
Programmation Parallèle (PRPA)

E. Carlinet {edwin.carlinet@lrde.epita.fr}

2020

EPITA Research & Development Laboratory (LRDE)

1

Agenda

Memory ordering

The C++ memory model

Syncing and ordering

Atomics and mutexes

C++ atomics

C++ Relaxed Memory Orders

2

Agenda

Agenda

1. Introduction to parallelism
2. Instruction and data-level parallelism
3. Thread level parallism
4. Parallel Design Patterns (with TBB)
5. C++ Memory model
6. Data structure for concurrent programming

3

Memory ordering

Remainder

unsigned sum = 0;

void partial_sum(unsigned tab[], std::size_t n)
{

for (std::size_t i = 0; i < n; ++i)
sum += tab[i];

}

void sum(unsigned tab[], std::size_t n)
{

auto _1 = std::async(partial_sum, tab, n/2);
auto _2 = std::async(partial_sum, tab + n/2, n - n/2);

}

This code is not valid:

• we have a data race

4

Remainder

An optimizing compiler can rewrite:

void partial_sum(unsigned tab[], std::size_t n)
{

unsigned tmp = sum;
for (std::size_t i = 0; i < n; ++i)

tmp += tab[i];
tmp = sum;

}

5

Instructions ordering

a = 0; b = 0; c = 0 Suppose we have atomic instructions:

Thread 1

a = 1

b = 3

c = 2

Thread 2

b = a

c = 4

a += c

What are the possibles values for a,b,c after execution ?

a = 1 b = 3 c = 2 b = a c = 4 a += c a=3 b=3 c=2

a = 1 b = a b = 3 c = 4 c = 2 a += c a=5 b=1 c=4

b = a c = 4 a += c a = 1 b = 3 c = 2 a=1 b=3 c=2

And much more. . .

6

Instructions ordering

a = 0; b = 0; c = 0 Suppose we have atomic instructions:

Thread 1

a = 1

b = 3

c = 2

Thread 2

b = a

c = 4

a += c

What are the possibles values for a,b,c after execution ?

a = 1 b = 3 c = 2 b = a c = 4 a += c a=3 b=3 c=2

a = 1 b = a b = 3 c = 4 c = 2 a += c a=5 b=1 c=4

b = a c = 4 a += c a = 1 b = 3 c = 2 a=1 b=3 c=2

And much more. . .
6

How many interleavings for 2 threads of N and M instructions ?

C(N,M) = C(N-1,M) + C(N,M-1)
C(0,M) = 1
C(N,0) = 1

For N=3 and M=3: 20 orderings

7

How many interleavings for 2 threads of N and M instructions ?

C(N,M) = C(N-1,M) + C(N,M-1)
C(0,M) = 1
C(N,0) = 1

For N=3 and M=3: 20 orderings

7

But what if we could switch some instructions without changing per-thread semantics:

Thread 1

a = 1

b = 3

c = 2

Thread 2

b = a

c = 4

a += c

Note that a += c has dependancy on c = 4 and b = a

a = 1 b = 3 c = 2 b = a c = 4 a += c a=3 b=3 c=2

b = 3 b = a c = 2 c = 4 a += c a = 1 a=1 b=0 c=4

c = 2 b = a c = 4 a = 1 a += c b = 3 a=5 b=3 c=4

We have 51 reorderings !

8

The Truth about your program

• Your program:

if (condition) my_global = 4;
int k = my_global;
do_stuff_with_k

• What the compiler might say:

int k = condition ? 4 : my_global;
do_stuff_with_k
if (condition) my_global = 4;

• What the processor might say:

k = 4
do_stuff_with_k
my_global = 4;
if (condition) return;
k = my_global;
do_stuff_with_k

9

The Truth about your program

• Your program:

if (condition) my_global = 4;
int k = my_global;
do_stuff_with_k

• What the compiler might say:

int k = condition ? 4 : my_global;
do_stuff_with_k
if (condition) my_global = 4;

• What the processor might say:

k = 4
do_stuff_with_k
my_global = 4;
if (condition) return;
k = my_global;
do_stuff_with_k

9

The Truth about your program

• Your program:

if (condition) my_global = 4;
int k = my_global;
do_stuff_with_k

• What the compiler might say:

int k = condition ? 4 : my_global;
do_stuff_with_k
if (condition) my_global = 4;

• What the processor might say:

k = 4
do_stuff_with_k
my_global = 4;
if (condition) return;
k = my_global;
do_stuff_with_k

9

The Truth about your program

DSE (Dead store elimination)
x = 1;
y = "universe";
x = 2;

y = "universe";
x = 2;

Memory-to-register

for (int i = 0; i < len; ++i)
z += tab[i];

int r1 = z;
for (int i = 0; i < len; ++i)

r1 += tab[i];
z = r1;

10

The Truth about your program

The compiler knows:

• Operations in one thread with data dependancies
• Pointer aliasing issues

And they better not execute the stupid code you have writen. Your code is slow !

