Programmation Paralléle (PRPA)

E. Carlinet {edwin.carlinet@lrde .epita.fr}

2021

EPITA Research & Development Laboratory (LRDE)

Agenda
Thread-Level Parallelism
Parallelism in C4++

C++ APIs for multi-threadings

Agenda

Introduction to parallelism

Instruction and data-level parallelism
Thread level parallism

Parallel Design Patterns (with TBB)

C++ Memory model

Data structure for concurrent programming

& &> D=

Thread-Level Parallelism

Remainder

Different level of parallelism?!

Group of computers communicating through fast

Cluster .
interconnect

Special compute devices attached to the local node

Cloprowessions b erdlerion through special interconnect

Group of processors communicating through shared
memory

Node

Group of cores communicating through shared

Socket cache

Core Gr(?up of functional units communicating through
registers
Hyper-threads Group of thread contexts sharing functional units
Superscalar Group of instructions sharing functional units
Pipeline Sequence of instructions sharing functional units

Vector Single instruction using multiple functional units
LFrom SIMD Vectorization with OpenMP / C. Terboven

IIMHiHEHHHIII

10" ¢ Intel 48-Core Transistors
Prototype (Thousands)
106 3 AMDO4"COFB Parallel Proc
pteran Performance
10° - Sequential
Processor
4 R = Performance
10" - DEC Aipha [| T -
21264 |- requency
10° L - (MHz)
- MIPS R2K
2 Typical Power
10" ¢ (Watts)
1 Number
10 ¢ of Cores
10°

107 102N 1a0RE 100N 190K 2000 2005 2010 20158

64bits Intel Xeon 5100 Xeon 5500 Xeon 5600 Xeon E5 Xeon Phi

Xeon series series series 2600 series 7120P
Frequency.6 Ghz 3.0 Ghz 3.2 Ghz 3.3 Ghz 2.7 Ghz 1.238 Ghz
Cores 1 2 4 6 12 61
Threads 2 2 8 12 24 244

SIMD 128 bits (2 128 bits (1 128 bits (1 128 bits (I 256 bits (1 512 bits(1
Width clocks) clock) clock) clock) clock) clock)

Optimizing with parallel programming
I -

80% 20%

A program has two parts:

o A takes 80% of the wall time
e B takes 20% of the wall time

A can be parallelized, what is the maximum speed-up of the program ?

Amdahl’s Law

ﬂ

80% 20%

Let N be the number of threads

Let B be the part of serial execution (ratio)
Let T(N) be the execution time for N threads
t; = T(1) (time for a serial execution)

The new time processing time is:

T(IN= Bt +

Sequential time .
< Parallel time

The speedup S(N) is:

Amdahl’s Law

“

80% 20%

e With 4 threads, we have:
S(4)=(02+08/4)"1 =25
e With an unlimited number of threads:
1-B
S(c0) = lim (B+ T)*1 =B l=5

N— 00

Amdahl’s Law limitations

Strong scalability Augmenting the number of ressources = reducing time to process 1 job

e It applies only to the cases at fixed problem size
e If problem augments with the size of the data process, not applicable

10

Gustafson’s law

ﬂ

80% 20%

Expressed in term of workload i.e. number of data processed in a fixed execution time.

e Let N be the number of threads

e Let B be the part of serial execution (ratio)

o Let W(N) be the supported workload for N threads

e W/ is the workload before the ressources improve and have an execution time T

Workload for N threads:
W(N)=N.(1-B).Wi+ B.W
— ~—~—

Parralel work Seq. Work

The speed up S(N) is then:

S(00) = o0 11

Which rules apply

Weak scalability Augmenting the number of ressources allows an higher workload

12

Which rules apply

Weak scalability Augmenting the number of ressources allows an higher workload

e B does not depend on the dataset size (e.g. program startup)
-> Gustafson's law

e B does depend on the dataset size (e.g. reduction operation)
-> Amdahl's Law

e Amdahl's Law focus on latency
e Gustafson's law focuses on throughput

12

Latency vs. Throughput

e Latency (Délai): time to finish a task
e Throughput (Débit): number of tasks in a fixed time

Example.

e Car: speed = 100km/h, capacity 5
e Bus: speed = 80km/h, capacity 15

Transporting passengers 100km

Latency (min) Throughput (Passengers/Hour)

Car 60 5
Bus 75 12

13

Comparing performance

A is X times faster than B:

e Latency(A) = Latency(B) / X
e Throughput(A) = Throughput(B) * X

A is X% faster than B

e Latency(A) = Latency(B) / (1 + X)
e Throughput(A) = Throughput(B) * (1 4+ X)

i.e 100ms -> 75ms = 33% faster (not 25%)

