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ABSTRACT
We summarize a technique for writing functions which recognize
types of heterogeneous sequences in Common Lisp. The technique
employs sequence recognition functions, generated at compile time,
and evaluated at run-time. The technique we demonstrate extends
the Common Lisp type system, exploiting the theory of rational
languages, Binary Decision Diagrams, and the Turing complete
macro facility of Common Lisp. The resulting system uses meta-
programming to move an Ω(2n ) complexity operation from run-
time to a compile-time operation, leaving a highly optimized Θ(n)
complexity operation for run-time.

CCS CONCEPTS
• Theory of computation→Data structures design and anal-
ysis; Type theory; • Computing methodologies→ Representa-
tion of Boolean functions;
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1 INTRODUCTION
In this article, we present code generation techniques related to run-
time type checking of heterogeneous sequences. Traditional regular
expressions [HMU06, YD14] can be used to recognize well defined
sets of character strings, called rational languages or sometimes
regular languages. Newton et al. [NDV16] present an extension
whereby a dynamic language may recognize a well defined set of
heterogeneous sequences, such as lists, vectors, and user defined
sequence types [Rho09]. Even though our work applies equally
well to other sequence types, for the rest of the paper we will refer
mainly to lists.

As with the analogous string matching regular expression the-
ory, matching these regular type expressions can also be achieved
by using a finite state machine (DFA, deterministic finite au-
tomata) [HMU06]. Constructing such a DFA can be time consuming,
typically exponential in complexity [Hro02]. Without the use of
meta-programming, which runs at compile-time outputting tar-
geted functions for use at run-time, the program may be forced to
construct the DFA at run-time. The excessively high cost of such a
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construction may far outweigh the time needed to match a string
against the expression.

Our technique involves hooking into the Common Lisp type sys-
tem via the deftypemacro. The first time the compiler encounters a
relevant type specifier, the appropriate DFA is created, which may
be a Ω(2n ) operation (complexity bounded below by an exponen-
tial), from which specific low-level code is generated to match that
specific expression. Thereafter, when the type specifier is encoun-
tered again, the same pregenerated function can be used. The code
generated is Θ(n) complexity (bounded above and below by a lin-
ear function) at run-time. We refer the reader to Wegener [Weg87,
Section 1.5] for a discussion of Ω and Θ notation.

A complication of this approach, which we explain in the paper,
is that to build the DFA we must calculate a maximal disjoint type
decomposition (MDTD, Section 4.2) which is both time consuming,
and also leads to sub-optimal uses of run-time type predicates. (See
Section 2 for an explanation of the Common Lisp typecase macro.)
To handle this we use our own macro optimized-typecase in our
machine generated code. Uses of that macro are also implicitly
expanded at compile time. Our macro expansion uses BDDs (Binary
Decision Diagrams) [Bry86, Bry92, Ake78, Col13, And99, Knu09] to
optimize the optimized-typecase into low level code, maintaining
the typecase semantics but eliminating redundant type checks.

2 BACKGROUND
Common Lisp is a programming language defined by its specifica-
tion [Ans94] and with several implementations, both open source
and commercial. For this research, we have used SBCL [New15] as
implementation of choice. All implementations share the common
specified core of functionality, and each implementation extends
that functionality in various ways.

Two Common Lisp features which we exploit are its macro sys-
tem and its type system. The following is a very high level summary
of Common Lisp types and macros.

The Common Lisp macro system [Gra96, Section 10.2] allows
programmers to write code which writes code. A macro may be
define using defmacro and such macros are normally expanded at
compile time into code which is compiled and this is available
for execution at run time. Thanks to the homoiconicity [McI60,
Kay69] of the Common Lisp language, macros take arguments
which are Lisp objects (symbols, strings, numbers, lists etc), and
return complete or incomplete program fragments which are also
Lisp objects. This contrasts with the Scala macro system introduced
by Burmako [Bur13]. Scala macros programmatically map abstract
syntax trees to valid abstract syntax trees. Programmers writing
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Common Lisp macros may use any feature of the language in the
macros themselves, in particular, the input to a Common Lisp macro
need not be valid Common Lisp code, butmay aswell be homoiconic
data which the compiler might otherwise reject, but which the
macro treats as DSL. We exploit this feature by arranging that the
input to our macro be a DSL denoting a regular type expression
the syntax of which we describe in Section 3. There are several,
well understood, caveats associated with Common Lisp macros.
Costanza [CD10] explores the most notably of these hygienic issues.
Expert Common Lisp programmers understand these restrictions
and normally write macros exploiting the package system and the
gensym function to avoid name conflicts.