• Compiler better optimize and reorder
• Processors can do speculative branching and out-of-order exec

• Program executed 6= program you wrote

11

The Truth about your program

The compiler does not know:

• How memory can be affected by other thread

• We have to tell the compiler about it
• We have to limit the way things are reordered to get consistent results

12

What we want (SC)

Sequential Consistency (Lamport 79):

• the result of any execution is the same as if the operations of all the processors were
executed in some sequential order

• and the operations of each individual processor appear in this sequence in the
order specified by its program

• Execute what I wrote !

13

Solutions

1. Follow the C++ memory model.

2. How limit the way things are reordered to get consistent results ?

• Atomic operations for types
• Critical sections for block of code
• Memory fences

14

The C++ memory model

The C++ Memory model

You agree
To correctly synchronise your code

You get
The illusion of a sequential consistent execution

15

The C++ Memory model

memory location an object of scalar type or a maximal sequence of adjacent non zero
width bit-fields

int i; A

struct X {
int a : 5

int b : 7;
B

std::string s; C

};
X obj; D

X* pobj; E

16

The C++ Memory model

conflicting action two (or more) actions that access the same memory location and at
least one of them is a write

data race two conflicting actions in different threads and neither happens before the
other

int i; A

struct X {
int a : 5

int b : 7;
B

std::string s; C

};
X obj; D

X* pobj; E

Thread 1 Thread2

i = i + 2 obj.s.push_back('a');
obj.a = i pobj = &obj;
X x = obj pobj->b = 5;

Is this program ok ?

17

int i; A

struct X {
int a : 5

int b : 7;
B

std::string s; C

};
X obj; D

X* pobj; E

Thread 1 Thread2

i = i + 2 obj.s.push_back('a'); (4)
obj.a = i (1) pobj = &obj;
X x = obj (2) pobj->b = 5; (3)

• (B) is writen by Thread 1 (1) and Thread 2 (3)

• (C) is read by Thread 1 (2)

• (C) is writen by Thread 2 (4)

18

The C++ Memory model

int x = 0, y = 0;

if (x == 1)
y = 1;

if (y == 1)
x = 1;

Is there a data race?

No ! (Whichever thread starts first, there will be no write)

19

The C++ Memory model

int x = 0, y = 0;

if (x == 1)
y = 1;

if (y == 1)
x = 1;

Is there a data race?

No ! (Whichever thread starts first, there will be no write)

19

The C++ Memory Model

Modification order Every memory location has a modification order composed of all the
writes to that object from all threads in the program

No data race = Single modification order for all threads (that can vary between two
program executions).

20

Syncing and ordering

Syncing and ordering

How limit the way things are reordered to get consistent results?

• Memory fences
• Atomic operations for types
• Critical sections for block of code

21

Fences for memory ordering

First usage: limit the number of reordering (Memory ordering)

Thread 1

a = 1

b = 3

c = 2

Thread 2

b = a

c = 4

a += c

a = 1 b = 3 c = 2 b = a c = 4 a += c a=3 b=3 c=2

b = 3 b = a c = 2 c = 4 a += c a = 1 a=1 b=0 c=4

Possibles values for b after executions of threads:

0, 1, 3

22

Fences for memory ordering

First usage: limit the number of reordering (Memory ordering)

Thread 1

a = 1

b = 3

c = 2

Thread 2

b = a

c = 4

a += c

a = 1 b = 3 c = 2 b = a c = 4 a += c a=3 b=3 c=2

b = 3 b = a c = 2 c = 4 a += c a = 1 a=1 b=0 c=4

Possibles values for b after executions of threads:

0, 1, 3

22

Fences for memory ordering

General idea:

• Code cannot move-out
• But code can move in

int account = 0, x = 0, y = 0;

x = 42;
std::atomic_thread_fence(std::memory_order_acquire);
account -= 900;
account += 2500;
std::atomic_thread_fence(std::memory_order_release);
y = 42;

account -= 900

x = 42

account += 2500

y = 42

Acquire

Release

23

Fences for memory ordering

General idea:

• Code cannot move-out
• But code can move in

account -= 900

x = 42

account += 2500

y = 42

Acquire

Release

account -= 900

x = 42

account += 2500

y = 42

Acquire

Release

×

×

Forbidden

account -= 900

x = 42

account += 2500

y = 42

Acquire

Release

Allowed

24

Fences for memory ordering

x = 42;
account -= 900;
account += 2500;
x += 42;

add dword ptr [rip + account], 1600
mov dword ptr [rip + x], 84

x = 42;
account -= 900;
account += 2500;
std::atomic_thread_fence(release);
x += 42;

add dword ptr [rip + account], 1600
mov dword ptr [rip + x], 42
mov dword ptr [rip + x], 84

x = 42;
std::atomic_thread_fence(acquire);
account -= 900;
account += 2500;
x += 42;

mov dword ptr [rip + x], 42
add dword ptr [rip + account], 1600
add dword ptr [rip + x], 42

