Programmation Paralléle (PRPA)

E. Carlinet {edwin .carlinet@lrde.epita.fr}

2021

EPITA Research & Development Laboratory (LRDE)

Agenda

Loop-oriented Parallel Design Patterns (with TBB)
Agglomeration

Element-wise

Odd-even communication

Wavefront

Reduction

Flow and Graph-oriented Design Patterns

Pipeline

Agenda

CM1 - Introduction to parallelism

CM1 - Instruction and data-level parallelism

CM2 - Thread level parallism

CM2 - Parallel Design Patterns (with TBB)

CM3 - C++ Memory model (Atomics)

CM4 - Data structure for concurrent programming

& &> D=

Loop-oriented Parallel Design
Patterns (with TBB)

Copyright

Inspired from:

Intel's TBB Developer guide

https://www.threadingbuildingblocks.org/docs/help/tbb_userguide/Design_Patterns/

Important concept in TBB that controls looping

Predefined ranges (blocked_range<int>, blocked_range2d<int>,
blocked_range3d<int>

Can be defined from STL ranges (blocked_range<STLIterator>)
Can be customized

About ranges

e Splittable
e Has a grain size

class R {

// True if range is empty

bool empty() const;

// True if range can be split into non-empty subranges
bool is_divisible() const;

// Splits r into subranges r and *this

R(R& r, split);

// Splits r into subranges T and *this in proportion p
R(R& r, proportional_split p);

// Allows usage of proportional splitting constructor

static const bool is_splittable_in_proportion = true;

I ooo

Agglomeration

Agglomeration

Context
e An algorithm permits fine-grained parallelism
e Each item computation is too fast to compensate thread sync.

Example

e Parallelizing the conversion of a vector of strings to int

Solution
e Group the computations into blocks. Evaluate computations within a block serially.
e Block size:
e large enough to amortize parallel overhead
e too large a block size may limit parallelism or load balancing (number of blocks to small)
e Loop is “small” (< 10,000 cycles) may be impractical to parallelize at all

Chunking strategies: the grain size

Chunking is controlled by a partitioner and a grainsize. To gain the most control over
chunking, you specify both.

parallel_for(blocked_range<size_t>(0,n,G),
ApplyFoo(a),

simple_partitioner());

e The grainsize sets a minimum threshold for parallelization.
e Using simple_partitioner guarantees that [G/2] < chunksize < G.

]
i
e
5
@
N
o

Chunking strategies: in si

[Overhead
I Useful work

e Left: small grainsize leads to a relatively high proportion of overhead
e Right: large grainsize reduces overhead, reduces potentially parallelism

time (milliseconds)
i =]
[[

-

10 100 1000 10000 100000 1000000

grainsize

=

Figure 1: Time for a[i] = b[i] * c on 1M float items (4 physical cores / 8 logical cores) 10

Chunking strategies: the partitioners

e N is the size of the range
e G in the grain size
e T is the number of available worker (ressources)

Partitioner Description Chunk size

simple Split until the grain size is reached. G/2 < chunksize < G

auto Minimize work splitting while maximizing work stealing. G/2 < chunksize

static Distributes range iterations among worker threads as uniformly ~ max(G/3, N/T) <
as possible chunk _size

affinity Same as auto, but better cache affinity (e.g. loop is re-executed G/2 < chunksize

over the same data set)

Simple Auto Static Affinity

Workload Balancing v v v
Cache affinity v v
Upper bound v

11

Example with parallel reduce:

Body: :Body(Body&, split) Splitting constructor. May run concurrently with operator() and join().
void Body: :operator () (const Range&) Accumulate result for subrange.
void Body::join(Body& rhs) Join results. The result in rhs should be merged into the result of this.

by [0,20)

by [0.10) by [10.20)

by [0.5) by [5.10) by [10.15) b [15.20)

Figure 2: Possible execution of simple partitioning over the [0,20] with grain size 5

1 2 9 4 B 6
Thread 0 bO.split() bO.split() b0([0,5]) b0.join(b1l) b0.join(b2)
Thread 1 b1([5, 10]) ... X
Thread 2 b2([10, 15]) ... b2([15,20]) ... X

12

Element-wise

Element-wise

Context
e Sweep over a set of items and do independent computations on each item.
e No information is carried or merged between the computations.