The Common Lisp type system [Ans94, Section 4] can be under-
stood by thinking of types as sets of objects. Subtypes correspond
to subsets. Supertypes correspond to supersets. The empty type,
called nil, corresponds to the empty set. We sometimes refer to the
empty type as ⊥ as it appears at the bottom of the type lattice. The
system comes with certain predefined types, such as number, fixnum
(an integer which is not a bignum), ratio (the exact quotient of two
integers) and many more. Additionally, programmers may com-
pose type specifiers which are syntax for expressions types in terms
of other types. These types are intended to be both human and
machine readable. For example, (or number string) expresses the
union of the set of numbers with the set of strings. Likewise, type
specifiers may use the operators and, not, member, and satisfies

respectively for conjunction, complementation, enumeration, and
definition by predicate.

Common Lisp allows types to be used in variable and function
declarations, slot definitions within objects, and element definitions
within arrays. These declarations are normally considered during
program compilation. In addition, Common Lisp provides several
other built-in macros and functions for type-based run-time reflec-
tion: typep, typecase, subtypep, check-type. The programmer may
associate new type names with composed types by using deftype,
whose syntax is similar to that of defmacro.

The Common Lisp typecase macro [Ans94, Section TYPECASE]
allows the conditional execution of a body of forms in a clause
that is selected by matching the value of a given expression on the
basis of its type. Pierce [Pie02, p. 341] explains that the addition
of a typecase-like facility (which he calls typecase) to a typed λ-
calculus permits arbitrary run-time pattern matching. A simple
usage example of Common Lisp typecase should suffice to give an
impression of how it works.

( t y p e c a s e o b j e c t
( s t r i n g " i t ' s a s t r i n g " )
( a r r ay " i t ' s an a r r ay " )
( ( not r e a l ) " i t ' s not a r e a l number " )
( ( or r a t i o bignum ) " i t ' s e i t h e r a r a t i o or bignum " )
( t " not any o f the above " ) )

The type of the value of object is tested at run-time. That value
might be of one or more of the types specified. The first such
matching clause is activated, and the code within the clause is
executed. Since every Lisp object is of type true, the final clause in
this example serves as the default clause, executing if no preceding
clause matches.

:* match zero or more times.
:+ match one or more times.
:? match zero or one time.
:cat concatenation operator.
:or disjunction operator.
:and conjunction operator.

Figure 1: Regular type expression keywords

3 HETEROGENEOUS LISTS
A rational type expression [NDV16] abstractly denotes a pattern of
types within lists. The concept is envisioned to be intuitive to the
programmer in that it is analogous to patterns described by regular
expressions, which we assume the reader is already familiar with.

Just as the characters of a string may be described by a ratio-
nal expression such as (a · b∗ · c), which intends to match strings
such as "ac", "abc", and "abbbbc", the rational type expression
(strinд · number∗ · symbol) is intended to match lists, ("hello"
1 2 3 world) and like ("hello" world). Rational expressions match
character constituents of strings according to character equality
tests. By contrast, rational type expressions match elements of lists
by element type membership tests.

A rational type expression is expressed in mathematical notation
using superscripts and infix operators. A more conventional and
machine friendly, s-expression-based syntax, called regular type
expression is used to encode a rational type expression into ASCII
characters amenable to the Common Lisp compiler. This syntax
replaces the infix and post-fix operators in the rational type ex-
pression with prefix notation based s-expressions. The regular type
expression (:cat string (:* number) symbol) corresponds to the
rational type expression (strinд · number∗ · symbol).