14

Latency vs. Throughput

e Car: speed = 100km/h, capacity 5
e Bus: speed = 80km/h, capacity 15

Latency (min) Throughput (Passengers/Hour)

Car 60 5)
Bus 75 12

Latency
e Caris 1.26 times faster than bus
e Car is 25 faster than bus

Throughput
e Bus is 2.4 times faster than car
e Bus is 140Y% faster than bus

15

Conclusion

e Single data (single same task) -> think Latency
e Multiple data stream -> think throughput

When you have a 20MPix image you're not interested in the time to process 1 pixel => MPix/s

16

Parallelism in C4++

t = std::thread(fun, args...)

e Thread t is spawn at construction with a function to be executed
e Before object destruction, a thread must be:

e joined t.join()

e or detached t.detach()

e Join: Blocks the current thread until the thread finishes its execution.
e Detach: Permits the thread to execute independently

(Note than you cannot return value from threads, passing by ref required).

17

void f1(int n);
void f2(int& n);

int main()
{
std::thread t1(f1, n + 1); // pass by walue
std: :thread t2(£f2, std::ref(n)); // pass by reference

// do some stuff
tl.join(); t2.join();
}

18

Parallel atoi

void foo(const char* strings[], std::size_t n, long& result) {

for (std::size_t i = 0; i < n; ++i)

result += myatoi_opt2(strings[i]);

long sum_string_vector_parallel_i(const char* strings[], std::size_t n)

{
long

std:

std:
std:
std:
std:

sum = 0;

:thread ti1(foo,
:thread t2(foo,
:thread t3(foo,
:thread t4(foo,

strings
strings
strings

strings

:size_t chunk_size = n / 4;

0, chunk_size, std::ref(sum));
chunk_size, chunk_size, std::ref(sum));
2%chunk_size, chunk_size, std::ref(sum));

3xchunk_size, n - 3*chunk_size, std::ref(sum));

t1.join(); t2.join(); t3.join(); t4.join();

return sum;

}

Is this version ok ?

19

10734344625355923
10734344625355923
8051481392513753 <
bench/parallell/10000000/real_time

8 ms 0 ms 85 1.16374G items/s

We do not get the good sum !

20

Parallel programming => use a thread sanitizer
e Compile with flags
clang++ -fsanitize=thread

e And run
WARNING: ThreadSanitizer: data race (pid=708)
Write of size 8 at O0x7ffff93a9b58 by thread T2:
#0 foo(char const**, unsigned long, unsigned long, long&)
/home/edwin/lrde/cours/prpa/jl/atoi/atoi_parallel.cpp:17 (libimpl.so+0x346e)
#6 std::error_code::default_error_condition() const ?7:7 (libstdc++.so.6+0xbclde)

Previous write of size 8 at 0x7ffff93a9b58 by thread T1:

Location is stack of main thread.

21

Data race

When an evaluation of an expression writes to a memory location and another
evaluation reads or modifies the same memory location, the expressions are said
to conflict. A program that has two conflicting evaluations has a data race [...]

22

Solution 1

e Mark the variable atomic, meaning that all threads see the same value.
e Use += on atomic is equivalent to fetch_add

void foo_atomic(const char* strings[], std::size_t n, std::atomic<long>& result)
{
for (std::size_t i = 0; i < nj; ++i)
result += myatoi_opt2(strings[i]);

long sum_string_vector_parallel_1(const char* strings[], std::size_t n)
{

std::atomic<long> sum;

std::size_t chunk_size = n / 4;

std::thread ti(foo_atomic, strings 0, chunk_size, std::ref(sum));
std: :thread t2(foo_atomic, strings chunk_size, chunk_size, std::ref(sum));

std::thread t3(foo_atomic, strings 2*chunk_size, chunk_size, std::ref(sum));

+ o+ o+ o+

std: :thread t4(foo_atomic, strings 3*chunk_size, n - 3*chunk_size, std::ref(sum));

tl.join(); t2.join(); t3.join(); t4.join(Q);

return sum;

Solution 2

Make the sum on distinct locations

long sum_string_vector_parallel_2(const char* strings[], std::size_t n)

{

long sum[4] = {0, 0, 0, 0};

std:

std:
std:
std:
std:

:size_t

:thread
:thread
:thread
:thread

chunk_size = n / 4;

t1(foo,
t2(foo,
t3(foo,
t4 (foo,

strings
strings
strings

strings

+ + + +

0, chunk_size, std::ref(sum[0]));
chunk_size, chunk_size, std::ref(sum[1]));
2%chunk_size, chunk_size, std::ref(sum[2]));

3*chunk_size, n - 3*chunk_size, std::ref(sum[3]));

tl.join(); t2.join(); t3.join(); t4.join();
return sum[0] + sum[1] + sum[2] + sum[3];

24

Performance

165.8
Version
gl mmm Sequential 149.7 151.2
mmm 4 Threads (atomic)
140 B 4 Threads (4 sums)
119.6
120
104.3
2100 -
=
2
- 80
E .
60
40
21 424 4
20
0
100K io0M

e Version 1 is slower than the sequential version
e Version 2 is slower than the sequential version for small datasets and barely 1.5x faster on

10M items. :'(
25

Parallel programming is hard !!

Parallel programming is hard?:

e Data races: Invalid program

e Race conditions: Invalid program

e Contention: Poor scaling (e.g. accessing a shared ressource)
e False sharing: Poor scaling

e Load imbalance: Poor scaling

e Poor locality: Bad performance

e Communication overhead: Bad everything

2P, McKenney, M. Michael & M. Wong “Is Parallel Programming still hard?

26

NUMA revisited

Le CPU package
(ensemble des coeurs
physiques d’'une socket)

Un caeur physique Un coeur logique

Mémoire

Un noeud NUMA: | Une
La mémoire PLUS les socket
cores physiques qui ont un

acces local a cette mémoire

CPU Package

NUMA Node 0

3

e Hyper-Thread share L1 and L2 caches

e Physical cores share the LLC (and RAM)
3http://blog.enioka.com/post/2017/07 /06 /topologie-cpu-vmware-vsphere/

27

NUMA revisited

std::atomic<int> x = 0;

Thread 1 Thread 2
X += 2; x+=1;

e Read modify write operation:
e Read x from memory
e Add something to x
e Write x to memory

28

What's going on ?

CPU Core CPU
(register) Core (register)

[L1 Cache] (L1 Cachej
[L2 Cache] [L2 Cache]
[L3 Cache]

[x =0 Main memory]

29

What's going on ?

{ CPU Core H=o CPU’

(register) Coge (register)
[L1 Cache] (x =0 L1 Cachej
[L2 Cache] (x =0 L2 Cache]
[x=0|@ L3 Cache]
(x=0|@ Main memory]

Thread 2 executes

It fetches x from caches to main memory

It locks x address (by hardware impl.)
Thread 1 executes

e It try to fetch a x which is locked (goes to by hardware impl.)

30

What's going on ?

CPU Core x=1 CPU
(register) Corse (register)
[L1 Cache] (x =1 L1 Cachej
[L2 Cache] (x =1 L2 Cachej
(x=1 ¥ L3 Cache)

(a Main memory]

Thread 2 keeps executing

It updates x
It write back x to caches

It unlocks x address

31

What's going on ?

x=1 CpPU
Core (register)

x=1 CPU
Core (register)

=
¢

(
(

1 L1 Cache] (x 1 L1 Cache]
1 L2 Cache] (X =1 L2 Cache]

1

o]
I

L3 Cache]

a
a

o]
I
o

Main memory]

e Thread 1 executes
o |t fetches x
e |t locks x address

32

What's going on ?

[x =3 CPU} {x =1 CPU}
Core (regidter) Core (register)

[x =3 L1 Cache] [x =1 L1 Cachej
(x=3 L2|Cache) (x=1 L2 Cache]
(x=3 L3 Cache)
[x =3 N Main memory]

e Thread 1 keeps executing
e |t updates x
e |t write back x address
e It unlocks x address

33}

What's going on in hardware (MESI) ?

x can be in one of the MESI states (handle by hardware):

State Description

Modified (M) x is only in the current cache, and is dirty (modified)
Exclusive (E) x is only in the current cache and clean.

