
Structural Analysis of the Additive Noise Impact on the α-tree 9
4. Cousty, J., Najman, L., Perret, B.: Constructive links between some morpho-
logical hierarchies on edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G.,
Strand, R. (eds.) Mathematical Morphology and Its Applications to Signal and Im-
age Processing. pp. 86–97. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38294-9˙8
5. Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-sets image analysis.
International Journal of Computer Vision 68(3), 289–317 (Jul 2006).
https://doi.org/10.1007/s11263-005-6299-0
6. Havel, J., Merciol, F., Lef`evre, S.: Efficient tree construction for multiscale im-
age representation and processing. Journal of Real-Time Image Processing 16(4),
1129–1146 (Aug 2019). https://doi.org/10.1007/s11554-016-0604-0
7. Ko¸c, S.G., Aptoula, E., Bosilj, P., Damodaran, B.B., Dalla Mura, M., Lefevre, S.: A
comparative noise robustness study of tree representations for attribute profile con-
struction. In: 2017 25th Signal Processing and Communications Applications Con-
ference (SIU). pp. 1–4. IEEE (2017). https://doi.org/10.1109/SIU.2017.7960159
8. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions
and associated variational problems. Communications on Pure and Applied Math-
ematics 42(5), 577–685 (1989). https://doi.org/10.1002/cpa.3160420503
9. Najman, L., Cousty, J., Perret, B.: Playing with kruskal: Algorithms for morpho-
logical trees in edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand,
R. (eds.) Mathematical Morphology and Its Applications to Signal and Image
Processing. pp. 135–146. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38294-9˙12
10. Perret, B., Cousty, J., Ferzoli Guimar˜aes, S.J., Kenmochi, Y., Naj-
man, L.: Removing non-significant regions in hierarchical clustering
and segmentation. Pattern Recognition Letters 128, 433–439 (2019).
https://doi.org/10.1016/j.patrec.2019.10.008
11. Perret, B., Cousty, J., Guimar˜aes, S.J.F., Maia, D.S.: Evaluation of hierarchi-
cal watersheds. IEEE Transactions on Image Processing 27(4), 1676–1688 (2018).
https://doi.org/10.1109/TIP.2017.2779604
12. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for
image processing, segmentation, and information retrieval. IEEE Transactions on
Image Processing 9(4), 561–576 (2000). https://doi.org/10.1109/83.841934
13. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for
image and sequence processing. IEEE Transactions on Image Processing 7(4), 555–
570 (1998). https://doi.org/10.1109/83.663500
14. Soille, P.: Constrained connectivity for hierarchical image partitioning and simpli-
fication. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7),
1132–1145 (2008). https://doi.org/10.1109/TPAMI.2007.70817
15. You, J., Trager, S.C., Wilkinson, M.H.: A fast, memory-efficient alpha-tree algo-
rithm using flooding and tree size estimation. In: Mathematical Morphology and
Its Applications to Signal and Image Processing: 14th International Symposium,
ISMM 2019, Saarbr¨ucken, Germany, July 8-10, 2019, Proceedings. pp. 256–267.
Springer (2019). https://doi.org/10.1007/978-3-030-20867-7˙20