Solution
e Number of items known: parallel_for
e Number of items unknown: parallel_do
e Use agglomeration if individual computations are small
e If followed by a local reduction, consider doing the element-wise operation as part of the
reduction.

13

Normalization between [0,1] (Map) Sliding window smoothing (Stencil)

ot (k) — vmi 5
output(k) = input(k) — vmin « Y input(k + i)

i=—2

ol =

vmax — vmin output(k) =

14

Normalization between [0,1] (Map) Sliding window smoothing (Stencil)
input(k) — vmin 1 2
output(k) = ——————— L . .
utput (k) Tmax — vmin output(k) = = '22 input(k -+ 1)
=
tbb: :parallel_for(0, len, [=](int k) { tbb::parallel_for(2, len-2, [=](int k) {
out[k] = (input[k] - vmin) / (vmax - vmin); int sum = 0;
)8 for (int i = -2; i <= 2; ++i)

sum += input[k + il;
output[k] /= 5;
g

What about inplace processing (out = in) ?

14

Normalization between [0,1] (Map) Sliding window smoothing (Stencil)
input(k) — vmin 1 2
output(k) = ——————— L . .
utput (k) Tmax — vmin output(k) = = '22 input(k -+ 1)
=
tbb: :parallel_for(0, len, [=](int k) { tbb::parallel_for(2, len-2, [=](int k) {
out[k] = (input[k] - vmin) / (vmax - vmin); int sum = 0;
)8 for (int i = -2; i <= 2; ++i)

sum += input[k + il;
output[k] /= 5;
g

What about inplace processing (out = in) ?

OK for map, harder for the stencil because of dependancies.

14

Odd-even communication

Odd-even communication

Context
Operations on data cannot be done entirely independently, but data can be partitioned into two

subsets such that all operations on a subset can run in parallel.
Example: Isotropic diffusion inplace

dKHxy) = uF(x,y) + AR (xy) + B8 (x,y) + Ay (x,y) + A%(x, ¥))

where
o Af(x.y) =uk(x,y —1) — u*(x,y)
o Af(x,y) = uk(x,y +1) — u¥(x,y)
° Alé(x,y) = uk(x—i- l,y)— uk(x,y)
o Afy(x,y) = u¥(x—Ly) — u¥(x,y)

15

Isotropic diffusion - 10 iterations (A = 0.25)

for (int k = 0; k < K; ++k)

{
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
glx,y) = f(x,y+1) + f(x,y-1) + f(x+1,y) + f(x-1,y);
swap(f, g);
}

Parallelization
e If not inplace -> no problem
e If inplace (input = output) -> data race

Solution

e Alternate between updating one subset and then the other subset.
e Apply the elementwise pattern to each subset

for (int k = 0; k < K; ++k)
{
for (int y = 0; y < height; ++y)
for (int x = x%2; x < width; x+=2)
g(x,y) f(x,y+1) + f(x,y-1) + f(x+1,y) + £(x-1,y);

for (int y = 0; y < height; ++y)
for (int x = x%2+1; x < width; x+=2)
g(x,y) = f(x,y+1) + f(x,y-1) + £(x+1,y) + £f(x-1,y);
swap(f, g);
i 17

Wavefront

Context
Perform computations on items in a data set, where the computation on an item uses results

from computations on predecessor items.

Example (LCS)
The longest common substring between \ (x_{1..1i}\) and \(y_{1..j}\) is:

LCA(x1 -1, y1.j-1) +1 if x; = yj

LCA(x1.ivy1.j) =
(0. 71.4) max(LCA(x1. i 1,y1.;), LCA(x1.j,y1.j-1)) otherwise

18

Ri 11— Ri_1;

|
| |

Rij-1 —— Ri;

Figure 3: Direct and indirect data dependencies

template<typename Inputlterator, typename Body>
void parallel_do(InputIterator first, InputIterator last, Body body);

with body:

Body: :operator () (T item, parallel_do_feeder<T>& feeder) const

e Parallel variant of topological sort with tbb: :parallel_do
e Associate an atomic counter to each item

e When an item is processed:
e Decrement successors counter
e If counter drops to 0, add it to the work list
e Can be combine with agglomeration pattern (for efficiency)

