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Agenda

Applied synchronization: from big fat lock to lock-free data-structures

Dining Philosophers

Adding fairness to locks

From lock to lock-free programming

Stretch up: Double checked locking

Study case: Lock-based and lock-free lists

Getting lock freedom
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Agenda

1. Introduction to parallelism
2. Instruction and data-level parallelism
3. Thread level parallism
4. Parallel Design Patterns (with TBB)
5. C++ Memory model
6. Data structure for concurrent programming
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Applied synchronization: from
big fat lock to lock-free
data-structures



Roadmap

• Diner time
• Non-lock-free vs Lock-free vs wait free
• Case study 1: The Double-checked locking
• Case study 2: A lock-free linked list
• Case study 3: comsumer/producer
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Dining Philosophers



Dining Philosophers

• A group of philosophers seat at a round table
• When they want to eat, they must take their left and right forks
• Each fork is shared between two philosophers
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First strategy

A philosopher takes its left fork and then, its right fork.

A consumer waits and takes a first resource and then, waits and takes a second resource
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First strategy

std::mutex forks[N];

void philo(int id) // from 0 to N-1
{

while (1)
{

think();
forks[id].lock();
forks[(id+1) % N].lock();
eat(); // Critical section
forks[id].unlock();
forks[(id+1) % N].unlock();

}
}
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Dining Philosophers

What we expect from the previous code:

Mutual exclusion a fork can be used by a single philosopher only
Progression A philosophers waits only if its left or right fork are busy

Bounded wait An hungry philosopher eventually eats some time

In the case N = 2, there is a single critical section

• Mutual exclusion = only one thread is in the critical section
• Progression = a thread waits for the critical section only is the other is not executing it
• Bounding wait = when waiting for the critical section, a thread sees the other thread

passed in the critical section a finite number of time
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First strategy
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Dining Philosophers

They may all die of starvation

A philosopher takes its left fork and then, its right fork.

• Each thread must acquire two shared resources
• Shared resources are acquired in two steps (and then)
• Deadlock
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Deadlocks

Four conditions for deadlocks:

• Mutual exclusion (one resource in non-sharable mode)
• Hold and wait (a process holds a resource and waits for another one)
• No preemption (a resource cannot be preempted)
• Circular wait

Be aware! Deadlock may appear easily!
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Deadlocks / Cause #1 : Order acquisition

std::lock ma, mb;

ma.lock();
mb.lock();
CS
ma.unlock();
mb.unlock();

mb.lock();
ma.lock();
CS
ma.unlock();
mb.unlock();

Solution

• Always acquire in the same order
• If multiple mutexes required, acquire all or none pattern with std::lock
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Deadlocks / Cause #2 : Recursive lock

void foo() { m.lock(); ...; bar(); }
void bar() { m.lock(); ...; }

Or much more common with client-side code:

class Widget
{
public:

void setBorder() { m.lock(); ...; update(); }
void setWidth() { m.lock(); ...; update(); }
void onClick(void (*)(Widget*) callback) { m.lock(); callback(this); }

private:
void update() { ... }
std::mutex m;

}

Solution

• Avoid calling client-side code while holding a mutex
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Dining Philosophers: Second strategy

• Philosophers put back their fork, if the other one is not available
• Time before retry (can be random)

void philo(int id) // from 0 to N-1
{

while (1)
{

think();
std::lock(forks[id], forks[(id+1) % N]);
eat(); // Critical section
forks[id].unlock();
forks[(id+1) % N].unlock();

}
}

Deadlock? Problems?
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Dining Philosophers: Second strategy

template< class Lockable1, class Lockable2, class... LockableN >
void lock( Lockable1& lock1, Lockable2& lock2, LockableN&... lockn );

Locks the given Lockable objects lock1, lock2, . . . , lockn using a deadlock avoidance algo-
rithm to avoid deadlock.

So. . .