25

Fences for memory ordering

x = 42;
account -= 900;
account += 2500;
x += 42;

add dword ptr [rip + account], 1600
mov dword ptr [rip + x], 84

x = 42;
account -= 900;
account += 2500;
std::atomic_thread_fence(release);
x += 42;

add dword ptr [rip + account], 1600
mov dword ptr [rip + x], 42
mov dword ptr [rip + x], 84

x = 42;
std::atomic_thread_fence(acquire);
account -= 900;
account += 2500;
x += 42;

mov dword ptr [rip + x], 42
add dword ptr [rip + account], 1600
add dword ptr [rip + x], 42

25

Fences for memory ordering

x = 42;
account -= 900;
account += 2500;
x += 42;

add dword ptr [rip + account], 1600
mov dword ptr [rip + x], 84

x = 42;
account -= 900;
account += 2500;
std::atomic_thread_fence(release);
x += 42;

add dword ptr [rip + account], 1600
mov dword ptr [rip + x], 42
mov dword ptr [rip + x], 84

x = 42;
std::atomic_thread_fence(acquire);
account -= 900;
account += 2500;
x += 42;

mov dword ptr [rip + x], 42
add dword ptr [rip + account], 1600
add dword ptr [rip + x], 42

25

Syncing with fences: inside a thread

• Fences allow to limit instruction redordering (by CPU or compiler)
• They enforce instructions ordering:

Acquire operation: No read or writes can be redordered before this operation
Release operation: No read or write can be reordered after this operation

They provide (in-thread) happens-before relationship.

26

Syncing with threads: for other threads

• Fences allow to commit to others. Side-effects become visible

Release operation:

• Make visible previous writes (push)

Acquire operation:

• See what has been commited (pull)

• They provide a synchronise with relationship
• synchronise-with = inter-thread happens-before

27

Fences for synchronization (the bad)

Warning Fences do not prevent data races (concurrent read/write write/write)

bool has_been_payed = false;
int account = 0;

account += 2500;
std::atomic_thread_fence(release);
has_been_payed = true;

bool ok = has_been_payed;
std::atomic_thread_fence(acquire);
if (ok)

assert(account > 0);

Is it OK?

Data race on has_been_payed !

• In T1: Write to account Happens-before Write to has_been_payed
• In T2: Read to account conditional to Write to has_been_payed
• Write to account Happens-before Read to account (by Synchronize-with of fences)

28

Fences for synchronization (the bad)

Warning Fences do not prevent data races (concurrent read/write write/write)

bool has_been_payed = false;
int account = 0;

account += 2500;
std::atomic_thread_fence(release);
has_been_payed = true;

bool ok = has_been_payed;
std::atomic_thread_fence(acquire);
if (ok)

assert(account > 0);

Is it OK?

Data race on has_been_payed !

• In T1: Write to account Happens-before Write to has_been_payed
• In T2: Read to account conditional to Write to has_been_payed
• Write to account Happens-before Read to account (by Synchronize-with of fences)

28

Atomics and mutexes

Mutexes

Fences Mutexes

Synchronization 3 3

Memory ordering 3 3

Transactional model 7 3

Transaction

• Atomic: all or nothing
• Consistent: bring one consistent state to another consistent state
• Independant: Correct if other transactions appear in the same time

With mutexes, Independance = Mutual exclusion (two threads cannot execute a critical
section).

29

Mutexes & Synchronization

int account = 0, x = 0, y = 0;

x = 42;
m.lock(); // Acquire operation
account -= 900;
account += 2500;
m.unlock(); // Release operation
y = 42;

x = 42;
m.lock(); // Acquire operation
account -= 900;
account += 2500;
m.unlock(); // Release operation
y = 42;

Is it OK ?

Still not !
Concurrent write to x and y (but “benign” as writing the same int value).

30

Mutexes & Synchronization

int account = 0, x = 0, y = 0;

x = 42;
m.lock(); // Acquire operation
account -= 900;
account += 2500;
m.unlock(); // Release operation
y = 42;

x = 42;
m.lock(); // Acquire operation
account -= 900;
account += 2500;
m.unlock(); // Release operation
y = 42;

Is it OK ?

Still not !
Concurrent write to x and y (but “benign” as writing the same int value).

30

Mutexes & Synchronization

int account = 0, x = 0, y = 0;

m.lock(); // Acquire operation
x = 42;
account -= 900;
account += 2500;
y = 42;
m.unlock(); // Release operation

m.lock(); // Acquire operation
x = 42;
account -= 900;
account += 2500;
y = 42;
m.unlock(); // Release operation

31

Mutexes & Synchronization

int x = 0, y = 0;

x++;
m.lock();
y++;
m.unlock();

m.lock();
if (y++)

x++;
m.unlock();

OK ? Which ouput ?

• assert(y == 2)
• assert(x == 1 || x == 2)

32

Mutexes & Synchronization

int x = 0, y = 0;

x++;
m.lock();
y++;
m.unlock();

m.lock();
if (y++)

x++;
m.unlock();

OK ? Which ouput ?