Shared (S) x is stored in many caches and clean

Invalid (1) x is unused

CPU read hit
Write miss for this block

Invalidate for
this block

Shared
{read only)

CPU read
Place read miss on bus

Shared
(read only)

CPU
read

£ miss
® Place read His
E miss on bus Sl w
2 fed
8 ale g
& o
£ &
Wite miss £|® B
o for this block s
Q¥ Read miss

Exclusive Cache slate transitions

S g based on requests from CPU
(readiwrite)

CPU write miss

Write-back cache block
Plare write miee on hire

for this block [cacha state transitions based
on requests from the bus

Exclusive
(readiwrite)

34

Why is it so slow ? Version 1

void foo_atomic(const char* strings[], std::size_t n, std::atomic<long>& result)

{

for (std::size_t i = 0; i < nj; ++i)
result += myatoi_opt2(strings[i]);

long sum_string_vector_parallel_1(const charx* strings[], std::size_t n)

{

std::atomic<long> sum;

std::size_t chunk_size = n / 4;

std::thread ti(foo_atomic, strings + O, chunk_size, std::ref(sum));

std::thread t2(foo_atomic, strings + chunk_size, chunk_size, std::ref(sum));

tl.join(); t2.join(); t3.join(); t4.join();
return sum;

35

Why is it so slow ? Version 1

void foo_atomic(const char* strings[], std::size_t n, std::atomic<long>& result)
{
for (std::size_t i = 0; i < n; ++i)
result += myatoi_opt2(strings[i]);

long sum_string_vector_parallel_1(const charx* strings[], std::size_t n)

{
std::atomic<long> sum;
std::size_t chunk_size = n / 4;
std::thread ti(foo_atomic, strings + O, chunk_size, std::ref(sum));
std::thread t2(foo_atomic, strings + chunk_size, chunk_size, std::ref(sum));
tl.join(); t2.join(); t3.join(); t4.join();
return sum;

}

Data contention

The shared variable sum causes many data cache bouncing
35

Why is it so slow ? Version 2

long sum_string_vector_parallel_2(const char* strings[], std::size_t n)

{

long sum[4] = {0, 0, 0, 0};

std:

std:
std:
std:
std:

:thread ti1(foo,
:thread t2(foo,
:thread t3(foo,
:thread t4(foo,

strings,
strings,
strings,

strings,

:size_t chunk_size = n / 4;

0, chunk_size, std::ref(sum[0]));
chunk_size, 2 * chunk_size, std::ref(sum[1]));
2%chunk_size, 3*chunk_size, std::ref(sum[2]));

3*%chunk_size, n, std::ref(sum[3]));

t1.join(); t2.join(); t3.join(); t4.join();
return sum[0] + sum[1] + sum[2] + sum[3];

36

Why is it so slow ? Version 2

long sum_string_vector_parallel_2(const char* strings[], std::size_t n)

{

long sum[4] = {0, 0, 0, 0};

std:

std:
std:
std:
std:

:thread ti1(foo,
:thread t2(foo,
:thread t3(foo,
:thread t4(foo,

strings,
strings,
strings,

strings,

:size_t chunk_size = n / 4;

0, chunk_size, std::ref(sum[0]));
chunk_size, 2 * chunk_size, std::ref(sum[1]));
2%chunk_size, 3*chunk_size, std::ref(sum[2]));

3*%chunk_size, n, std::ref(sum[3]));

t1.join(); t2.join(); t3.join(); t4.join();
return sum[0] + sum[1] + sum[2] + sum[3];

False sharing

e The sum variables are on the same cacheline

e The processor invalidates and exchange whole cacheline

36

Solutions ?

e Push variable on different cachelines (v1)

alignas(128) long sum0 =

B

alignas(128) long suml =

B

alignas(128) long sum2 =

B

O O O O

alignas(128) long sum3 = 0;
e Use a local variable for summing and reduction on the shared variable at the end (v2)

void foo_atomic(const char* strings[], std::size_t n, std::atomic<long>& result)

{
long tmp = 0;
for (std::size_t i = 0; i < n; ++i)
tmp += myatoi_opt2(strings[il);
result += tmp;
}

37

250 241.06
Version 229.42 0.32

Sequential |

4 Threads (atomic) 9.05

]
]
200 mmm 4 Threads (4 sums)
mmm 4 Threads (atomic + local sum)
B 4 Threads (separate cachelines)

1544647 149.
104.3 911%15 88
100
z.
50
1&4243253 11

10K 100K

-
9]
o

M. ltems/s

Results (as a number of threads)

254 66
Version 48 245.74 248.42 246.39
250 35.66
mmm 4 Threads (atomic + local sum) 29.12
mmm 4 Threads (separate cachelines)
200
183.6375 67
J
% 150
IS
2
s
100 91.4593.0
50 II
0
1 2

Threads

Best speed-up:

2.5X with 4 threads on core-i7 (2 physical cores + 2 logical cores)
39

C++ APIs for multi-threadings

More than way to do it

e Asynchronous C++ API std: :thread -> std: :future
e Parallel Libraries

e Intel TBB

e Parallel STL
e OpenMP

Note: in course 4 we see more about each of them.