• Deadlock: No!
• Starvation: Still possible! (one philosopher could never get the two forks)
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Dining Philosophers: Second strategy (RAII style)

void philo(int id) // from 0 to N-1
{

while (1)
{

think();
{

std::scoped_lock(forks[id], forks[(id+1) % N]);
eat(); // Critical section

}
}

}
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Dining Philosophers (without std::lock) : Tannenbaum’s Solution

• Local two-phase prioritization scheme (status = {THINK, HUNGRY, EAT}) before
taking forks

• One global lock + One lock by philosopher
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• take: Set status = HUNGRY and waits to be notified when status = EAT
• try_eat: If left/right philos are not eating, set status = EAT and notify
• release: Set status to THINK and free left / right neighbors.

st=Thinking st=Hungry wait st=Eat

take try eat release

no

Are Left & Right

eating ?

yes

st=Thinking st=Hungry wait st=Eat

take try eat release

no

Are Left & Right

eating ?

yes

st=Thinking st=Hungry wait st=Eat

take try eat release

no

Are Left & Right

eating ?

yes

try
eat

/ not
ify

try eat / notify
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Condition variable C++11 API

cv.notify_one() Notifies one waiting thread
cv.notify_all() Botifies all waiting threads

cv.wait(l, [pred]) Blocks until CV is woken up
cv.wait_for(l, duration, [,pred]) Blocks until CV is woken up or a timeout
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std::mutex glock, pl[N];
std::condition_variable cv[N];
int status[N];

void take_forks(int id)
{

glock.lock();
status[id] = HUNGRY;
try_eat(id);
glock.unlock();
std::unique_lock<mutex> l(pl[id]);
cv[id].wait(l, [id]() {

return status[id] == EAT;
});

}

void try_eat(int id)
{

if (status[id]== HUNGRY &&
status[(id-1)%N] != EAT &&
status[(id+1)%N] != EAT)

{
std::lock_guard l(pl[id])
status[id] = EAT;
cv[id].notify_one();

}
}

void release_forks(int id)
{

std::lock_guard g(glock);
status[id] = THINK;
try_eat( (id-1)%N );
try_eat( (id+1)%N );

}

void philo(int id)
{

while (1) { think(); take_forks(); eat(); release_forks(); }
}
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Dining Philosophers: Tannenbaum’s Solution (without the magic std::lock)

Any problems ?

• Deadlock: No!
• Possible starvation of one philosopher

Other non-fair solutions:

• Only N-1 philosopher can ask for lunch (uses semaphores/condition variable)
• One (or every other) philosopher picks its right fork before its left fork
• Philosopher picks the left/right fork first at random

The idea is to break the cycle.
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Dining Philosophers

About fairness:

• starvation freedom is desirable but not essential
• practical locks: many permit starvation but unlikely to happen (may happen when

there is high-contention on the shared variable)

Some ideas to make it starvation-free:

• protocol such that every thread after using a resource can not obtain it right after
releasing it

• priority queue such a threads priority increases the longer they have been waiting
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Adding fairness to locks



Properties of good lock algorithm

• Mutual exclusion == safety
• Progression == always 1 thread makes progress
• Bounded wait == no starvation
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Properties of good lock algorithm

TBB doc adds:

• Scalable: A scalable mutex is one that does not do worse than limiting execution to one
thread at a time

• Fair: A fair mutex lets threads through in the order they arrived. Fair mutexes avoid
starving threads. Each thread gets its turn.

• Recursive: A thread can call lock() on a mutex already locked
• Yied or Block = busy (active) vs passive wait.

Mutex Scalable Fair Recursive Busy wait Size

mutex 3(OS) 3 > 2 words
recursive_mutex 3(OS) 3 3 > 2 words
spin_mutex 7 7 3 1 byte
queuing_mutex 3 3 3 1 word
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Spin lock implementation

class spin_lock
{

void lock()
{

while (m_flag.test_and_set(acq_rel))
;

}

void unlock() { m_flag.clear(); }

private:
std::atomic_flag m_flag = ATOMIC_FLAG_INIT;

}

Discuss about Safety, Fairness, Recursivity. . .

