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Course Agenda (2022-04)

1. GPU and architectures (2h, 6th AM)
2. Programming GPUs with CUDA (2h, 6th AM)
3. TP 00 CUDA (Getting started) (3h, 6th PM)
4. Efficient programming with GPU (part 1) (2h, 13th AM)
5. TP 01 CUDA (Mandelbrot) (3h, 13th PM)
6. Efficient programming with GPU (part 2) (2h, 20th AM)
Project presentation (15 minutes, TBD)
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Programming patterns & Memory
Optimizations



Programming patterns & Memory Optimizations

The Programming Patterns
• Map
• Map + Local reduction
• Reduction
• Scan

The IP algorithms
• LUT Application
• Local features extraction
• Histogram
• Integral images
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Map Pattern

Map Pattern Overview

Map replicates a function over every element of an index set
The computation of each pixel is independent w.r.t. the others.

out(x,y) = f( in(x,y) )
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Nothing complicated but take care of memory access pattern.
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void plus_one(int* a, int size, int k) {
int i = blockDim.x * blockIdx.x +

threadIdx.x + k;
if (i < size)
a[i] = a[i] + 1;

}

void plus_one(int* a, int size, int k) {
int i = blockDim.x * blockIdx.x +

threadIdx.x * k;
if (i < size)

a[i] = a[i] + 1;
}

What do you think about k’s impact of the performance?

• Linear sequential access with offset (left) →
• Strided access → 6



Strided access pattern
• k = 1: 6.4 ms (with 600K values)

• k = 51: 28.7 ms
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The Global Memory   

Memory Bandwidth

What you think about memory

Reality
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Memory Access Hierarchy

L1 SMEM

Registers

SM-1

L1 SMEM

Registers

SM-2

. . .

L2

Global Memory

GTX 1080 (Pascal) Size Bandwidth Bus interface Latency

L1 Cache (per SM) Low latency 16 or 48K 1,600 GB/s 128 bits 10-20 cycles
L2 Cache 1-2M
Global High latency 8GB 320 GB/s 256~384 bits 400-800 cycles
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Cached Loads from L1 low-latency memory (1/2)

Cached vs Un-cached
Two types of global memory loads: Cached (by default) or Uncached (L1 disabled)

Aligned vs Misaligned
A load is aligned if the first address of a memory access is multiple of 32 bytes

• Memory addresses must be type-aligned (ie sizeof(T))
• Otherwise: poor perf (unaligned load)
• cudaMalloc = alignment on 256 bits (at least)

Coalesced versus uncoalesced
A load is coalesced if a warp accesses a contiguous chunk of data

• Minimize memory accesses caused by wrap threads
• Remind: all threads of a warp executes the same instruction

→ if a load, may be 32 different addresses
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Cached Loads from L1 low-latency memory (2/2)

We need a load strategy:

• 32 threads of warp access a 32-bit word = 128 bytes
• 128 bytes = L1 bus width (single load - bus utilization = 100%)
• Access permutation has no (or very low) overhead
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Misaligned cached loads from L1

• If data are not 128-bits aligned, two loads are required

Adresses 96-224 required… but 0-256 loaded

• If data is accessed strided
e.g. u[2*k],…

…cry !
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Loads from global (uncached) memory   

Same idea but memory is split in segments of 32 bytes

Cached Uncached
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Memory Access Summary  
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Why would you need uncached memory ?    

Caching
• Better performance if non-coalesced access and data-reuse

Non-caching
• Avoid wasting cache for one-time used data (stream usage) (→ more space for

register spilling)
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Memory architecture    

Memory architecture    

Why cacheline ? Why Alignement ?

• DRAM is organized in 2D Core arrays
• Each DRAM core array has about 16M bits

Row

decoder

Memory Cell

Core Array

Sense Amps

Column Latches

Mux

Off-ship data

Narrow

@Row

@Col
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Example
• A 4 x 4 memory cell
• With 4 bits pin interface width

d
e
c
o
d
e

0 1 1 1

#row

#col

Mux
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DRAM Burst

Reading from a cell in the core array is a very slow process ( 1/N th of the interface
speed):

• DDR: Core speed = 1⁄2 interface speed
• DDR2/GDDR3: Core speed = 1⁄4 interface speed
• DDR3/GDDR4: Core speed = 1⁄8 interface speed

Solution: Bursting
Load N x interface width of the same row

Mem. Bus
Time (cycles)

Request

w/o Burst access

Core Array

access delay
Bits on

interface

. . .

With Burst access

Better, but not enough to saturate the memory bus (will see later a solution).
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Summary  

• Use coalesced (contiguous and aligned) access to memory:

Coalesced
T0 T1 T2 T3 T0 T1 T2 T3

Un-Coalesced
T0 T1 T2 T3 T0 T1 T2 T3

Burst section Burst section Burst section Burst section

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• If all threads of a warp execute a load instruction into the same burst section →
only one DRAM request

• Otherwise:
• Multiple DRAM requests are made
• Some bytes transferred are not used
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Q: how to make coalesced/aligned loads with 2D-arrays ?  

M 0,0 M 1,0 M 2,0 M 3,0 M 4,0

M 0,1 M 1,1 M 2,1 M 3,1 M 4,1

M 0,2 M 1,2 M 2,2 M 3,2 M 4,2

M 0,3 M 1,3 M 2,3 M 3,3 M 4,3

Burst section Burst section Burst section Burst section Burst section

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1. Add padding to align rows on 256-bits boundaries
2. Thread reads data colomn-wise

ima(tid.x,tid.y) = tid.y * pitch + tid.x

M 0,0 M 1,0 M 2,0 M 3,0 M 4,0

M 0,1 M 1,1 M 2,1 M 3,1 M 4,1

M 0,2 M 1,2 M 2,2 M 3,2 M 4,2

M 0,3 M 1,3 M 2,3 M 3,3 M 4,3

T0 T0T1 T1T2 T2T3 T3

0 1 2 3 4 . . . 16 17 18 19 20 . . . 32 33 34 35 36 . . . 48 49 50 51 52 . . .

T0 T0 T0 T0T1 T1 T1 T1T2 T2 T2 T2T3 T3 T3 T3T0 T0 T0 T0 20