• assert(y == 2)
• assert(x == 1 || x == 2)

32

First case x == 2

x++

m.lock()

y++

m.unlock()

Thread 1

m.lock()

if (y++)yes

x++

m.unlock()

Thread 2

x = 0, y = 0

Init

sync with

x

0

1

2

y

0

1

2

33

First case x == 1

x++

m.lock()

y++

m.unlock()

Thread 1

m.lock()

if (y++)no

x++

m.unlock()

Thread 2

x = 0, y = 0

Init

sync with

x

0

1

y

0

1

2

• There is no happens-before between the x++ of the two threads
• But no data race

34

Mutexes & Synchronization

Exercice: make it correct (with minimum locking)

bool has_been_payed = false;
int account = 0;

account += 2500;
std::atomic_thread_fence(release);
has_been_payed = true;

bool ok = has_been_payed;
std::atomic_thread_fence(acquire);
if (ok)

assert(account > 0);

35

bool has_been_payed = false;
int account = 0;

account += 2500;
m.lock();
has_been_payed = true;
m.unlock();

bool ok;
m.lock();
ok = has_been_payed;
m.unlock();
if (ok)

assert(account > 0);

Why does it work ?

36

Possible exec 1

account += 2500

m.lock()

has been payed = true

m.unlock()

Thread 1

m.lock()

ok = has been payed

m.unlock()

if (ok)yes

assert(account > 0)ok

Thread 2

has beed payed = false

account = 0

Init

sync with

account

0

2500

hbp

false

true

37

Not possible

account += 2500

m.lock()

has been payed = true

m.unlock()

Thread 1

m.lock()

ok = has been payed

m.unlock()

if (ok)yes

assert(account > 0)fires

Thread 2

has beed payed = false

account = 0

Init

sync with

account

0

2500

hbp

false

true

Not consistent with x += 2500 happens-before has_been_payed=true

38

Mutexes & C++ RAII Note

std::mutex m;

void foo()
{
m.lock();
...
m.unlock();

}

What do you think about:

• exceptions
• programming errors

This is safer written as:

{
std::lock_guard l(m); // Acquire
...
// Release at destruction

}

39

Mutexes & C++ RAII Note

std::mutex m;

void foo()
{
m.lock();
...
m.unlock();

}

What do you think about:

• exceptions
• programming errors

This is safer written as:

{
std::lock_guard l(m); // Acquire
...
// Release at destruction

}

39

C++ atomics

C++ Atomics

Fences Mutexes Atomics

Synchronization 3 3 3

Memory ordering 3 3 3

Transactional model 7 3(Code block) 3(Single op)

Transaction:

• Atomic: all or nothing
• Consistent: bring one consistent state to another consistent state
• Independant: Correct if other transactions appear in the same time

• std::atomic<T> is the only way to get atomic operations in C++
• Most std::atomic<P> (with P a primitive type) are lock-free
• std::mutex and spin lock use atomics behind

40

C++ Atomics

Fences Mutexes Atomics

Synchronization 3 3 3

Memory ordering 3 3 3

Transactional model 7 3(Code block) 3(Single op)

Transaction:

• Atomic: all or nothing
• Consistent: bring one consistent state to another consistent state
• Independant: Correct if other transactions appear in the same time

• std::atomic<T> is the only way to get atomic operations in C++
• Most std::atomic<P> (with P a primitive type) are lock-free
• std::mutex and spin lock use atomics behind

40

Operations on C++ Atomics

Operation atomic_flag atomic<bool> atomic<T*> atomic<int> atomic<T>

test_and_set X
clear X
is_lock_free X X X X
load / operator T X X X X
store / operator= X X X X
exchange X X X X
compare_exchange_strong/weak X X X X
fetch_add/sub += -= ++ -- X X
fetch_or/and/xor X

41

Atomic Traps

Some of these are not like the others:

• std::atomic<int> x{0}
• ++x
• x++
• x += 1
• x |= 2
• x *= 2
• int y = x * 2
• x = y + 1
• x = x + 1
• x = x * 2

42

Atomic Traps

Some of these are not like the others:

• std::atomic<int> x{0}
• ++x
• x++
• x += 1
• x |= 2
• x *= 2 (does not compile)
• int y = x * 2
• x = y + 1
• x = x + 1 (not atomic +)
• x = x * 2 (not atomic *)

43

C++ Atomics

Exercice: make it correct (with atomic)

bool has_been_payed = false;
int account = 0;

account += 2500;
std::atomic_thread_fence(release);
has_been_payed = true;

bool ok = has_been_payed;
std::atomic_thread_fence(acquire);
if (ok)

assert(account > 0);

44

C++ Atomics with atomic<bool>

std::atomic<bool> has_been_payed(false);
int account = 0;

account += 2500;
// Release operation
has_been_payed.store(true);

// Acquire operation
if (has_been_payed.load())

assert(account > 0);

45

C++ Atomics: with atomic_flag

std::atomic_flag has_been_payed = ATOMIC_FLAG_INIT;
int account = 0;

account += 2500;

// Acquire/Release operation
has_been_payed.test_and_set();