20

using P = std::pair<int, int>;
std::atomic<int> cnt[n] [m] = 2; // Pseudo-code
P origin = {0, 0};
parallel_do(&origin, &origin + 1,
[T(P cell, parallel_do_feeder<P>& feeder)
{
auto [i, j] = cell;
// Should check bounds: HERE
LCA[i] [j] = (x[i] == y[j1) 7
if (j < m-1 && --cnt[i][j+1] == 0)
feeder.add({i, j+1})
if (i < n-1 && --cnt[i+1][j] == 0)
feeder.add({i+1, j})

(LCA[i-11[§-11) : max(LCA[i-11[j], LCA[il[j-11

19N
}

Note: this is inefficient, do block processing instead

21

Reduction

Context

e Many serial algorithms sweep over a set of items to collect summary information
e Perform an associative reduction operation across a data set.

Example
e Parallelizing the sum of a vector of strings

Solution
e tbb::parallel_reduce if fully associative
e tbb::parallel_deterministic_reduce if almost associative (e.g summing floats)

22

long sum_string_tbb(const char* strings[], std::size_t n, int nthread)
{
return
tbb: :parallel_reduce(
tbb: :blocked_range<const char**>(strings, strings + n), // Range
oL, // Id
[1(const tbb::blocked_range<const char**>& rng, long init) { // Map
return init + local_sum(rng.begin(), rng.size());

}’

std: :plus<long>(), // Reduce
tbb: :static_partitioner()

)8

23

Flow and Graph-oriented
Design Patterns

Devide and conquer

Context
e Problem can be transformed into subproblems that can be solved independently
e Splitting problem or merging solutions is relatively cheap compared to cost of solving the
subproblems.

24

Devide and conquer

Context
e Problem can be transformed into subproblems that can be solved independently
e Splitting problem or merging solutions is relatively cheap compared to cost of solving the
subproblems.

Example
e Quicksort / Merge sort

Solution
e tbb::parallel_invoke if the number of subproblems is always the same
e tbb::task_group if the number of subproblems varies

24

IIiiIilHHggHHII

void quicksort(T* begin, T* end)

{
if (end - begin <= 1)
return;
T pivot = *begin;
T* mid = std::partition(begin + 1, end, [=]1(T x) { return x < pivot; 1});
std: :swap(*begin, *(mid-1));
tbb: :parallel_invoke(
[=10 { Quicksort(begin, mid-1); },
[=1 () { Quicksort(mid, end); });
}

25

Parallel computation of the depth of a tree

struct Node
{
int n_child;
Node* child;
I8

int walk(const Node* node)
{
if (node == NULL)

return -1;

std::vector<int> depths(node->n_child);
tbb::task_group jobs;
for (int i = 0; i < node->n_child; ++i)
jobs.run([=,&depths] () { depths[i] = walk(node->child[i]); });
jobs.wait(); // wait for completion

return *(std::min_element (depths.begin(), depths.end())) + 1;

Note: this is an example (you should limit recursion !)
26

Pipeline

Context
e Pipelining is a common parallel pattern that mimics a traditional manufacturing assembly
line.
e Data flows through a series of pipeline filters and each filter processes the data in some way

Example

In video processing:

e some operations on frame does not depend on previous frame (pre-proc. e.g. denoising)
e some operations depend on previous frame (e.g. tracking)

27

Online word correction

Online word correction

1. Read the next token in input file
2. Search for the word and its traduction (can take time)
3. Write the next token in output file

tbb: :parallel_pipeline(
nrequest, // mazimal number of requests that can be handled in parallel
tbb: :make_filter<void, std::string>(tbb::filter::serial_in_order, Reader()),
tbb::make_filter<std::string, std::string>(tbb::filter::parallel, Traducer()),
tbb: :make_filter<std::string,void>(tbb::filter::serial_in_order, Writer()))

Filter Description

parallel Process multiple items in parallel and in no particular order.
serial_out_of_order Process items one at a time, and in no particular order.
serial_in_order Process items one at a time, and with order.

28

	Agenda
	Loop-oriented Parallel Design Patterns (with TBB)
	Agglomeration
	Element-wise
	Odd-even communication
	Wavefront
	Reduction
	Flow and Graph-oriented Design Patterns
	Pipeline