We have implemented a parameterized type named rte (regular
type expression), via deftype. The call-by-name argument of rte is
a regular type expression. The members of such a type are all lists
matching the given regular type expression.

A regular type expression is defined as either a Common Lisp type
specifier, such as number, (cons number), (eql 12), or (and integer

(satisfies oddp)), or a list whose first element is one of a limited
set of keywords shown in Table 1, and whose trailing elements are
other regular type expressions.

Rational language syntax usually have operators for concatena-
tion, conjunction, disjunction, and repetition. Regular type expres-
sions follow this model using the operators, :cat, :and, :or, and :*,
as shown in Table 1. In addition rational language syntax often has
short-cut syntax for matching one or more times, or matching zero
or one time. In keeping with this tradition, regular type expressions
employ the operators :+ and :?. Noticeably missing from Table 1 is
a complementation operation. We consider a :not operator as an
important enhancement ad leave it for future research.

As a counter example, (rte (:cat (number number))) is invalid
because (number number) is neither a valid Common Lisp type spec-
ifier, nor does it begin with a keyword from Table 1. Here are some
valid examples.

(rte (:cat number number number))

corresponds to the rational type expression (number ·
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(defclass C ()

(( point :type (rte (:cat number number )))

...))

(defun F (X Y)

(declare

(type (rte (:* (cons number )))

Y))

...)

Figure 2: Example uses of type declarations

number · number ) and matches a list of exactly three num-
bers.

(rte (:or number (:cat number number number)))

corresponds to (number + (number · number · number )) and
matches a list of either one or three numbers.

(rte (:cat number (:? (:cat number number))))

corresponds to (number · (number · number )?) and matches
a list of one mandatory number followed by exactly zero or
two numbers. This happens to be equivalent to the previous
example.

(rte (:* (:cat cons number)))

corresponds to (cons · number )∗ and matches a list of a cons

followed by a number repeated zero or more times, i.e., a list
of even length.

The rte type can be used anywhere Common Lisp expects a type
specifier as the following examples illustrate. The point slot of the
class C, in Figure 2 expects a list of two numbers, e.g., (1 2.0). Also
in Figure 2, the Common Lisp type specified by (cons number) is the
set of non-empty lists headed by a number, as specified in [Ans94,
System Class CONS]. The Y argument of the function F must be a
possibly empty list of such objects, because it is declared as type
(rte (:* (cons number))). E.g., ((1.0) (2 :x) (0 :y "zero")).

4 GENERATING A STATE MACHINE
A standard technique [HMU06, Chapters 3,4] used in regular ex-
pression matching is to convert the regular expression into a DFA
(deterministic finite automaton, sometimes called a finite state ma-
chine). Thereafter, there are two general approaches to deciding
whether a given list matches. If the DFA is available at run-time, it
can be used along with a generic matching function which takes
the DFA and candidate list as input parameters. The function would
then iterate through the list associating a state with each iteration.
Finally, when the list is exhausted, if the DFA is in a final state, re-
turn true. We initially experimented with this approach, but quickly
abandoned it for performance reasons. We elected to pursue an
alternate approach based on meta programming.

This alternate approach, which we use, is to build the DFA at
compile time triggered by the compiler’s treatment of rte type
declarations. Several steps are involved.

(1) Convert a parameterized rte type specifier into code that
will perform run-time type checking.

(2) Convert the regular type expression to DFA.

(3) Convert the DFA into code which will perform run-time
execution of the DFA.

The DFA is a compile-time-only object.

4.1 Type definition
The rte type is defined by deftype.
(deftype rte (pattern)

`(and list

(satisfies ,(compute-match-function

pattern ))))

As in this definition, when the satisfies type specifier is used, it
must be given a symbol naming a globally callable unary function. In
our case compute-match-function accepts a regular type expression,
such as (:cat number (:* string)), and computes a named unary
predicate. The predicate can thereafter be called with a list and will
return true or false indicating whether the list matches the pattern.
Notice that the pattern is usually provided at compile-time, while the
list is provided at run-time. Furthermore, compute-match-function
ensures that given two patterns which are EQUAL, the same function
name will be returned, but will only be created and compiled once.
An example will make it clearer.
(deftype 3- d-point ()