Just not fair, not recursive, may be not scalable (depends).
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Adding fairness

1. The peterson’s algorithm: a two-thread solution
2. Filter lock: generalized Peterson
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First try: Turn-based solution

std::atomic<int> turn = 0;

// ME = thread id
// OTHER = (ME + 1) % 2
void lock() {

while (turn.load(std::memory_order_acquire) != ME)
;

}

void unlock() {
turn.store(OTHER, std::memory_order_release);

}

Comment & Destroy!

• Mutual exclusion: 3

• Bounded wait: 3(if they don’t stop asking)
• Progress: 7

• It supposes in-order exec

The second thread relies on the execution of the first thread.
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Next try: getting progress back

std::atomic<bool> tickets[2] = {false, false};

void lock() {
tickets[ME].store(true);
while (tickets[OTHER].load())

;
}

void unlock() { tickets[ME].store(false); }

Comment & Destroy!

• Progress: 3

• Mutual exclusion: 3

• Bounded wait: 7(possible deadlock)

Problem is:
I take a ticket and then
If the other has a ticket, I wait till the other releases it and I enter the CS
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ReNext try

std::atomic<bool> tickets[2] = {false, false};

void lock() {
while (tickets[OTHER].load())

;
tickets[ME].store(true);

}

void unlock() { tickets[ME].store(false); }

Comment & Destroy!

• Progress: 3

• Mutual exclusion: 7(possible race condition)

Problem is:
If the other has a ticket, I wait till it releases the ticket and then
I enter the CS and take the ticket
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ReReReNext try

std::atomic<bool> tickets[2] = {false, false};
std::atomic<int> turn = 0;

void lock() {
tickets[ME].store(true); // I want to pass
turn.store(OTHER); // But go first if you want
while (tickets[OTHER].load() && turn.load() != ME)

;
}
void unlock() { tickets[ME].store(false); }

Comment & Destroy!

• The order is important reserve, then, give way to the other
• No race condition: 3(turn != ME is true in one thread at least)
• No deadlock: 3(turn != ME cannot be true in both threads)
• Progression: 3(no tickets[OTHER] = no wait)
• Bounded wait: 3(turn based)

BTW, do weed need SC ?
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Peterson algorithm

std::atomic<bool> tickets[2] = {false, false};
std::atomic<int> turn = 0;

void lock() {
tickets[ME].store(true, relaxed); // I want to pass
turn.store(OTHER, relaxed); // But go first if you want
while (! (turn.load(relaxed) == ME || tickets[OTHER].load(acquire) == false) )

;
}

void unlock() {
tickets[ME].store(false, release);

}

Correct ?

• Unlock() – lock() OK with acquire/release on tickets
• But race condition possible
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Peterson algorithm

t1.store(true, relaxed)

turn.store(1,relaxed)

while (true)

is my turn = (turn.load(relaxed) == 0)

t2 reserved = t2.load(acquire)

if (is my turn || !t2 reserved)

break // Enter SC

Thread 1

t2.store(true, relaxed)

turn.store(0,relaxed)

while (true)

is my turn = (turn.load(relaxed) == 1)

t1 reserved = t1.load(acquire)

if (is my turn || !t1 reserved)

break // Enter SC

Thread 2

atomic<bool> tickets[2] = {false, false};
atomic<int> turn = 0;

Init

turn

0

1

t1

F

T

t2

F

T

turn

0

1

t1

F

T

t2

F

T

We do not see the reservation of the thread 2.
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Peterson algorithm

std::atomic<bool> tickets[2] = {false, false};
std::atomic<int> turn = 0;

void lock() {
tickets[ME].store(true, relaxed); // I want to pass
turn.exchange(OTHER, acq_rel); // But go first if you want
while (! (turn.load(acquire) == ME || tickets[OTHER].load(acquire)) == false))

;
}

void unlock() {
tickets[ME].store(false, release);