// Acquire/Release operation
if (has_been_payed.test_and_set())

assert(account > 0);

46

Atomic exchange / compare_exchange

exchange(y)

Set and return the old value

T exchange(T new)
{

T old = load();
store(new);
return old;

}

47

Atomic exchange / compare_exchange

compare_exchange(expected, desired)

Test if the current value is expected, if so set the new value with desired and returns
true, else set expected to the current value, and returns false.

bool compare_exchange(T& expected, T desired)
{

T current = load();
if (current == expected) {

store(desired);
return true;

} else {
expected = current;
return false;

}
}

48

The CAS Loop

The most important loop with atomics:

while (flag.test_and_set())
;

or

while (value.compare_exchange_weak(expected, desired))
;

Note:

• compare_exchange_weak if in a loop (weak can fail spuriously)
• compare_exchange_strong if not a loop

49

The CAS Loop

Exercice: how do you implement a spinlock mutex with a CAS loop?

class spinlock_mutex
{

std::atomic_flag m_flag = ATOMIC_FLAG_INIT;
public:

void lock() {FIXME}
void unlock() {FIXME}

};

50

The CAS loop

class spinlock_mutex
{

std::atomic_flag m_flag = ATOMIC_FLAG_INIT;
public:

void lock()
{

while (m_flag.test_and_set())
;

}
void unlock() { m_flag.clear(); }

};

• lock
While the ticket is taken { Mark the ticket as taken }
Mark the ticket as taken

• unlock
Give back the ticket

51

C++ Relaxed Memory Orders

Why relaxed memory orders?

Remember course 1:

Strategy / Technique 1 Affect your code

Parallelize (leverage compute power)
Pipeline out-of-order X
Hardware (hyper) thread

Cache (leverage capacity)
Instruction cache
Data cache X
Other buffering (e.g. store buffer) X

Speculate (leverage bandwidth/compute)
Branch prediction
Optimistic execution
Prefetch

1Herb Stuter - Atomic Weapons 2012 52

http://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2

Why relaxed memory orders?

Remember course 1

Original Itanium 2a:

• 211Mt 85% for cache
• 1% of die to compute
• 99% to move/store data

aDavid Patterson, UC Berkeley, HPEC keynote, Oct 2004

Your computer is working hard to reorder & parallelize work, so:

• do not impose unnecessary ordering
• do not impose unnecessary synchronization

53

http://www.ll.mit.edu/HPEC/agendas/proc04/invited/patterson_keynote.pdf

Why relaxed memory orders?

Remember course 1

Original Itanium 2a:

• 211Mt 85% for cache
• 1% of die to compute
• 99% to move/store data

aDavid Patterson, UC Berkeley, HPEC keynote, Oct 2004

Your computer is working hard to reorder & parallelize work, so:

• do not impose unnecessary ordering
• do not impose unnecessary synchronization

53

http://www.ll.mit.edu/HPEC/agendas/proc04/invited/patterson_keynote.pdf

Why relaxed memory orders?

Different architectures = different memory models = different costs

54

Why relaxed memory orders?

Ordinary Load Ordinary Store Atomic SC Load Atomic SC Store CAS

x86/x64 mov mov mov xchg cmpxchg

• Cheap SC load
• Expensive SC write (xchg = mov + mfence)

Reads are not reordered with any reads.
Writes are not reordered with any writes [some exceptions]

Writes are not reordered with older reads.
Reads may be reordered with older writes [different locations] .
Reads & writes not reordered with locked instructions [like xchg; . . .] .
Reads cannot pass earlier LFENCE and MFENCE.
Writes cannot pass earlier LFENCE, SFENCE, and MFENCE.
LFENCE cannot pass earlier reads.
SFENCE cannot pass earlier writes.
MFENCE cannot pass earlier reads or writes.

55

Why relaxed memory orders?

Different architectures = Different costs

Ordinary
Load

Ordinary
Store

Atomic SC
Load

Atomic
SC
Store CAS

x86/x64 mov mov mov xchg cmpxchg
IA64 ld st ld.acq sr.rel;

mf
cmpchg.rel; mf

POWERld st sync; ld;
cmp; bc;
isync

sync;
st

sync _loop: lwarx; cmp; bc _exit; stwcx.; bc
_loop; isync; _exit:

ARM
v7

ldr str ldr; dmb dmb;
str;
dmb

dmb; _loop: ldrex roldval, [rptr]; mov rres, 0; teq
roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, 0;
bne _loop; isb

SC is too strong = We pay for something we may not need

SC is the only memory model for many languages (JAVA/ C#)
SC is the default behavior with C++ 56

SC-Acquire-Release

So far, we have seen Sequential Consitency Acquire-Release.

