which compatibility you offer.

• Using __CUDA_ARCH__ macro in your code to support multiple architectures.

• Using nvcc’s -arch compute_xx flag.

• This controls the PTX assembly which is generated.

• PTX assembly is forward compatible thanks to JIT compilation.

You can select the hardware you want to build a precompiled binary (cubin) for.

• Accelerates application startup (do not care about it for now).

• Using nvcc’s -code sm_xx flag.

You can generate multiples PTX and cubins using the following nvcc’s flags repeatidly:

-gencode arch=compute_xx,code=sm_yy 55

Kernel programming

(Reminder) 3 simple abstractions for a scalable programming model

CUDA is based at its core on 3 key abstractions:

• a hierarchy of thread groups

• shared memories

• barrier synchronization

This enables a CUDA program to be:

• partitionned in blocks

• run on devices with different computation

resources

Figure 18: Automatic scaling

56

Several API levels

We now want to program kernels.

There are several APIs available:

• PTX assembly

• Driver API (C)

• Runtime C++ API ← let us use this one

We will first focus on the language extensions added to support kernel programming.

They are described in detail in Appendix B of the CUDA C Programming Guide.

57

Function Execution Space Specifiers

Executed on the: Only callable from the:

__host__ float HostFunc() host host

__global__ void KernelFunc() device host⋆

__device__ float DeviceFunc() device device

• __global__ defines a kernel function

• Each “__” consists of two underscore characters

• A kernel function must return void

• ⋆It may be called from another kernel for devices of compute capability 3.2 or higher

(Dynamic Parallelism support)

• __device__ and __host__ can be used together

• __host__ is optional if used alone

58

Built-in Vector Types (1/2)

They make is easy to work with data like images.

Alignement must be respected in all operations.

Type Align.

char1, uchar1 1

char2, uchar2 2

char3, uchar3 1

char4, uchar4 4

short1, ushort1 2

short2, ushort2 4

short3, ushort3 2

short4, ushort4 8

Type Align.

int1, uint1 4

int2, uint2 8

int3, uint3 4

int4, uint4 16

long1, ulong1 4 if sizeof(long)

is equal to sizeof(int)

8, otherwise

long2, ulong2 8 if sizeof(long)

is equal to sizeof(int)

16, otherwise

long3, ulong3 4 if sizeof(long)

is equal to sizeof(int)

8, otherwise

long4, ulong4 16

Type Align.

longlong1, ulonglong1 8

longlong2, ulonglong2 16

longlong3, ulonglong3 8

longlong4, ulonglong4 16

float1 4

float2 8

float3 4

float4 16

double1 8

double2 16

double3 8

double4 16

59

Built-in Vector Types (2/2)

They all are structures.

They all come with a constructor function of the form make_<type name>:

int2 make_int2(int x, int y);

The 1st, 2nd, 3rd, and 4th components are accessible through the fields x, y, z, and w,

respectively.

uint4 p = make_uint4(128, 128, 128, 255);

// or uint4 p(128, 128, 128, 255);

uint r = p.x, g = p.y, b = p.z, a = p.w;

dim3 is an alias of uint3 for which any component left unspecified is initialized to 1.

Used to specify grid and block sizes.

dim3 blockSize(32, 32);

60

Built-in Variables

Some variables are pre-defined in a kernel and can be used directly.

Name Type Description

gridDim dim3 dimensions of the grid

blockIdx uint3 block index within the grid

blockDim dim3 dimensions of the block

threadIdx uint3 thread index within the block

warpSize int warp size in threads

Example:

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] + B[i][j]; /* Missing boundary check. */

} 61

Memory Hierarchy

Figure 19: Programmer view of CUDA memories
Figure 20: Cache hierarchy

62

Types of Memory

Registers Used to store parameters, local variables, etc.

Very fast

Private to each thread

Lots of threads =⇒ little memory per thread (spills in global memory if needed)

Shared Used to store temporary data

Very fast

Shared among all threads in a block

Constant A special cache for read-only values

Slow at first then very fast

Global Large and slow

Shared among all threads in all blocks (in all kernels)

Caches Transparent use

Local Local thread memory cached to L2 and/or L1

Ultimately stored in global memory if needed

63

Salient Features of Device Memory

Memory Location on/off chip Cached Access Scope Lifetime

Register On n/a R/W 1 thread Thread

Local Off Yes‡ R/W 1 thread Thread

Shared On n/a R/W All threads in block Block

Global Off Yes† R/W All threads + host Host allocation

Constant Off Yes R All threads + host Host allocation

† Cached in L1 and L2 by default on devices of compute capability 6.0 and 7.x; cached only in L2 by

default on devices of lower compute capabilities, though some allow opt-in to caching in L1 as well via

compilation flags.

‡ Cached in L1 and L2 by default except on devices of compute capability 5.x; devices of compute

capability 5.x cache locals only in L2.

64

Cost to Access Memory

Space Time Notes

Register 0

Shared 0

Constant 0 Amortized cost is low, first access is high

Local > 100 clocks

Parameter 0

Global > 100 clocks

65

Variable Memory Space Specifiers

How to declaring CUDA variables

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

Remarks:

• __device__ is optional when used with __shared__, or __constant__

• Automatic variables reside in a register

Where to declare variables?

Can host access it?

• Yes: global and constant

Declare outside of any function

• No: register and shared

Use or declare in the kernel
66

Example: Shared Variable Declaration

__global__ MatMulKernel(Matrix A, Matrix B, Matrix C)

{

// ...

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// ...