`(rte (:cat number number number )))

The type 3-d-point invokes the rte parameterized type definition
with argument (:cat number number number). The deftype of rte
assures that a function is defined as follows. The function name,
|(:cat number number number)| even if somewhat unusual, is so
chosen to improve the error message and back-trace that occurs in
some situations.
(defun rte ::|(: cat number number number )| (list)

(match-list list

'(:cat number number number )))

The following back-trace occurs when attempting to evaluate a
failing assertion.
CL−USER> ( the 3−d−point ( l i s t 1 2 ) )

The va lue ( 1 2 )
i s not o f type

(OR (AND #1= ( SATISFIES | ( : CAT NUMBER NUMBER NUMBER ) | )
CONS)

(AND #1# NULL ) ) .
[ Cond i t i on o f type TYPE−ERROR]

Finally, the type specifier (rte (:cat number number number))

expands to the following.
(and list

(satisfies |(:cat number number number )|))

4.2 Constructing a DFA
In order to determine whether a given list matches a particular
regular type expression, we conceptually execute a DFA with the
list as input. Thus we must convert the regular type expression to a
DFA. This need only be done once and can often be done at compile
time.

In 1964, Janusz Brzozowski [Brz64] introduced the concept of the
Rational Language Derivative, and provided a theory for converting
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a regular expression to a DFA. Owens et al. [ORT09] makes a fresh
presentation of the algorithm in easy to follow steps. We found the
explanation of Owens amenable to our needs. We omit the details
of that algorithm at this time, except to say that Brzozowski argues
that the algorithm terminates because repeatedly calculating this
derivative results in a finite number of calculated expressions, each
of which correspond to a state in the state machine. Additionally,
each derivative is calculated with respect to some term. Each such
term is a type specifier in our case, and each corresponds to a
transition between two states in the state machine. We refer the
reader to Newton et al. [NDV16] for specific details.

The set of lists of Common Lisp objects is not a rational language,
because for one reason, the perspective alphabet (the set of all
possible Common Lisp objects) is not a finite set. Even though the
set of lists of objects is infinite, the set of lists of type specifiers is a
rational language, if we only consider as the alphabet, the finite set
of type specifiers explicitly referenced in a regular type expression.
With this choice of alphabet, lists of Common Lisp type specifiers
conform to the definition of words in a rational language.

0 1symbol

2number

3

string

symbol

number

symbol

string

Figure 3: Example DFA

Consider the extended rational type expression:

(symbol · (number+ + strinд+))+ .

We can use the Brzozowski algorithm to construct a DFA which
recognizes lists matching this pattern. Such a DFA is illustrated in
Figure 3.

There is a delicate but important matter when the mapping of
list-of-objects to list-of-type-specifiers: the mapping is not unique.
The issue is that the Brzozowski algorithm assumes the creation of
a deterministic state machine. If intersecting types are encountered,
such as number and integer, the Brzozowski algorithm, applied
naively, produces an invalid result. The solution is to decompose
the user specified types into a set of disjoint types whose union is
the same as the original set. Newton [NVC17] examines algorithms
for calculating the maximal disjoint type decomposition (MDTD).

A disjoint type decomposition of a given set of types is a set of
disjoint types whose union is the same as the union of the given set
of types. If the given set of types is finite (i.e. finite number of types,
not necessarily types denoting finite sets of values), a disjoint type
decomposition exists. Every disjoint type decomposition is finite,
and there is exactly one whose size is larger than any other. Thus

there exists a maximal disjoint type decomposition. The proof is
beyond the scope of this article, but may be found in [New17].

As an example of a rational type expression involving intersect-
ing types, consider the follow,

((number · inteдer ) + (inteдer · number )) ,

whose rte is (:or (:cat number integer) (:cat integer number)).
The corresponding DFA is shown in Figure 4. Notice that the tran-
sition between state 0 and 1 is governed by the type specifier (and
number (not integer)) even though this type is not explicitly men-
tioned in the rte.

