
GPU Computing
Projects

E. Carlinet, J. Chazalon {firstname.lastname@lrde.epita.fr}

April 2020

EPITA Research & Development Laboratory (LRDE)

Slides generated on June 7, 2021

1



Instructions for the Project



Objectives

The goals of the project are to:

• apply data-parallelism concepts
• practice with CUDA
• set up a benchmark with a sound evaluation procedure
• present your results in a clear and convincing way

2



Possible Subjects

Standard Option
We propose 1 subject, that most of you should work on:
Implementation and performance analysis of a Graph Cut algorithm in CUDA

This is an important image processing algorithm, and will be described briefly in later slides.

Special Option
For students who are at ease with CUDA, and want to investigate a particular question:
Implementation and performance analysis of SOME INTERESTING algorithm in
YOUR PARALLEL PROGRAMMING TECHNOLOGY OF CHOICE

If you choose this way, you must validate your subject with us before April 24th.
Contact us by email.
We expect:

1. a clear statement of the problem you want to work on;
2. a detailed work plan.

3



Our Expectations

We expect your implementation to be:

• running on GPU;
• correct, ie to produce an acceptable result.

Do not try to make it fast at first, just make it work.

Then, try to apply NVidia’s Assess, Parallelize, Optimize, Deploy (APOD) design cycle as
described in their CUDA C++ Best Practices Guide:

1. identify the part of the code which is responsible for the bulk of the execution time;
2. use all available weapons (CUDA API, libraries, research papers) to obtain a parallel

version of the code (assumed to be sequential at first);
3. use all available weapons (CUDA API, libraries, research papers) to optimize the

performance of the parallel code;
4. measure the performance of the new code.

4

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#assess-parallelize-optimize-deploy


Project Outline for Standard Performance Analysis

Broad Outline Concrete Example

Choose an application Mandelbrot
Determine the most time-consuming part of
the app
Determine one or more data-parallel
approaches to solving the problem

Tiling…

Create multiple implementations of the
approach

One naïve version, one version with shared
memory…

Benchmark the implementations Record memory transfer time, kernel time,
utilization, FLOPS, etc.

Relate results to course concepts Identify the cause of the bottleneck
(memory or compute bounding)

5



Teams

Teams of 3 (plus one team of 4).

Everyone must register on the course in Moodle.

1 team member must submit information about your team before April 24th.

Each team participant will to describe his/her work in the project.

6



Final Deliverables (1/3)

1. Implementation

• Source code for C++ CPU reference
• Source code for CUDA implementation(s)
• Source code for benchmark tools
• Build scripts (GNU Make, CMake…)

7



Final Deliverables (2/3)

2. Report

• Description of the problem
• Detailed if custom subject
• Quick summary otherwise

• Quick description of the baseline CPU implementation (paper reference, parallel or not,
etc.)

• Quick description of the baseline GPU implementation (same as CPU baseline)
• Justification of the performance indicators you have used
• Analysis of performance bottlenecks (with measured indicators, graphs, etc.)
• For each improvement over the GPU baseline (implementations):

• justification of this work regarding performance analysis
• description of the improvement (ex: used output privatization instead of global atomics)
• comparison of the performance with and without this implementation

• Table with summary of the benchmark
• Summary of who did what (contribution of each team member)

8



Final Deliverables (3/3)

3. A live lecture / defense

• 15’ presentation

• 10’ discussion

Submit 1 & 2 on Moodle before June 30th.

9



Grade Sheet Used for Last Session

10



Defenses

Defenses will be held in the beginning of July (exact date TBA).

We will use Teams to meet.

The participation of all team members is required.

11



Moodle Links

Course page:
https://moodle.cri.epita.fr/course/view.php?id=196

Submit team composition + subject:
https://moodle.cri.epita.fr/mod/assign/view.php?id=2350

Course feedback:
https://moodle.cri.epita.fr/mod/feedback/view.php?id=2351

Final project submission:
https://moodle.cri.epita.fr/mod/assign/view.php?id=2352

12

https://moodle.cri.epita.fr/course/view.php?id=196
https://moodle.cri.epita.fr/mod/assign/view.php?id=2350
https://moodle.cri.epita.fr/mod/feedback/view.php?id=2351
https://moodle.cri.epita.fr/mod/assign/view.php?id=2352


Summary of Tasks and Deadlines

What Deadline Who

Register on Moodle April 24th Everyone
Submit team composition + subject April 24th 1 person/team
Submit extra subject justification if needed April 24th 1 person/team
(opt.) Complete the feedback form April 30th Everyone

…Work on your project…

Submit code + report + presentation slides June 30th 1 person/team
Defend your project (live presentation) Beginning of July Everyone

13



Focus on the Benchmark



Dataset

We provide you with a dataset of 15 images to test the performance of your approach(es).

How to get it:
https://www.lrde.epita.fr/~jchazalo/SHARE/segmentation_dataset.tar.gz

Sample input Expected output

14

https://www.lrde.epita.fr/~jchazalo/SHARE/segmentation_dataset.tar.gz


You Need to Complete This Dataset

1. For each input, generate sample input interactions
to select foreground and background pixels.

• Save them to a fake interaction image.
2. Use this new image to initialize your algorithm along with the input.
3. Check the results are acceptable (not totally different from ground truth).

15



Use It!

Your algorithm / code section being benchmarked should be a function:

• taking an image, a set of foreground and a set of background pixels
• returning an image of foreground and background pixels

We expect you to:

• report performance indicators using this dataset;
• illustrate your report and presentation with samples from this dataset.

16



About Graph Cuts



Overview

A graph algorithm.

Used in (interactive) image processing:

1. manually select some pixels belonging to an object (“foreground”)
2. manually select some pixels not belonging to the object (“background”)
3. automatically find the best frontier between foreground and background (global

optimum)
4. loop to 1 if result needs improvements

17



Illustration

18



Recommended Readings

• Timo Stich, “Graph Cuts with CUDA”, Presentation at the NVidia GPU Technology
Conference, San Jose, 2009.

• Wikipedia push-relabel max flow algorithm
• Goldberg, Andrew V.; Tarjan, Robert E. (1988). “A new approach to the maximum-flow

problem”. Journal of the ACM. 35 (4): 921.

19

https://www.lrde.epita.fr/~jchazalo/SHARE/stich-09-GTC-graph-cuts-with-cuda.pdf
https://www.lrde.epita.fr/~jchazalo/SHARE/stich-09-GTC-graph-cuts-with-cuda.pdf
https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm
https://www.lrde.epita.fr/~jchazalo/SHARE/goldberg-tarjan-88-maximum-flow.pdf
https://www.lrde.epita.fr/~jchazalo/SHARE/goldberg-tarjan-88-maximum-flow.pdf


Implementations Hints (Final Reminders)

• Have a working (slow) C++ reference implementation first (and keep it forever)
• Tag (git tag) the versions of your program before any optimization (useful to track and

benchmark ideas)
• Try optimizations step by step so that you can tell which ones are the most important

20


	Instructions for the Project
	Focus on the Benchmark
	About Graph Cuts