Easy:

• Consistent with a single view of the world (as if a thread does all the work)
• SC = total orderings of the operations

Total ordering means:

• All threads agree on the modification order (not restricted to SC)
• All threads agree on the same memory state
• Get an up-to-date value for load()

57

SC-Example

Note:

auto seq_cst = std::memory_order_seq_cst;

std::atomic<bool> x = false, y = false;

x.store(true, seq_cst) y.store(true, seq_cst) while (!x.load(seq_cst))
;

if (!y.load(seq_cst))
printf("x before y");

while (!y.load(seq_cst))
;

if (!x.load(seq_cst))
printf("y before x");

Q: What are the possible outputs?

• Nothing
• x before y
• y before x
• But not both

58

SC-Example

Note:

auto seq_cst = std::memory_order_seq_cst;

std::atomic<bool> x = false, y = false;

x.store(true, seq_cst) y.store(true, seq_cst) while (!x.load(seq_cst))
;

if (!y.load(seq_cst))
printf("x before y");

while (!y.load(seq_cst))
;

if (!x.load(seq_cst))
printf("y before x");

Q: What are the possible outputs?

• Nothing
• x before y
• y before x
• But not both

58

Non-SC memory order

Break your way of thinking. It is not only about:

• Instructions reordering by hardwares (OoO. . .)
• Instructions/code reordering by compilers

With a non-SC memory order, 2 threads executing the same code:

• Agree about the modification order of variables
• Can disagree about the ordering of events (can see an old memory state)

59

Non-SC memory order

memory_order_seq_cst

memory_order_acq_rel

memory_order_acquire memory_order_release

memory_order_consume

memory_order_relaxed

Strong (default)

Weak

Relaxed no operation orders memory (no syncing)
Release store = release on the memory location
Acquire load = acquire on the memory location
Consume load = consume on the memory location

• Only affect memory ordering (and what becomes visible)!
• Operations are still atomics !

60

Relaxed Memory Order

• No operation orders memory (= no syncing = no inter-thread happens-before)
• Only atomicity guarantied (data-race free)

61

Relaxed Memory Order

auto relaxed = std::memory_order_relaxed;
std::atomic<int> account = 0;
std::atomic<bool> has_been_payed = false;

account.fetch_add(2500, relaxed);
has_been_payed.store(true, relaxed);

if (has_been_payed.load(relaxed))
assert(account.load(relaxed) > 0)

Data race? Does the assert raise?

• Data race? No (all atomic operations)
• OK? No (we can see an old value because no sync)

62

Relaxed Memory Order

auto relaxed = std::memory_order_relaxed;
std::atomic<int> account = 0;
std::atomic<bool> has_been_payed = false;

account.fetch_add(2500, relaxed);
has_been_payed.store(true, relaxed);

if (has_been_payed.load(relaxed))
assert(account.load(relaxed) > 0)

Data race? Does the assert raise?

• Data race? No (all atomic operations)
• OK? No (we can see an old value because no sync)

62

Relaxed Memory Order

account.fetch add(2500, relaxed)

has been payed.store(true, relaxed)

Thread 1

if (has been payed.load(relaxed))

assert(account.load(relaxed) > 0)fires

Thread 2

atomic<bool> has been payed = false

atomic<int> account = 0

Init

account

0

2500

hbp

F

T

account

0

2500

hbp

F

T

We have parallel universes :)
63

Relaxed Memory Order

So whare are relaxed orders good for?

Good if not communications between threads (just do the atomic operation)

• Event counters
• Reference counting

64

Event counter

std::atomic<int> x = 0;

for (int k = 0; k < 10; ++k)
x.fetch_add(1, relaxed)

for (int k = 0; k < 10; ++k)
x.fetch_add(1, relaxed)

for (int k = 0; k < 10; ++k)
x.fetch_add(1, relaxed)

What are the possible values of x at the end?

• assert(x == 30)

65

Event counter

std::atomic<int> x = 0;

for (int k = 0; k < 10; ++k)
x.fetch_add(1, relaxed)

for (int k = 0; k < 10; ++k)
x.fetch_add(1, relaxed)

for (int k = 0; k < 10; ++k)
x.fetch_add(1, relaxed)

What are the possible values of x at the end?

• assert(x == 30)

65

Event counter

std::atomic<int> x = 0, y = 0;

for (int k = 0; k < 10; ++k)
x.fetch_add(1, relaxed)
y.fetch_add(1, relaxed)

for (int k = 0; k < 10; ++k)
int v0 = x.fetch_add(1, relaxed)
int v1 = x.load(relaxed)
printf("%d,", v1);

for (int k = 0; k < 10; ++k)
int v0 = x.fetch_add(1, relaxed)
int v1 = y.load(relaxed)
printf("%d,", v1);

What can you assert?

• assert(x == 30)
• assert(y == 10)
• In thread 2: assert(v0+1 <= v1)

(RMW operations always see the last stored value)
• In thread 2: v1 are strictly increasing

{0, 1, 2, 4, 5, 8 . . . } {0, 1, 1, 4, 5, . . . }
• In thread 3: v1 are weakly increasing

{0, 0 ,0, . . . , 0} {0, 2, 1 . . . }

66

Event counter

std::atomic<int> x = 0, y = 0;

for (int k = 0; k < 10; ++k)
x.fetch_add(1, relaxed)
y.fetch_add(1, relaxed)

for (int k = 0; k < 10; ++k)
int v0 = x.fetch_add(1, relaxed)
int v1 = x.load(relaxed)
printf("%d,", v1);

for (int k = 0; k < 10; ++k)
int v0 = x.fetch_add(1, relaxed)
int v1 = y.load(relaxed)
printf("%d,", v1);

What can you assert?