}
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Peterson algorithm

t1.store(true, relaxed)

turn.exchange(1,acq rel)

while (true)

is my turn = (turn.load(relaxed) == 0)

t2 reserved = t2.load(acquire)

if (is my turn || !t2 reserved)

break

Thread 1

t2.store(true, relaxed)

turn.exchange(0,acq rel)

while (true)

is my turn = (turn.load(relaxed) == 1)

t1 reserved = t1.load(acquire)

if (is my turn || !t1 reserved)

break // Enter SC

Thread 2

atomic<bool> tickets[2] = {false, false};
atomic<int> turn = 0;

Init

sync with

turn

0

1

t1

F

T

t2

F

T

turn

0

1

t1

F

T

t2

F

T
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From 2 to N-way mutual exclusion

• Peterson’s lock provides 2-way mutual exclusion
• Filter lock: direct generalization of Peterson’s lock
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Filter lock

• There are N-1 “waiting rooms”
• At each level:

• A least one enters
• A least one is blocked if many try

• It will remain only the one

N-1 spots

N-2 spots

N-3 spots

N-4 spots

N-5 spots

...

...

...

...

...
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Filter lock

std::atomic<int> priority[N] = {-1, -1, -1, ...};
std::atomic<int> victim[N] = {-1, -1, -1, ...};

void lock(){
for (int j = 0; j < N-1; j++)
{

priority[ME] = j; // Take ticket in queue
victim[j] = ME;
while (victim[j] == ME &&

!ImTheONE_TheOnlyONE())
;

}
}
void unlock() { priority[ME] = -1; }

bool ImTheONE_TheOnlyONE()
{

int l = priority[ME];
for (int k = 0; k < N; ++k)

if (k != ME && priority[k] >= l)
return false;

return true;
}
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Take home message

• Peterson algorithm is a classical lock algorithm with atomic loads and stores only
• Not used in practice (locks based on stronger atomic primitives are more efficient)

• Mutexes are not free, they may use expensive algorithms to enable some features
(fairness, scalability. . . )

• You must use the right lock for your need
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From lock to lock-free
programming



Why lock-free code

Single Thread1

Lock Lock-free

1Images from Herb Sutter - Lock free programming 39



Concurrency and scalability

Eliminate/reduce blocking/waiting in algorithm and data structures
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Three levels of lock-freedom

Blocking

Unable to progress in its execution until some other thread releases a resource.
Example: Mutex / A simple CAS in a loop for a two state variable

while (!var.test_and_set())) { std::this_thread::yield(); }

Non-blocking
• Obstruction-free = progress if no interferance

If a thread is executed in isolation (all the others suspended), it
will complete.

• Lock-free = someone makes progress
Every step taken achieves global progress (starvation rare in
practice)

• Wait-free = "no one ever waits*
Every one will complete in #steps whatever what else is going
on
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Three levels of lock-freedom

std::atomic<int> turn = 0;

In people’s mind: lock-free = no mutex (but not necessary)

Compare:

while (turn.exchange(1) == 1) {};

And:

int val = turn.load();
while (!turn.compare_exchange_weak(val, val+1)) {};

Remark?

• First is blocking (waits the thread #0 to finish)
• Second is lock-free (increment the turn counter)
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Lock free fundamental #1: transactional model

Think transactional (ACID):

• Atomicity: all or nothing (no intermediate state)
• Consistency: one consistent state to another
• Isolation: two transactions never operate simultaneously on the same data
• Durability: once committed, a transaction is not overwritten by a second one that

ignores the first one (lost update)

For lock-free:

• Publish each change using one atomic write
• Make sure concurrent updates do not interfere with each other or concurrent readers

When accessing concurrently a shared resource, ask yourself about:

• 1 reader + 1 writer
• 2 writers
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Lock free fundamental #2: the atomic weapons

Your key tool is the atomic variable

Semantics and operations:

• read/write are atomic, no locking required
• read/write are guarenteed not to be reordered
• T exchange(T new) for a load and store
• compare-and-swap loop (CAS-loop)

bool compare_exhange_weak(T& expected, T desired) {
if (value == expected) { value = desired; return true}
else { expected = value; return false; }
}
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Stretch up: Double checked
locking



Lazy-initialization problem

• You need to initialize some auxiliary data for computing void foo(args...)
• foo can be called by many threads
• You don’t want to initialize the aux data too early (program startup) (if foo is not called

for example)

data_t CreateAuxData();

void foo()
{

data_t x = CreateAuxData();
// Use x

}

void foo()
{

data_t x = CreateAuxData();
// Use x

}

Problem:

created and initialized twice.
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Lazy-initialization problem

void foo()
{

static std::mutex m;
static std::unique_ptr<data_t>* x = nullptr;

{
std::lock_guard l(m);
if (x == nullptr)

x = std::make_unique<data_t>(CreateAuxData());
}

}

Problem?

