
GPU Computing
Patterns for massively parallel programming (part 2)

Scan Pattern

E. Carlinet, J. Chazalon {firstname.lastname@lrde.epita.fr}

April 22

EPITA Research & Development Laboratory (LRDE)

Slides generated on April 19, 2022

1



Scan Pattern

2



Scan Pattern



What is a scan?

Scan computes all partial reductions of a collection:

𝐵𝑘 = 𝐴0 ⊕ ... ⊕ 𝐴𝑘

tmp = init;
for (i = 0; i < n; ++i)

B[i] = (tmp += A[i])

In 1 5 3 4 2 1

Out 1 6 9 13 15 16

Usage:

• Integration (cumulated histogram)
• Resource allocation (memory to parallel threads, camping spots…)
• Base building block for many algorithms (sorts, strings comparisons…)

3



Performance baselines

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

⊕0:1

⊕0:2

⊕0:3

⊕0:4

⊕0:5

⊕0:6

⊕0:7

⊕0:8

⊕0:9

⊕0:10

⊕0:11

⊕0:12

⊕0:13

⊕0:14

⊕0:15

Sequential version
The sequential (linear) version is work efficient:

• Number of operations: 𝑁 − 1
• Number of steps: 𝑁 − 1

4



Naive parallel version
Have every thread to add up all x elements needed for the y element

𝑦0 = 𝑥0
𝑦1 = 𝑥0 + 𝑥1
𝑦2 = 𝑥0 + 𝑥1 + 𝑥2

• Number of operations: 𝑁∗(𝑁−1)
2 ∼ 𝑂(𝑁2)

• Number of steps: 𝑁 − 1

Parallel programming is easy as long as you do not care about performance.

5



Scan Pattern at the Warp or Block Level : Kogge-Stone

x0

T0
x1

T1
x2

T2
x3

T3
x4

T4
x5

T5
x6

T6
x7

T7
x8

T8
x9

T9
x10

T10
x11

T11
x12

T12
x13

T13
x14

T14
x15

T15

⊕0:1 ⊕1:2 ⊕2:3 ⊕3:4 ⊕4:5 ⊕5:6 ⊕6:7 ⊕7:8 ⊕8:9 ⊕9:10 ⊕10:11 ⊕11:12 ⊕12:13 ⊕13:14 ⊕14:15

⊕0:2 ⊕0:3 ⊕1:4 ⊕2:5 ⊕3:6 ⊕4:7 ⊕5:8 ⊕6:9 ⊕7:10 ⊕8:11 ⊕9:12 ⊕10:13 ⊕11:14 ⊕12:15

⊕0:4 ⊕0:5 ⊕0:6 ⊕0:7 ⊕1:8 ⊕2:9 ⊕3:10 ⊕4:11 ⊕5:12 ⊕6:13 ⊕7:14 ⊕8:15

⊕0:8 ⊕0:9 ⊕0:10 ⊕0:11 ⊕0:12 ⊕0:13 ⊕0:14 ⊕0:15

• Number of steps: log 𝑁
• Ressource efficiency:
• Work efficiency: ∼ 𝑁 log 𝑁

6



Scan Pattern at the Warp or Block Level : Brent-Kung

x0

T0
x1

T1
x2

T2
x3

T3
x4

T4
x5

T5
x6

T6
x7

T7
x8

T8
x9

T9
x10

T10
x11

T11
x12

T12
x13

T13
x14

T14
x15

T15

⊕0:1 ⊕2:3 ⊕4:5 ⊕6:7 ⊕8:9 ⊕10:11 ⊕12:13 ⊕14:15

⊕0:3 ⊕4:7 ⊕8:11 ⊕12:15

⊕0:7 ⊕8:15

⊕0:15

⊕0:11

⊕0:5 ⊕0:9 ⊕0:13

⊕0:2 ⊕0:4 ⊕0:6 ⊕0:8 ⊕0:10 ⊕0:12 ⊕0:14

• Number of steps: 2 log 𝑁
• Ressource efficiency: (all warps remain active till the end)
• Work efficiency: 2𝑁

7



Scan Pattern at the Warp or Block Level : Sklansky

x0

T0
x1

T1
x2

T2
x3

T3
x4

T4
x5

T5
x6

T6
x7

T7
x8

T8
x9

T9
x10

T10
x11

T11
x12

T12
x13

T13
x14

T14
x15

T15

⊕0:1 ⊕2:3 ⊕4:5 ⊕6:7 ⊕8:9 ⊕10:11 ⊕12:13 ⊕14:15

⊕0:2 ⊕0:3 ⊕4:6 ⊕4:7 ⊕8:10 ⊕8:11 ⊕12:14 ⊕12:15

⊕0:4 ⊕8:12⊕0:5 ⊕0:6 ⊕0:7 ⊕8:13 ⊕8:14 ⊕8:15

⊕0:8 ⊕0:9 ⊕0:10 ⊕0:11 ⊕0:12 ⊕0:13 ⊕0:14 ⊕0:15

• Number of steps: log 𝑁
• Ressource efficiency:
• Work efficiency: 𝑁

2 log 𝑁

8



Scan Pattern at the Block or Grid Level

The patterns before can be applied:

• At the warp level (no sync until Volta)
• At the block level (thread sync)

At the global level: multi-level kernel application in global memory

• Scan then propagate
• Reduce then scan

9



Scan Pattern at the Block or Grid Level : Scan then propagate

At the grid level:
1. Scan per block.
Store the sum in global memory
tmp[blockIdx.x] = local_sum.

2. Perform a scan on tmp (recursive call)
3. Perform a Add on each block with offset

tmp[blockIdx.x - 1]

At the block level:
1. Scan per warp.
Store the sum in shared memory tmp[warpId]
= local_sum.

2. Perform a scan on tmp (using sync threads)
3. Perform a Add on each warp with offset

tmp[warpId - 1]

10



Scan Pattern at the Block or Grid Level : Reduce then scan

At the grid level:
1. Reduce per block.
Store the sum in global mem.
tmp[blockIdx.x] = local_sum

2. Perform a scan on tmp (recursive call)
3. Perform a scan on each block with offset

tmp[blockIdx.x - 1]

At the block level:
1. Reduce per warp.
Store the sum in shared memory tmp[warpId]
= local_sum.

2. Perform a scan on tmp (using sync threads)
3. Perform a scan on each warp with offset

tmp[warpId - 1]

11



Scan summary

Lot more to say about the scan.

Not easy to implement properly at block level:

• a smart implementation would group active threads while minimizing memory accesses
• direct implementation of Kogge-Stone is fast (𝑙𝑜𝑔2(𝑁) steps) but requires many operations
(𝑁𝑙𝑜𝑔2(𝑁) − (𝑁 − 1))

• direct implementation of Brent-Kung requires more steps (2𝑙𝑜𝑔2(𝑁)) while requiring less operations
(2𝑁) in theory, but on NVidia architectures most of inactive threads (in active warps) continue to
occupy resources

Even more complex at the grid level:

• it is possible to avoid separating the algorithm in three distinct phases, using some synchronization
between blocks

• idea: as soon as reduction for block 0 and 1 are complete, propagation for block 1 is possible

12


	Scan Pattern