• assert(x == 30)
• assert(y == 10)
• In thread 2: assert(v0+1 <= v1)

(RMW operations always see the last stored value)
• In thread 2: v1 are strictly increasing

{0, 1, 2, 4, 5, 8 . . . } {0, 1, 1, 4, 5, . . . }
• In thread 3: v1 are weakly increasing

{0, 0 ,0, . . . , 0} {0, 2, 1 . . . }

66

x.fetch add(1, relaxed)

x.fetch add(1, relaxed)

Thread 1

x.fetch add(1,relaxed))

x.load(relaxed)

Thread 2

atomic<int> x = 0

Init

x

0

1

2

3

ok

ok
N
ot
po
ss
ib
le

Even in a parallel universe, the future of the past cannot be before the past

67

x.fetch add(1, relaxed)

x.fetch add(1, relaxed)

Thread 1

x.fetch add(1,relaxed))

x.load(relaxed)

Thread 2

atomic<int> x = 0

Init

x

0

1

2

3

ok

ok
N
ot
po
ss
ib
le

Even in a parallel universe, the future of the past cannot be before the past

67

Reference counting

class shared_vector
{

void inc_ref()
{

FIXME
}

void dec_ref()
{

FIXME
}

std::atomic<int> count;
std::vector<T>* obj;

};

68

Reference counting

void inc_ref()
{

count++;
}

void dec_ref()
{

if (--count == 0)
delete obj;

}

Do we need SC strong memory order?

69

Reference counting

void inc_ref()
{

count++;
}

void dec_ref()
{

if (--count == 0)
delete obj;

}

Do we need SC strong memory order?

69

Reference counting

void inc_ref()
{

count.fetch_add(1, relaxed);
}

OK. . .

void dec_ref()
{

if (count.fetch_sub(1, relaxed) - 1 == 0)
delete obj;

}

FAILS ! Because. . .

Of a data race.
(note: it is not about the counter that reads the right value)

70

Reference counting

void inc_ref()
{

count.fetch_add(1, relaxed);
}

OK. . .

void dec_ref()
{

if (count.fetch_sub(1, relaxed) - 1 == 0)
delete obj;

}

FAILS ! Because. . .

Of a data race.
(note: it is not about the counter that reads the right value)

70

Reference counting

void inc_ref()
{

count.fetch_add(1, relaxed);
}

OK. . .

void dec_ref()
{

if (count.fetch_sub(1, relaxed) - 1 == 0)
delete obj;

}

FAILS ! Because. . .

Of a data race.
(note: it is not about the counter that reads the right value)

70

auxdata_t* aux;
atomic<int> refcnt = 2;

aux->use_me();

int c = refcnt.fetch_sub(1, relaxed)
if (c == 1)

delete aux;

aux->use_me();

int c = refcnt.fetch_sub(1, relaxed)
if (c == 1)

delete aux;

No inter-thread synchonisation & no memory ordering constraints:

• one thread can still access object
• another can delete the object

(There is no happens-before between delete aux and aux->use_me() of the two threads)

71

Non-SC memory order

memory_order_seq_cst

memory_order_acq_rel

memory_order_acquire memory_order_release

memory_order_consume

memory_order_relaxed

Strong (default)

Weak

72

(Non SC) Acquire-release ordering

Release store = release on the memory location
Acquire load = acquire on the memory location
Acquire-Release Read-Modify-Write = acquire/release on the memory location

Like for fences:

Acquire operation:

• No read or writes can be redordered before this operation
• Make visible previous writes (push)

Release operation:

• No read or write can be reordered after this operation
• See what has been commited (pull)

73

(Non SC) Acquire-release ordering

Release store = release on the memory location
Acquire load = acquire on the memory location
Acquire-Release Read-Modify-Write = acquire/release on the memory location

Like for fences:

Acquire operation:

• No read or writes can be redordered before this operation
• Make visible previous writes (push)

Release operation:

• No read or write can be reordered after this operation
• See what has been commited (pull)

73

Reference counting

auxdata_t* aux;
atomic<int> refcnt = 2;

:::

aux->use_me();

int c = refcnt.fetch_sub(1, acq_rel)
if (c == 1)

delete aux;

aux->use_me();

int c = refcnt.fetch_sub(1, acq_rel)
if (c == 1)

delete aux;

74

aux->use me()

int c = refcnt.fetch sub(1, acq rel)

if (c==1) // return true

delete aux

Thread 1

aux->use me()

int c = refcnt.fetch sub(1, acq rel)

if (c==1) // return false

delete aux

Thread 2

auxdata t* aux

atomic<int> refcnt = 2

Init

sync with

75

Or with fences?

aux->use_me();

std::atomic_thread_fence(memory_order_release);
int c = refcnt.fetch_sub(1, memory_order_relaxed);
if (c == 1) {

std::atomic_thread_fence(memory_order_acquire);
delete aux;

}

76

(Non-SC) Acquire-release ordering

auto relaxed = std::memory_order_relaxed;
int account = 0;
std::atomic<bool> has_been_payed = false;

account += 2500;
has_been_payed.store(true, release);

if (has_been_payed.load(acquire))
assert(account > 0)

Data race? Does the assert raise?