• always block to test initialization (even when the data is initialized)
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Lazy-initialization problem

void foo()
{

static std::mutex m;
static std::unique_ptr<data_t>* x = nullptr;

if (x == nullptr)
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Lazy-initialization problem

void foo()
{

static std::mutex m;
static std::atomic<data_t*> x = nullptr;

if (x.load() == nullptr)
{

std::lock_guard l(m);
x.store(new data_t(CreateAuxData()));

}
}

OK?

• No data race, but two threads can see nullptr and initialize twice

48



Lazy-initialization problem

void foo()
{

static std::mutex m;
static std::atomic<data_t*> x = nullptr;

if (x.load() == nullptr)
{

std::lock_guard l(m);
x.store(new data_t(CreateAuxData()));

}
}

OK?

• No data race, but two threads can see nullptr and initialize twice

48
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void foo()
{

static std::mutex m;
static std::atomic<data_t*> x = nullptr;
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Lazy-initialization problem

void foo()
{

static std::mutex m;
static std::atomic<data_t*> x = nullptr;

if (x.load(acquire) == nullptr)
{

std::lock_guard l(m);
if (x.load(relaxed) == nullptr)

x.store(new data_t(CreateAuxData()), release);
}

}

• When the first x.load() is non-null, we need to ensure that memory writes in x are all
visible => acquire-release

• The second x.load() can be relaxed because already synchronized by the
acquire/release semantic of the mutex 50



BTW: there are tools in the Standard Libtary

std::call_once

void foo()
{

static std::unique_ptr<data_t> x = nullptr;
static std::once_flag x_flag;

std::call_once(x_flag, [&]() { x = std::make_unique<data_t>(CreateAuxData()); });

}
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And BTW, C++ rocks

void foo()
{

static data_t x = CreateAuxData(); // Thread safe
}

52



So what DCLP solve?

• We have an exceptional situation that happens rarely
• Handling the exception is not thread-safe (mutex)
• The test for exception must be atomic (may be under the same mutex)
• There is a fast non-locking test
• There is few chances that the exception reoccurs again
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Study case: Lock-based and
lock-free lists



Linked lists

Used to implement: * Stacks (one entry linked-list) * Queues (double entry linked-list)
(Producer-Consumer problems) * Sets (Sorted linked-items)

Single threaded queue

• Only three operations:find, push, and pop
• Challenge: make it concurrent

v v v vv

head
pop

v

tail
push
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struct Node { T value; Node* next; };

class queue
{

Node* m_head = nullptr;
Node* m_tail = nullptr;

queue() = default;
~queue() {

while (m_head) { Node* tmp = m_head; m_head = m_head->next; delete tmp; }
}
T pop() {

T v = std::move(m_head->value);
Node* tmp = m_head; m_head = m_head->next; delete tmp;
return v;

}
void push(T val) {

Node* tail = new Node{std::move(val), nullptr};
if (m_tail) { m_tail->next = tail; }
else { m_head = tail; }
m_tail = tail;

}
bool find(T val) { // trivial }

};

We will suppose that T’s move constructor/assignement is no-throw.
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First approach: a big fat lock

One lock to rule them all

Which methods need a special care:

Method Special care

Constructor
Destructor
pop() 3

push() 3

find() 3
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First approach: a big fat lock

Lock the whole structure: * Everything gets serialized * Do not scale well (poor with
contention)

class queue
{

std::mutex m;
Node* m_head = nullptr;
Node* m_tail = nullptr;

T pop() { std::lock_guard l(m); ... }
void push(T val) { std::lock_guard l(m); ... }
bool find(T val) { std::lock_guard l(m); ... }

};
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Second approach: RW locks

What differs between pop / push and find?