4.3 Optimized code generation
The mechanism we chose for implementing the execution (as op-
posed to the generation) of the DFA was to generate specialized
code based on optimized-typecase, tagbody, and go. As an example,
consider the DFA shown in Figure 3. The code in Figure 5 was
generated given this DFA as input. The tagbody and go special oper-
ators are built-in to Common Lisp; however optimized-typecase is
a macro whose definition is explained in Section 6. For the moment,
it is only important to understand its semantics as being exactly
those of the typecase built in to Common Lisp.

While the function is iterating through the list, if it encounters an
unexpected end of list, or an unexpected type, the function returns
false. These clauses are commented as rejecting. Otherwise, the
function will eventually encounter the end of the list and return
true. These clauses are commented accepting in the figure.

There is one label (L0, L1, L2 ...) per state in the state machine,
corresponding to the states, 0, 1, 2 ... in the DFA in Figure 3. At each
step of the iteration, a check is made for end-of-list. Depending on
the state either true or false is returned depending on whether that
state is a final state of the DFA or not.

The next element of the list is examined by a variant of typecase,
called optimized-typecase, and depending of the type of the object
encountered, control is transferred (via go) to a label corresponding
to the next state.

One thing to note about the complexity of this function is that
the number of states encountered when the function is applied to a
list is equal or less than the number of elements in the list. Thus
the time complexity is linear in the number of elements of the list
and is independent of the number of states in the DFA.

0

1(and number (not integer))

3
integer 2

integer

number

Figure 4: Example DFA with disjoint types. This DFA is de-
rived from the rational type expression ((number · inteдer ) +
(inteдer · number )).
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(lambda (list)

(declare

(optimize (speed 3) (debug 0) (safety 0)))

(tagbody

L0

(when (null list)

(return nil)) ; rejecting

(optimized-typecase (pop list)

(symbol (go L1))

(t (return nil)))

L1

(when (null list)

(return nil)) ; rejecting

(optimized-typecase (pop list)

(number (go L2))

(string (go L3))

(t (return nil)))

L2

(when (null list)

(return t)) ; accepting

(optimized-typecase (pop list)

(number (go L2))

(symbol (go L1))

(t (return nil)))

L3

(when (null list)

(return t)) ; accepting

(optimized-typecase (pop list)

(string (go L3))

(symbol (go L1))

(t (return nil )))))

Figure 5: Generated code recognizing an RTE

5 REPRESENTING TYPES AS ROBDD
Before looking at the macro expansion of optimized-typecase in
Section 6, we first look at a binary decision diagram representation
of Common Lisp types.

In Common Lisp, types are sets. In keeping with this, intersect-
ing types correspond to intersecting sets; likewise for union and
complements of sets. The notation is intuitive. E.g., the following
s-expression
( or ( not number )

( e q l 4 2 )
( and fixnum ( not uns igned ) )
( and uns igned ( not f ixnum ) ) )

is a type specifier representing the set-union of the four sets:
• number
• {42}
• f ixnum \ unsiдned
• unsiдned \ f ixnum

Newton et al. [NVC17] explain how a Common Lisp type is
represented as a reduced ordered binary decision diagram (ROBDD).
Such an ROBDD representing the type shown above is illustrated
in Figure 6.

An ROBDD is a special type of BDD (Binary Decision Diagram)
which has been subjected to an ordering and a reduction. That it
is ordered indicates that every path which starts at the top node
(labeled fixnum Figure 6), follows the arrow direction, and after
any number of steps arrives at one of the bottom node (labeled ⊥

and ⊤ Figure 6) is guaranteed to encounter the type names in the
same order; possibly with some type names omitted, but never two
different orders in two different paths. The particular order does
matter for the semantics of the diagram but may effect the resulting
size of the diagram, or may effect the efficiency of the resulting
code. An important concern in pattern matching compilation is that
finding the best ordering is known to be coNP-Complete [Bry86].
However, when using BDDs to represent Common Lisp type speci-
fiers, we enforce a consistent ordering; finding the best ordering is
not necessary for our application.

