
Implementing Baker’s SUBTYPEP decision procedure
Léo Valais

Jim E. Newton
Didier Verna

lvalais@lrde.epita.fr
jnewton@lrde.epita.fr
didier@lrde.epita.fr

EPITA/LRDE
Le Kremlin-Bicêtre, France

ABSTRACT

We present here our partial implementation of Baker’s decision
procedure for subtypep. In his article “A Decision Procedure for
Common Lisp’s SUBTYPEP Predicate”, he claims to provide imple-
mentation guidelines to obtain a subtypep more accurate and as
efficient as the average implementation. However, he did not pro-
vide any serious implementation and his description is sometimes
obscure. In this paper we present our implementation of part of his
procedure, only supporting primitive types, Clos classes, member,
range and logical type specifiers. We explain in our words our un-
derstanding of his procedure, with much more detail and examples
than in Baker’s article. We therefore clarify many parts of his de-
scription and fill in some of its gaps or omissions. We also argue in
favor and against some of his choices and present our alternative
solutions. We further provide some proofs that might be missing
in his article and some early efficiency results. We have not re-
leased any code yet but we plan to open source it as soon as it is
presentable.

CCS CONCEPTS

• Theory of computation → Type theory; Divide and conquer ;
Pattern matching.

ACM Reference Format:

Léo Valais, Jim E. Newton, and Didier Verna. 2019. Implementing Baker’s
SUBTYPEP decision procedure. In Proceedings of the 12th European Lisp
Symposium (ELS’19). ACM, New York, NY, USA, 8 pages. https://doi.org/10.
5281/zenodo.2646982

1 INTRODUCTION

The Common Lisp standard [1] provides the predicate function
subtypep for introspecting the sub-typing relationship. Every invo-
cation (subtypep A B) either returns the values (t t) when A is a
subtype of B, (nil t) when not, or (nil nil) meaning the pred-
icate could not (or failed to) answer the question. The latter can
happen when the type specifier (satisfies P) (representing the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2646982

(sb!xc:deftype keyword ()
'(and symbol (satisfies keywordp)))

Listing 1: The keyword type definition in Sbcl

type {x | P(x)} for some predicate and total function1 P) is involved.
For example, given two arbitrary predicates F and G, there is no
way subtypep can answer the question (subtypep ’(satisfies F)

’(satisfies G)).
However, some implementations abuse the permission to return

(nil nil). For example, in Sbcl 1.4.10 (the implementation we are
currently focusing our efforts on), (subtypep ’boolean ’keyword)

returns (nil nil), thus violating the standard2. The definition of
the keyword type is responsible for this failure: as shown in Listing 1,
it involves a satisfies type specifier3.

Another kind of problem for which subtypep’s accuracy matters
is the optimization of the typecase construct as shown in [7] and
[8]. The aim is to remove redundant checks in the construct and
the approach is to use binary decision diagrams. However, to build
such a structure, subtypep is repeatedly used. The unreliability of
the predicate leads here to many lost BDD reductions and therefore
to the generation of sub-optimal code.

Our implementation is still in active development, currently tar-
gets Sbcl and focuses almost entirely on result accuracy. It supports
primitive types, user-defined types (deftype, classes and structures),
member (and eql) type specifiers and ranges (e.g., (integer * 12)).
We present our strategy for implementing each one of these while
discussing how and why we decided or not to diverge from Baker’s
[3] approach—or potentially filling some gaps or unclear bits. No
optimization work has been done yet and the implementation still
has bugs and diverse issues, but we have found some encouraging
results about accuracy and even about efficiency.

2 THE COMMON LISP TYPE SYSTEM

2.1 Type specifiers

Common Lisp types are not manipulated directly. Instead, the type
to be manipulated is described using a type specifier. The type
specifier Domain-Specific Language (DSL) allows programmers
to describe types by writing S-expressions which obey some rules
described in the Common Lisp standard [1].
1A function defined over its entire definition domain.
2The Common Lisp standard requires that no invocation of subtypep involving only
primitive types return (nil nil).
3C.f. bug #1533685 in Sbcl bug tracker.

https://doi.org/10.5281/zenodo.2646982
https://doi.org/10.5281/zenodo.2646982
https://doi.org/10.5281/zenodo.2646982


Implementing Baker’s SUBTYPEP decision procedure ELS’19, April 01–02 2019, Genova, Italy

(deftype except (x)
`(not (eql ,x)))

Listing 2: The deftype construct

A subtlety about type specifiers is that different ones can rep-
resent the same type (e.g., integer, (integer * *) and (or fixnum

bignum) all describe the same type). This means that symbolic com-
putation does not suffice to answer the sub-typing question. Note
that one could write a predicate, say type=, to determine whether
two type specifiers in fact describe the same type using two calls
of subtypep.

It is possible to define parametric aliases using the deftype con-
struct. It is then possible to refer to a whole type specifier using its
alias. Listing 2 shows an example of parametric deftype.

2.2 Vocabulary

type A set of elements. For any typeu:u ≡ {x | x :u}
canonical t.s. A type specifier without aliases.
primitive type A standardized type ([2]) that is not necessarily

implemented as a class.
symbolic form A type specifier whose type is symbol.
compound form A type specifier whose type is list.
logical form A compound form whose car is or, and or not.
kingdom In Baker’s terminology, a “type kingdom” des-

ignates the types that can be described using
only one kind of type specifier. nil (the empty
type) belongs to every type kingdom.