• Find is a R-only operation
• pop / push are RMW operations

We can allow concurrent R-only operations as long as there is no RMW operations

You can have multiple RW policies w.r.t. to the problem:

• Read preferring: writer does not acquire lock while there is one reader in the queue
(possible writer starvation)

• Write preferring: new readers do not acquire lock while there is a writer queued
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Possible read-preferring implementation

• One mutex and one condition variable
• One counter r: number of readers

std::mutex g;
std::condition_variable cv;
int r = 0;

For reader
{
// Block if active writer
std::lock_guard l(g);
r++;

}
// Reader stuff
{
std::lock_guard l(g)
r--;

}
cv.notify_one();

For writer
std::unique_lock l(g);
cv.wait(l, []() { r == 0; });
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Second approach: RW locks

C++17 has name for this: shared_mutex

• Exclusive locking: lock, try_lock, unlock
• Shared locking: lock_shared, try_lock_shared, unlock_shared

class queue
{

std::shared_mutex m;
Node* m_head = nullptr;
Node* m_tail = nullptr;

T pop() { std::lock_guard<std::shared_mutex> l(m); ... }
void push(T val) { std::lock_guard<std::shared_mutex> l(m); ... }
T* find(T val) { std::shared_lock<std::shared_mutex> l(m); ... }

};
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Third approach: fine grained locking

Do we need to lock the whole stuff ?

• Per element locking
• Multiple threads can operate concurrently
• Serialized progression

If we have just pop and push, what’s need to be guarded:

• m_head / m_tail

If we have insert and delete in any position, what’s need to be guarded:

• every single element of the list
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Third approach: fine grained locking

If we just have push & pop

Problem:

• push may modify both m_head and m_tail
• pop may modify both m_head and m_tail
• They access the next pointer of a node

Solution:

• Seperate data to enable concurrency: a sentinel node so that m_head != m_tail

v v v v
Sentinel

head tail

• The empty condition is m_head == m_tail
• pop as previously
• push = write dummy tail node and add a new dummy one
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class queue
{

std::mutex hm, tm;
Node* m_head = nullptr, m_tail = nullptr;

queue() : m_head(new node), m_tail(m_head) {}

T pop() {
std::lock_guard l(hm);
auto b = std::move(m_head->val());
auto tmp = m_head; m_head = m_head->next; delete m_head;
return v;

}

void push(T val) {
std::lock_guard l(tm);
m_tail->value = std::move(val);
m_tail->next = new node();
m_tail = m_tail->next;

}
};

Q: How would you implement std::optional<T> try_pop() ?

If we just have push & pop

std::optional<T> try_pop(){
std::lock_guard l(hm);
{ // Check emptyness

std::lock_guard l(tm);
if (m_head == m_tail)

return {};
}
pop_without lock();

}

• Need to acquire both lock because of m_tail
• Note: the lock to tm must be included in the CS of hm. This is an error:

std::optional<T> try_pop() {
T* tail;
{ std::lock_guard l(tm); tail = m_tail; }
std::lock_guard l(hm);
if (m_head == tail) // tail may not be valid anymore

return {};
}
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Third approach: fine grained locking

If we add find

• Find need to lock both tail and head
• May be combine with RW mutexes for better concurrency

If we add insert() and delete in any position

• One lock by element or block of element
• Methods that work on disjoint pieces need to exclude each other
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Hand-over-hand / chain locking

• You can’t treat each element separately
• You must not unlock the current element before locking the next
• Chain locking guaranties progression and safety

Step 1

a b c dhead

Step 3

a b c dhead

Step 5

a b c dhead

Step 2

a b c dhead

Step 4

a b c dhead

Step 6

a b c dhead
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Hand-over-hand / chain locking