Andersen [And99] and Grop̈l [GPS98] describe the reduction
steps that are necessary to implement an ROBDD, but in short, the
reduction steps assure that there are no redundant subtrees in the
diagram.

The ROBDD represents a program to test the value of a Boolean
function of some number of variables. Commonly, the Boolean
expression and the corresponding ROBDD may represent logic
in an electronic circuit [BRB90, Lee59], or a constraint in a model
checker [BCM+92, ST98, Col13]. Since Common Lisp types aremost
generally expressed in terms of Boolean combinations of types as
shown above, we can use an ROBDD to represent the execution
of the type predicate function. The function evaluates to true if
the object in question is of the specified type, false otherwise. To
use the ROBDD to evaluate such a type check, we start at the top
node, number , and ask whether the object is of type number . If the
answer is yes, we follow the green solid arrow to the next node,
otherwise we follow the red dotted arrow to the next node, and in
either case, repeat the process until we arrive at the bottom of the

fixnum

unsigned

number

(eql 42)

T

unsigned

⊥

Figure 6: Common Lisp type, (or (not number) (eql 42) (and

fixnum (not unsigned)) (and unsigned (not fixnum))) repre-
sented as ROBDD. The symbols ⊥ and ⊤ refer to false and
true respectively.
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(bdd-typecase obj

((and unsigned (not (eql 42)))

body-forms-1 ...)

((eql 42)

body-forms-2 ...)

((and number (not (eql 42)) (not fixnum ))

body-forms-3 ...)

(fixnum

body-forms-4 ...))

Figure 7: Invocation of bdd-typecase with intersecting types

diagram. If we landed in the node labeled ⊤, then the object is of
the type in question.

In analogous fashion, we may reconstruct a Common Lisp type
specifier given an ROBDD, as shown in Figure 6. To do so, simply
find the set of all paths from the top-most node to the ⊤ leaf node
(the figure has 4 such paths). Each such path contributes a con-
junction, having the base types either negated or not depending on
whether the positive or negative arrow is follows. This algorithm
applied to the ROBDD in Figure 6 results in the type specifier:
( or ( and ( not f ixnum ) ( not number ) )

( and ( not f ixnum ) number uns igned )
( and fixnum ( not uns igned ) )
( and fixnum uns igned ( e q l 4 2 ) ) )

The path specifier is rarely the simplest representation of the
type. The fact that the derived type specifier is different than
the original one, (or (not number) (eql 42) (and fixnum (not

unsigned)) (and unsigned (not fixnum))), is not a problem. There
are infinitely many type specifiers which represent the same type
in Common Lisp; nevertheless they all correspond to the same
ROBDD.

There are many conventions for drawing ROBDDs (and similar
decision diagrams) in the literature. We use the convention that red
dashed arrows denote a negative result of the type check at a node,
and the green solid arrow represents a positive result.

An important feature of this ROBDD is that there are no redun-
dant type checks. Part of this comes from an inherent feature of
ROBDDs, namely that no path from the root node to a leaf node
ever passes through the same type check twice. But in addition to
that, our ROBDDs are aware of the Common Lisp type system. They
remove redundant supertype checks. As seen in Figure 6, number is
only checked if the fixnum check failed. Why? Because, if an object
is not a number, then it is necessarily not a fixnum. Likewise (eql

42) is only checked if the fixnum check succeeded, because if an
object is not a fixnum then it is necessarily not equal to 42.

6 EXPANSION OF OPTIMIZED-TYPECASE

Newton et al. [NV18] explain how to use pseudo-predicates in con-
junction with the Common Lisp satisfies type to represent an ar-
bitrary call to typecase as an ROBDD. Take the optimized-typecase
in Figure 7 as an example.

