
GPU Computing
Patterns for massively parallel programming (part 2)

Histograms

E. Carlinet, J. Chazalon {firstname.lastname@lrde.epita.fr}

April 22

EPITA Research & Development Laboratory (LRDE)

Slides generated on April 19, 2022

1

Lab reminder

Simple parallel histogram

Parallel algorithm using output privatization

Summary

2

Lab reminder

Mandelbrot practice session

During the practice session, you will have had to compute the cumulated histogram of the image.

There are two major steps:

1. Compute the histogram 𝐻:
count the number of occurrences of each value within the image.

2. Compute the cumulated histogram 𝐶:
sum histogram values such that 𝐶[𝑖] = ∑𝑖

𝑘=0 𝐻[𝑘].

We will see how to compute those elements with efficient parallel algorithms.

3

Simple parallel histogram

The very wrong way

A wrong approach consists in sectioning the input,
i.e. assigning a chunk of the input to each thread.

A A B A B C C A A A B BInput

Thread 0 Thread 1 Thread 2 Thread 3

0 0 0
A B C

Histogram

What is the issue?

Inefficient, non-coalesced memory access.

• Does not leverage cache
• Does not make use of full RAM burst

4

The very wrong way

A wrong approach consists in sectioning the input,
i.e. assigning a chunk of the input to each thread.

A A B A B C C A A A B BInput

Thread 0 Thread 1 Thread 2 Thread 3

3 0 1
A B C

Histogram

What is the issue?

Inefficient, non-coalesced memory access.

• Does not leverage cache
• Does not make use of full RAM burst

4

The very wrong way

A wrong approach consists in sectioning the input,
i.e. assigning a chunk of the input to each thread.

A A B A B C C A A A B BInput

Thread 0 Thread 1 Thread 2 Thread 3

5 2 1
A B C

Histogram

What is the issue?

Inefficient, non-coalesced memory access.

• Does not leverage cache
• Does not make use of full RAM burst 4

The very wrong way

A wrong approach consists in sectioning the input,
i.e. assigning a chunk of the input to each thread.

A A B A B C C A A A B BInput

Thread 0 Thread 1 Thread 2 Thread 3

6 4 2
A B C

Histogram

What is the issue?

Inefficient, non-coalesced memory access.

• Does not leverage cache
• Does not make use of full RAM burst 4

Interleaved partitioning of input

This enables coalesced memory accesses.

A A B A B C C A A A B BInput

Thread 0 Thread 1 Thread 2 Thread 3

3 1 0
A B C

Histogram

Much more efficient, coalesced memory access.

• All threads process a contiguous secion of elements
• They all move to the next section and repeat

5

Interleaved partitioning of input

This enables coalesced memory accesses.

A A B A B C C A A A B BInput

Thread 0 Thread 1 Thread 2 Thread 3

4 2 2
A B C

Histogram

Much more efficient, coalesced memory access.

• All threads process a contiguous secion of elements
• They all move to the next section and repeat

5

First code sample

__global__ void histo(int* buf, int w, int h, int pitch, int hist_size, int* hist)
{

int x = blockDim.x * blockIdx.x + threadIdx.x;
int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x >= w || y >= h) return;
int cellValue = getValue(buf, x, y, pitch);
hist[cellValue]++; // This is wrong!

}

What is the issue?

Data race!

6

First code sample

__global__ void histo(int* buf, int w, int h, int pitch, int hist_size, int* hist)
{

int x = blockDim.x * blockIdx.x + threadIdx.x;
int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x >= w || y >= h) return;
int cellValue = getValue(buf, x, y, pitch);
hist[cellValue]++; // This is wrong!

}

What is the issue?

Data race!

6

A correct naive version

__global__ void histo(int* buf, int w, int h, int pitch, int hist_size, int* hist)
{

int x = blockDim.x * blockIdx.x + threadIdx.x;
int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x >= w || y >= h) return;
int cellValue = getValue(buf, x, y, pitch);
atomicAdd(&(hist[cellValue]), 1);

}

7

Parallel algorithm using output
privatization

Reminder about output privatization

A simple solution called “output privatization” works by proceeding in two steps:

1. compute a local histogram for each block in shared memory
cost to read and write: 1 cycle each

2. at the end of the block, flush each local histogram to global memory

8

Local histogram: initialization

Shared memory must be initialized.
This can be done with the “comb-like” pattern.

__global__ void histo(int* buf, int w, int h, int pitch, int hist_size, int* hist)
{

extern __shared__ int localHist[];
// linear thread id and block dim to init the 1D histogram
int i = blockDim.x * threadIdx.y + threadIdx.x;
int bs = blockDim.x * blockDim.y;
for (; i < hist_size; i+=bs)

localHist[i] = 0;
// Wait for all block's threads before next stage
__syncthreads();

}

Warning: we need synchronization after this stage.

9

Local histogram: computation

Like previous code, but with local atomics!

__global__ void histo(int* buf, int w, int h, int pitch, int hist_size, int* hist)
{

// ...

int x = blockDim.x * blockIdx.x + threadIdx.x;
int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x >= w || y >= h) return;
int cellValue = getValue(buf, x, y, pitch);
atomicAdd(&(localHist[cellValue]), 1);
// Wait for all block's threads before next stage
__syncthreads();

}

Warning: we need synchronization after this stage.

10

Local histogram: commit to global memory

It is the same pattern as for the initialization.
We use a global atomic here.

__global__ void histo(int* buf, int w, int h, int pitch, int hist_size, int* hist)
{

// ...

// linear thread id and block dim to copy the 1D histogram
int i = blockDim.x * threadIdx.y + threadIdx.x;
int bs = blockDim.x * blockDim.y;
for (; i < hist_size; i+=bs)

atomicAdd(&(hist[i]), localHist[i]);
}

11

Summary

Histogram summary

Performance boosters:

• coalesced accesses
• output privatization
• (not seen here: cascading?)

Requirements:

• atomics
• synchronization

Limitations:

• histograms smaller than the size of the shared memory
• overhead to allocate and initialize private copies, then commit them to global memory

12

	Lab reminder
	Simple parallel histogram
	Parallel algorithm using output privatization
	Summary