40

Async Standard C++ Library

Problems with std: :thread:

Threads do not return value (pass by ref)
Data races

Context switching

Synchronisation overhead

41

async

std: :future std::async(Function foo, args...);

vy e I S

- o) ~_”%
.qed | ~ oy,
oot ~ %

I
f.get() f = p.getjuturé‘:() o
(blocking) Future f Promise p [«— p.set_value()

Main Thread Thread 1

Creates a promise p

Get the future £

Spawn thread 1 Execute x = foo(args)
Do stuffs execute

y = p.get() blocking execute

idle end executing
idle p-set_value(x)
y is ready Cleanup
Continue

42

std::async

long local_sum(const char *strings[], std::size_t n)

{
long sum = 0;
for (std::size_t i = 0; i < m; ++i)
sum += myatoi_opt2(strings[il);
return sum;
}

long sum_string_parallel_async(const char* strings[], std::size_t n, int nthread)

{
std::size_t chunk_size = n / nthread + 1;
std::array<std::future<long>, 64> results;
for (int i = 0; i < nthread; ++i, n -= chunk_size, strings += chunk_size)
results[i] = std::async(local_sum, strings, std::min(n, chunk_size));
long sum = 0;
for (int i = 0; i < nthread; ++i)
sum += results[i].get();
return sum;
¥

43

More than way to do it

e Asynchronous C++ API std: :thread -> std: :future
e Parallel Libraries

e Intel TBB

e Parallel STL
e OpenMP

44

Library approaches

High level approach, thread management is delegated to the library.

template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_reduce(const Range& range, const Value& identity,
const Func& func, const Reduction& reduction,

[, partitioner[, task_group_context& groupl]);

Range: a TBB range of values

Identity: Identity value for the reduction

Func: Map function to execute on each sub-range

Reduction: Join function to execute on two sub-ranges

Partionner: a way to say how to split ranges

45

Parallel atoi with TBB

long sum_string_tbb(const char* strings[], std::size_t n, int nthread)

{
return
tbb: :parallel_reduce(
tbb: :blocked_range<const char**>(strings, strings + n),
oL,
[1 (const tbb::blocked_range<const char**>& rng, long init) {
return init + local_sum(rng.begin(), rng.size());

Y
std: :plus<long>(),
tbb::static_partitioner()
)3

X

46

Parallel STL

e Introduced in C++17 (not yet available in all compilers)

e But many implementations available (including one with Intel TBB)

return std::transform_reduce(std::execution: :par,

strings,

strings + n,

OL,

std: :plus<long>(),
myatoi_opt2);

// First iterator of the range

// Past-the-end iterator of the range
// Identity element

// Reduction op

// Map op

47

More than way to do it

e Asynchronous C++ API std: :thread -> std: :future
e Parallel Libraries

e Intel TBB

e Parallel STL
e OpenMP

48

OpenMP approach

e Use annotations to describe a parallel section

#pragma omp parallel for [clauses]

Clause

schedule(type, [sizel) See below

reduction(operator : variables) Reduction variables

num_threads (n) Number of threads used

ordered Process in order (Thread n+1 waits for n to finish)

Schedule type

static Divided in chunk size and assigned to threads statically
dynamic Divided in chunk size and assigned to available threads
guided Like dynamic with decreasing size of chunks

runtime Decision deferred until runtime

49

OpenMP approach

long sum_string_openmp(const char* strings[], std::size_t n, int nthread)
{
long sum = 0;
#pragma omp parallel for reduction(+:sum) schedule(static) num_threads(nthread)
for (std::size_t i = 0; i < n; ++i)
sum += myatoi_opt2(strings[i]);

return sum;

50

Results with 4 threads

250

2
1
. il
1K 10K

Why do we get bad results at 1K with std: :thread and std: :async 7

00
" mmm 4 Threads (atomic + local sum)
@ w4 Threads (separate cachelines)
g =10 mmm std::async
= = OpenMP
= = TBB

o
o

u
o

M 10M

100K

51

Results with 4 threads

10M

o
o

" mmm 4 Threads (atomic + local sum)
@ w4 Threads (separate cachelines)
g =10 mmm std::async

= = OpenMP

= = TBB

o
o

u
o

250
2
1
. il
1K 10K

Why do we get bad results at 1K with std: :thread and std: :async 7

M

100K

e Creating threads has a cost
e OpenMP / TBB create a thread pool at startup 51

Questions 7

52

	Agenda
	Thread-Level Parallelism
	Parallelism in C++
	C++ APIs for multi-threadings