The technique is to convert such a typecase invocation into
a type specifier, by substituting appropriate so-called pseudo-
predicates in place of the various body forms. A pseudo-predicate is

(or (and (and unsigned (not (eql 42)))

(satisfies P1))

(and (eql 42)

(not (and unsigned (not (eql 42))))

(satisfies P2))

(and (and number (not (eql 42)) (not fixnum ))

(not (and unsigned (not (eql 42))))

(not (eql 42))

(satisfies P3))

(and fixnum

(not (and unsigned (not (eql 42))))

(not (eql 42))

(not (and number

(not (eql 42))

(not fixnum )))

(satisfies P4)))

Figure 8: Type specifier equivalent to typecase from Figure 7

fixnum

unsigned

number

(eql 42)

(satisfies P4)

unsigned

⊥

(satisfies P2)(satisfies P1)

T

(satisfies P3)

Figure 9: ROBDD from typecase clauses in Example 7

an object representing a function name, that if called would return
a Boolean value, but may also have a side-effect. However, it has
been carefully arranged that manipulating the type specifier never
calls this function, and never accidentally optimizes it away. For
example the typecase in Figure 7 is converted to the type specifier
in Figure 8. Note that P1, P2 etc. appear as predicates in combination
with the satisfies type specifier. Thus the pseudo terminology—it
appears as a predicate, but would execute a side-effect if called.

Using this type specifier, the ROBDD shown in Figure 9 is gen-
erated.

Similar to how the code shown in Figure 5 is generated we can
also generate optimized code from an ROBDD. Such code is shown
in Figure 10.
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(lambda (obj)

(tagbody

L1 (if (typep obj 'fixnum)

(go L2)

(go L4))

L2 (if (typep obj 'unsigned)

(go L3)

(go P4))

L3 (if (typep obj '(eql 42))

(go P2)

(go P1))

L4 (if (typep obj 'number)

(go L5)

(return nil))

L5 (if (typep obj 'unsigned)

(go P1)

(go P3))

P1 (return (progn body-forms-1 ...))

P2 (return (progn body-forms-2 ...))

P3 (return (progn body-forms-3 ...))

P4 (return (progn body-forms-4 ...))))

Figure 10: Alternate expansion of Example 7 using tagbody/go

7 RELATEDWORK
A discussion of the theory of rational languages in which our re-
search is grounded, may be found in [HMU06, Chapters 3,4].

Weitz [Wei15] introduces portable Perl-compatible regular ex-
pressions for Common Lisp including an s-expression-based DSL
syntax. Since users of regular expressions targeting string matching
prefer to encode their regular expressions into strings, Weitz also
provides a string based surface syntax. Newton et al. [New16] also
provide such a string-based syntax for regular type expressions
in a very special case; i.e. the case where the target sequence is a
string, and the patterns only concert character identity. We leave
the question open to future research as to whether such a conven-
tional string-based regular expression syntax might be useful to
describe types in sequences.

The rte type along with typecase enables something similar to
pattern matching in the XDuce language [HVP05]. The XDuce
language allows the programmer to define a set of functions with
various lambda lists, each of which serves as a pattern available to
match particular target structure within an XML document. Which
function gets executed depends on which lambda list matches the
data found in the XML data structure.

XDuce introduces a concept called regular expression types which
indeed seems very similar to regular type expressions. In [HVP05]
Hosoya et al. introduce a semantic type approach to describe a
system which enables their compiler to guarantee that an XML doc-
ument conform to the intended type. The paper deals heavily with
assuring that the regular expression types are well defined when
defined recursively, and that decisions about subtype relationships
can be calculated and exploited.

A notable distinction of the rte implementation as opposed to
the XDuce language is that our proposal illustrates adding such

type checking ability to an existing type system and suggests that
such extensions might be feasible in other existing dynamic or
reflective languages.

The concept of regular trees, is more general than what rte
supports, posing interesting questions regarding apparent short-
comings of our approach. The semantic typing concept described
in [HVP05] indeed seems to have many parallels with the Common
Lisp type system in that types are defined by a set of objects, and
sub-types correspond to subsets thereof. These parallels would sug-
gest further research opportunities related to rte and Common Lisp.
However, the limitation that rte cannot be used to express trees of
arbitrary depth, as discussed in Section 4.1, seems to be a significant
limitation of the Common Lisp type system. Furthermore, the use
of satisfies in the rte type definition, seriously limits the subtypep
function’s ability to reason about the type. Consequently, programs
cannot always use subtypep to decide whether two rte types are
disjoint or equivalent, or even if a particular rte type is empty.
Neither can the compiler dependably use subtypep to make similar
decisions to avoid redundant assertions in function declarations.