• You must not unlock the current element before locking the next

class forward_lock_guard
{

std::mutex* m;

forward_lock_guard(std::mutex& mu) : m(&mu) { m->lock(); }
~forward_lock_guard() { m->unlock(); }

void reset(std::mutex& next)
{

next.lock();
m->unlock();
m = &next;

}
};
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Hand-over-hand - traversal

struct Node {
T value;
Node* next;
std::mutex lock;

};

class linked_list
{

Node* m_head; std::mutex g;

bool find(T val);
void delete(T val);

};

bool find(T val)
{

forward_lock_guard l(g);
Node* current = m_head;
while (current != null)
{

if (current->value == val)
return true;

current = current->next;
if (current) l.reset(current->lock);

}
return false;

}
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Hand-over-hand - insertion/deletion

Deletion:

• Find (traverse) node
• lock current and prec,
• update prec->next
• Unlock

Step 1

a b c dhead

rm ’b’

Step 3

a b c dhead

rm ’b’

Step 2

a b c dhead

rm ’b’

Step 4

a b c dhead

rm ’b’

Why do we need to lock the victim ?
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Fine grained locking - Hand-over-hand - insertion/deletion

Step 1 (T1 is in the place)

a b c dhead

rm ’c’

Step 3 (Go go go)

a b c dhead

rm ’b’ rm ’c’

WTF ?? (Lost update !)

a c dhead

Step 2 (T2 enters the game)

a b c dhead

rm ’b’ rm ’c’

Step 4 (found ‘b’, found ‘c’ => update)

a b c dhead

rm ’b’ rm ’c’
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Fine grained locking - Hand-over-hand - insertion/deletion

Deletion:
• Find (traverse) node
• lock current and prec,
• update prec->next
• Unlock

Insertion:
• Find (traverse) node
• lock succ and prec,
• update prec->next
• Unlock

a b d ehead

add ’c’

c

Why do we lock prec and succ even in the insertion?
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• Acutally, locking prec is enough (for insert)
• Because delete needs 2 locks, if you lock an entry:

• It cannot be removed
• Neither its successor
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Third approach: fine grained locking

Hand-over-hand / Discussion

• More concurrency: an operation working at the end of the list does not obstruct those
at the beginning

• But operations on “low” nodes may obstruct those on high nodes
• Long chain of acquire/release -> Optimistic locking

Optimisitic locking

• No locks on the traverse path
• Try with no synchronization

• if you win, you win
• if you loose, retry with synchronization

• Less locking and operation can pass working area
• Require a validation step (win or loose) (expensive?)
• Retry is cheaper than waiting lock

72



Optimisitic locking (pb 1)

Go go go. . .

a b d ehead

add ’c’

Lock & update (ok. . . but. . . )

a b d ehead

add ’c’

a b d ehead

add ’c’del ’b’

This happened. . . T2 passed before T1 locked the nodes. . .

We need to check that b is accessible from the head
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Optimisitic locking (pb 2)

Go, find and lock... but...

a b d ehead

del ’d’

a b d ehead

del ’d’add ’c’

c

a b d ehead

del ’d’add ’c’

c

This happened. . .

• T2 passed before T1 locks nodes and insert before the victim node
• The insertion of ‘c’ is lost (overwritten the deletion update)

We need to check that b.next has not changed
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Optimisitic locking (pb 2)

Go, find and lock... but...

a b d ehead

del ’d’

a b d ehead

del ’d’add ’c’

c

a b d ehead

del ’d’add ’c’

c

This happened. . .

• T2 passed before T1 locks nodes and insert before the victim node
• The insertion of ‘c’ is lost (overwritten the deletion update)

We need to check that b.next has not changed
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Optimistic locking

Deletion:
• find entries
• lock current and prec
• check validity
• update prec
• release lock

Insertion:
• find entries
• lock current and prec
• check validity
• update current
• release lock

Validation = while holding lock:

• Check accessibility of the node
• Check that the next pointer has not changed
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Optimisitic locking

Problem:

• What about concurrent traversing / deletion ?
We need a smart GC for reclamation.