}

Can also be declared to use dynamically allocated memory.

See the documentation for further details.

67

What can be shared by who?

Figure 21: Memory sharing among threads, blocks

and grids

Possible memory access:

• Among threads in the same grid

(a kernel invocation):

• Global memory

• Among threads in the same block:

• Global memory

• Shared memory (efficient)

• Per threads:

• Global (not efficient)

• Shared memory

• Registers and local

68

Relaxed consistency memory model

The CUDA programming model assumes a device with a weakly-ordered memory model,

that is the order in which a CUDA thread writes data to shared memory or global memory,

is not necessarily the order in which the data is observed being written by another CUDA or host

thread.

Example:

__device__ volatile int X = 1, Y = 2;

__device__ void write_from_thread1()

{

X = 10;

Y = 20;

}

__device__ void read_from_thread2()

{

int A = X;

int B = Y;

}

Possible outcomes for thread 2

Strongly-ordered memory model:

• A = 1 and B = 2

• A = 10 and B = 2

• A = 10 and B = 20

Weakly-ordered memory model (like CUDA):

• All the previous

• And also A = 1 and B = 20!

69

Memory Fence Functions

Memory fence functions can be used to enforce some ordering on memory accesses.

void __threadfence_block();

ensures that:

• All writes to all memory made by the calling thread before the call to

__threadfence_block() are observed by all threads in the block of the calling thread as

occurring before all writes to all memory made by the calling thread after the call to

__threadfence_block();

• All reads from all memory made by the calling thread before the call to

__threadfence_block() are ordered before all reads from all memory made by the calling

thread after the call to __threadfence_block().

Like a flush of read and write queues.

void __threadfence();

acts as __threadfence_block() but also ensure that threads from others blocks observe

writes in order. This requires to read an uncached value and implies the use of the

volatile keywords.
70

Synchronization Functions

void __syncthreads();

waits until all threads in the thread block have reached this point

and all global and shared memory accesses made by these threads prior to __syncthreads()

are visible to all threads in the block.

Stronger than __threadfence() because it also synchronizes the execution.

__syncthreads() is used to coordinate communication between the threads of the same block.

__syncthreads() is allowed in conditional code but only if the conditional evaluates identically

across the entire thread block, otherwise the code execution is likely to hang or produce

unintended side effects.

71

Atomic Functions (1/2)

Atomic functions perform a read-modify-write atomic operation on one 32-bit or 64-bit word

residing in global or shared memory.

Most of the atomic functions are available for all the numerical types:

int, unsigned int, unsigned long long int, float, double, half, etc.

Arithmetic functions

int atomicAdd(int* address, int val);

//int atomicSub(int* address, int val);

Read old at address, computes (old + val) and stores it back to address, returns old.

int atomicExch(int* address, int val);

Read old at address, stores val to address, and returns old.

int atomicMin(int* address, int val);

// int atomicMax(int* address, int val);

Compute and store min (max). 72

Atomic Functions (2/2)

Arithmetic functions (cont’d)

unsigned int atomicInc(unsigned int* address, unsigned int val);

//unsigned int atomicDec(unsigned int* address, unsigned int val);

Computes (((old == 0) || (old > val)) ? val : (old-1)

int atomicCAS(int* address, int compare, int val);

Computes (old == compare ? val : old)

Bitwise functions

int atomicAnd(int* address, int val);

int atomicOr(int* address, int val);

int atomicXor(int* address, int val);

73

Long example: Tiled matrix multiplication

TODO next lesson

74

Debugging, Performance analysis

and Profiling

printf

Possible since Fermi devices (Compute Capability 2.x and higher).

Limited amount of lines:

• circular buffer flushed at particular times)

• but not at program exit: must include call to cudaDeviceSynchronize() before exiting

Example:

#include <stdio.h>

__global__ void helloCUDA(float f) {

if (threadIdx.x == 0)

printf("Hello thread %d, f=%f\n",

threadIdx.x, f) ;

}

int main() {

helloCUDA<<<1, 5>>>(1.2345f);

cudaDeviceSynchronize();

return 0;

}

OUTPUT:

Hello thread 0, f=1.2345

75

Global memory write

To dump then inspect a larger amount of intermediate data.

Analysis code should be removed for production.

Example:

__global__ void mykernel(float *input, float *output, float *intermediate) {

// ...

intermediate[threadIdx.x] = intermediate_result;

// ...

}

int main() {

// allocate input, output AND intermediate

// ...

mykernel<<<GS, BS>>>(input, output, intermediate);

// ...

// analyse intermediate results

// ...

}

76

Check error messages

Did you check the error codes?

cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess) {

printf(“%s in %s at line %d\n”,

cudaGetErrorString(err),

__FILE__,

__LINE__);

exit(EXIT_FAILURE);

}

77

CUDA tools

CUDA-GDB debugger

Debugging flags:

• -g: include host debugging information

• -G: include device debugging information

• -lineinfo: include line information with

symbols

Based on GDB.

CUDA-MEMCHECK memory debugging

tool

• No recompilation necessary

cuda-memcheck myprogram

• Can detect the following errors: memory

leaks, memory errors (like alignment

issues), race conditions, illegal barriers. . .

nvprof profiler

nvprof myprogram

NSight

• Visual tool

• Great visualization of profiling results

• Other tools integrated

Other tools

• cuobjdump: host and device obj

disassemble and overview

• nvdisasm: advanced analysis of device

binaries

• nvprune: prunes host object files and

libraries to only contain device code for the

specified targets

78