• Data race? No
• OK? Yes

Acquire/release on the atomic, syncs and orders R/W accesses to account

77

(Non-SC) Acquire-release ordering

auto relaxed = std::memory_order_relaxed;
int account = 0;
std::atomic<bool> has_been_payed = false;

account += 2500;
has_been_payed.store(true, release);

if (has_been_payed.load(acquire))
assert(account > 0)

Data race? Does the assert raise?

• Data race? No
• OK? Yes

Acquire/release on the atomic, syncs and orders R/W accesses to account

77

account += 2500

has been payed.store(true, release)

Thread 1

if (has been payed.load(acquire))

// return true

assert(account > 0)

Thread 2

atomic<bool> has been payed = false

int account = 0

Init

sync with

account

0

2500

hbp

F

T

The two threads now see the same ordering of events

78

(Non-SC) Acquire-release ordering

int account = 0;
std::atomic<bool> has_been_payed = false;
std::atomic<bool> flags = false;

account += 2500;
has_been_payed.store(true, release);

while (!has_been_payed.load(acq))
;

flag.store(true, release);

while (!flag.load(acquire))
;

assert(account > 0)

Data race? Does the assert raise?

• Data race? No
• OK? Yes

Transitivity of the “happens-before” relationship !

79

(Non-SC) Acquire-release ordering

int account = 0;
std::atomic<bool> has_been_payed = false;
std::atomic<bool> flags = false;

account += 2500;
has_been_payed.store(true, release);

while (!has_been_payed.load(acq))
;

flag.store(true, release);

while (!flag.load(acquire))
;

assert(account > 0)

Data race? Does the assert raise?

• Data race? No
• OK? Yes

Transitivity of the “happens-before” relationship !

79

(Non-SC) Acquire-release ordering

int account = 0;
std::atomic<bool> status = 0;

account += 2500;
status.store(1, release);

int val;
do {

val = 1;
} while (status.CAS(val, 2, relaxed))

while (status.load(acquire) != 2)
;

assert(account > 0)

Data race? Does the assert raise?

• Data race? No
• OK? Yes

Release sequence
a load/acquire sync with a previous store/release even if there is a chain of RMW operations
(whatever memory ordering)

80

(Non-SC) Acquire-release ordering

int account = 0;
std::atomic<bool> status = 0;

account += 2500;
status.store(1, release);

int val;
do {

val = 1;
} while (status.CAS(val, 2, relaxed))

while (status.load(acquire) != 2)
;

assert(account > 0)

Data race? Does the assert raise?

• Data race? No
• OK? Yes

Release sequence
a load/acquire sync with a previous store/release even if there is a chain of RMW operations
(whatever memory ordering)

80

Sequential Consistency

memory_order_seq_cst

memory_order_acq_rel

memory_order_acquire memory_order_release

memory_order_consume

memory_order_relaxed

Strong (default)

Weak

(Non-SC) Acquire-release looks great. Why one would need full SC ?

81

SC Example

std::atomic<bool> x = false, y = false;

x.store(true, release) y.store(true, release) while (!x.load(acquire))
;

if (!y.load(acquire))
printf("x before y");

while (!y.load(acquire))
;

if (!x.load(acquire))
printf("y before x");

82

while (!x.load(acquire));

if (!y.load(acquire))

printf("x before y")

Thread 1

x.store(true, release)

Thread 2

y.store(true, release)

Thread 3

while (!y.load(acquire));

if (!x.load(acquire))

printf("y before x")

Thread 4

atomic<bool> x = false, y = false;

Init

sync with sync with

x

F

T

y

F

T

x

F

T

y

F

T

• No global sync (acquire/release only syncs the threads doing it)
• We can still have parallel universes

83

while (!x.load(seq cst));

if (!y.load(seq cst))

printf("x before y")

Thread 1

x.store(true, seq cst)

Thread 2

y.store(true, seq cst)

Thread 3

while (!y.load(seq cst));

if (!x.load(seq cst))

printf("y before x")

Thread 4

atomic<bool> x = false, y = false;

Init

sync with

sync with

happe
ns-bef

ore for SC

x

F

T

y

F

T

x

F

T

y

F

T

Remind that CS = global sync = total order = up-to-date values = wonderful world

84

END

Next course: use them for efficient concurrent programming

Questions?

85

	Agenda
	Memory ordering
	The C++ memory model
	Syncing and ordering
	Atomics and mutexes
	C++ atomics
	C++ Relaxed Memory Orders