• Validation needs to traverse list twice (to detect deleted items)
• contains still requires locks

Solution:

lazy approach:

• Do not delete the node: mark it as deleted
• contains is now wait-free
• accessibility is constant time

Still need memory reclaim to free deleted nodes some day
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Getting lock freedom



Lock-free list

• Simplify first (stack instead of queue, no need to maintain two pointers)
• No mutex
• Raw pointers replaced by atomics
• We forget pop for a while

struct Node { T value; Node* next; };

class stack
{

std::atomic<Node*> m_head = nullptr;

stack();
~stack();

T pop() {FIXME}
void push(T val) {FIXME}
bool find(T val) {FIXME};

}; 77



Find

• Concurrency issues: none (none with find operations. . . and should be safe to run
concurrently with insert operations)

bool find(T val)
{

auto p = m_head.load();
while (p)
{

if (p->value == val) return true;
p = p->next.load();

}
return false;

}
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Push

• Create a new node
• Set next pointer to the current head
• Publish as the new head

void push(T val)
{

auto p = new Node;
p->value = val;
p->next = m_head.load();
m_head.store(p);

}

Is it ok ?

Concurrency issues:

• None for readers: the insertion is atomic
• Problem for writers: if two threads inserts in the same time (lost update problem)
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Push

• Create a new node
• Set next pointer to the current head
• Publish as the new head

void push(T val)
{

auto p = new Node;
p->value = val;
p->next = m_head.load();
m_head.store(p);

}

Is it ok ?

Concurrency issues:

• None for readers: the insertion is atomic
• Problem for writers: if two threads inserts in the same time (lost update problem)
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Push - solution

a b c dhead

cCAS

void push(T val)
{

auto p = new Node;
p->value = val;
p->next = m_head.load();
while (!m_head.compare_exchange_weak(p->next, p))
;

}

Semantics is loop until the head hasn’t changed and we are the head

Issues?

• OK for readers
• OK for writers
• That was that easy?
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Now POP

• pop comes into the game

T pop()
{

auto p = m_head.load();
m_head.store(p->next.load());
T val = std::move(m_head->value);
delete p;
return val;

}

Problems?

• For readers: problem with simultaneous traversal + pop
• For writers: problem with two pop or pop + push
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Now POP

a b c dhead

CAS

p

void pop()
{

auto p = m_head.load();
while (p && !m_head.compare_exchange_weak(p, p->next))

;
T val = std::move(p->value);
delete p;

}

Problems?

• Same problems for readers: find is pointing to the first node (p) and then read next
• Sublte problem for writers: ABA problem. Two nodes with the same address, but

different identities (existing at different times).
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Now POP

a b c dhead

CAS

p

void pop()
{

auto p = m_head.load();
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delete p;

}
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different identities (existing at different times). 82



The ABA problem

• Step 1 of delete:

p = head; _tmp = p->next;

Another thread deletes 2 nodes

Another insert a new node (in the same memory loca-
tion)

• Step 2: CAS succeeds

head.compare_exchange_weak(p, _tmp)
delete p;

a b c d

p tmp

c d

p tmp

z c d

p tmp

c d

83



ABA solutions

• Lazy garbage collection (with reclamation list for example)
• Ref counting

• Lock-free is hard for deletion
• But easy for read/insertions

84



What I would have liked to talk about

• Read Copy Update (RCU)

CppCon 2017 Read, Copy, Update, then what? RCU for non kernel programmers

• Hazard Pointers

The Landscape and Exciting New Future of Safe Reclamation for High Performance

Sources

• CppCon 2014: Herb Sutter "Lock-Free Programming (or, Juggling Razor Blades)
• Concurrency with Modern C++
• The Art of Multiprocessor Programming
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https://www.youtube.com/watch?v=XrW5yerbAog
https://www.youtube.com/watch?v=nvfzQAUpunI
https://www.youtube.com/watch?v=c1gO9aB9nbs
https://leanpub.com/concurrencywithmodernc
https://www.e-reading.club/bookreader.php/134637/Herlihy,_Shavit_-_The_art_of_multiprocessor_programming.pdf
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