Recently, several languages have started to introduce tuple types
(C++ [Str13, Jos12], Scala [OSV08, CB14], Rust [Bla15]), and our
work provides similar capability of such tuple types for a dynamic
programming language. The Shapeless [Che17] library allows Scala
programmers to exploit the type-level programming capabilities
through heterogeneous lists.

Another commonly used algorithm for constructing a DFA was
inspired by Ken Thompson [YD14, Xin04] and involves decompos-
ing a rational expression into a small number of cases such as base
variable, concatenation, disjunction, and Kleene star, then following
a graphical template substitution for each case. While this algo-
rithm is easy to implement, it has a serious limitation. It is not able
to easily express automata resulting from the intersection or com-
plementation of rational expressions. We rejected this approach as
we would like to support regular type expressions containing the
keywords :and and :not, such as in (:and (:* (:cat t integer))

(:not (:* (:cat float t)))).
There is a large amount of literature about Binary Decision Dia-

grams of many varieties [Bry86, Bry92, Ake78, Col13, And99]. In
particular Knuth [Knu09, Section 7.1.4] discusses worst-case and
average sizes. Newton et al. [NVC17] discuss how the Reduced
Ordered Binary Decision Diagram (ROBDD) can be used to ma-
nipulate type specifiers, especially in the presence of subtypes.
Castagna [Cas16] discusses the use of ROBDDs (he calls them BDDs
in that article) to perform type algebra in type systems which treat
types as sets [HVP05, CL17, Ans94].

BDDs have been used in electronic circuit generation[CBM90],
verification, symbolic model checking[BCM+92], and type system
models such as in XDuce [HVP05]. None of these sources discusses
how to extend the BDD representation to support subtypes.

Common Lisp does not provide explicit pattern matching
[Aug85] capabilities, although several systems have been proposed
such as Optima1 and Trivia2. Pierce [Pie02, p. 341] explains that
the addition of a typecase-like facility (which he calls typecase) to
a typed λ-calculus permits arbitrary run-time pattern matching.

1https://github.com/m2ym/optima
2https://github.com/guicho271828/trivia
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Decision tree techniques are useful in the efficient compilation
of pattern matching constructs in functional languages[Mar08].
An important concern in pattern matching compilation is finding
the best ordering of the variables which is known to be coNP-
Complete [Bry86]. However, when using BDDs to represent type
specifiers, we obtain representation (pointer) equality, simply by us-
ing a consistent ordering; finding the best ordering is not necessary
for our application.

Charniak [CM85] explains a technique called discrimination net
to represent nested if-then-else machines. PCL (Portable Common
Loops)[BKK+86] which is the heart of many implementations of
the CLOS (the Common Lisp Object System) [Kee89, Ano87], in
particular the implementation within SBCL [New15], uses discrim-
ination nets to optimize generic function dispatch. In this article
we do not investigate the similarities and differences between the
discrimination net approach and the ROBDD approach, except to
note that there is some obvious overlap in the problem space they
purport to solve.

8 CONCLUSION AND PERSPECTIVES
It is not clear whether Common Lisp could provide a way for a
type definition in an application program to extend the behavior of
subtypep. Having such a capability would allow such an extension
for rte. Rational language theory provides a well defined algorithm
for deciding such questions given the relevant rational expressions
[HMU06, Sections 4.1.1, 4.2.1].

This article demonstrates the use of reflection and meta-
programming to provide an elegant tool to the application pro-
grammer, namely regular type expressions. These regular type
expressions extend the already reflective Common Lisp type sys-
tem, enabling the run-time program more flexibility in reasoning
about heterogeneous lists.

Meta-programming is essential in our integration into the Com-
mon Lisp type system. Our approach involves computationally in-
tensive finite state machine based calculations which are executed
whenever the compiler encounters a new rte type declaration. The
result is that these calculated functions are thereafter available at
run-time for efficient type matching of lists in question.
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