In this article we focus on two particular type kingdoms:

• the literal type kingdom, represented using only symbolic,
member and logical type specifiers, and,

• the range type kingdom, represented only using range and
logical type specifiers

For example, (or string symbol) belongs to the literal type king-
dom. (and number (not real)) belongs to the range type kingdom.
However, (or symbol integer) belongs to the literal type kingdom
while (or symbol (integer * *)) belongs to both. This situation is
handled in section 4.

There are other type kingdoms that Baker mentions in his arti-
cle, such as the array type kingdom, represented using only array

and logical type specifiers. Note that a type can belong to several
kingdoms, as multiple type specifiers can describe it. For example,
integer belongs to literal and range kingdoms as the type specifiers
integer (symbolic) and (integer * *) (range) both describe it. In
Section 4, we describe how to guarantee that a given type is only
described by one kind of type specifier, hence restricting it to one
kingdom.

3 PROCEDURE’S MECHANISMS OVERVIEW

Figure 1 shows the internals of our implementation. Every step will
be detailed in the following sections. There are three major stages:

(1) The pre-processing — Both type specifiers are processed in or-
der to simplify further calculations: the aliases are expanded,
and each occurrence of numeric types are converted to their

equivalent range type specifier. Finally, as explained there-
after, the procedure splits into several sub-procedures, one
for each type kingdom, because their internal type represen-
tation differ. In order to achieve that, the type specifiers must
also be split into equivalent subtype specifiers restricted to
each concerned kingdom. This stage is detailed in Section 4.

(2) Expert sub-procedures — Once split, each subtype specifier
is redirected to the appropriate expert sub-procedure. The
job of such a procedure is to prove, in its own kingdom, the
assertion “A is a subtype of B” to be wrong. Our procedures
currently only support literal and range type specifiers—an
expert sub-procedure has been implemented only for these
two kingdoms. This stage is detailed in Section 5.

(3) Result conjunction — Eventually, all expert sub-procedures
return (a Boolean) and the results are accumulated using
conjunction. (In practice, as soon as one expert procedure
returns false, subtypep returns.)

4 PRE-PROCESSING

4.1 Alias expansion

The very first step is to ensure that the type specifier is in its
canonical form, that is, having all its aliases expanded. This is done
by the expand function. For example, considering the type created
in Listing 2, (expand ’(except 12)) should return (not (eql 12)).

Unlike macro expansion, deftype expansion is not standardized
in Common Lisp. Thus a solution must be found for each Common
Lisp implementation independently. As our efforts are currently
focused on Sbcl, we discuss how we implement the expand function
for that compiler.

Sbcl’s subtypep heavily relies on the function
sb-kernel:specifier-type, which does type expansion. It
also does type simplification—turning (and integer string)

into nil—which could have saved us some work. We hoped we
could simplify that function to make it compatible with Baker’s
algorithm while keeping the deftype expansion and the range
canonicalization work. However we found, thanks to [7] tools,
that the function is responsible for most of the work of subtypep,
as shown in Figure 2 Considering the lack of efficiency of that
function and the fact that it would not be trivial to simplify it
to only keep the interesting bits, we decided on another, more
cost-effective solution.

The function sb-ext:typexpand takes a type specifier and tries to
expand it (not recursively). It either returns the expansion result, or
the input type specifier if it is not expandable. (sb-ext:typexpand
’integer) returns integer since it is not a deftype alias whereas
(sb-ext:typexpand ’(except 12)) returns (not (eql 12)). To ex-
pand a whole type specifier, it just needs to walk through it, apply-
ing sb-ext:typexpand on each list or atom manually. One subtlety
though is that the result of an expansion may itself be an alias to
expand4. For example, let’s say that we have (deftype my-type ()

’(except 0.0)), then the result of (sb-ext:typexpand ’my-type) is
(except 0.0), which is of course an alias to expand again.

4Fortunately, sb-ext:typexpand also returns a Boolean indicating whether or not an
expansion happened.



ELS’19, April 01–02 2019, Genova, Italy Léo Valais, Jim E. Newton, and Didier Verna

numeric types→ ranges numeric types→ ranges

alias expansion alias expansion

split split

type A type B

(and l-t-1 (not l-t-2))

missing types registration

bit-vector computation

= [0, 0, · · · , 0]?

(and r-t-1 (not r-t-2))

type diversity reduction

canonicalization

= ∅?

∧
subtypep result

literal-type-1 literal-type-2

range-type-1 ra
ng
e-
ty
pe
-2

Figure 1: Internal flowchart of (subtypep A B)

Figure 2: specifier-type weight in cl:subtypep executiona
a cached-subtypep-caching-call is just a memoizing wrapper around Sbcl’s subtypep

which is a bit more efficient than the raw implementation.

4.2 Numeric type specifiers conversion

As explained in Section 3, after pre-processing both type specifiers,
the procedure splits in two expert sub-procedures: one for literal
type specifiers and one for range type specifiers. Numeric types—
types containing numbers (mathematically speaking)—can have
different representations: a symbol (e.g., fixnum), a member expression
(e.g., (member 1 2 3)) or a range (e.g., (integer 1 6)). However,
the first two belong to the literal type kingdom whereas the latter
belongs to the range kingdom. Thus, the numerical type information
would be distributed over the different expert sub-procedures. For
consistency and accuracy, a single internal representation has to
be chosen. The symbolic and member numeric types must each be
converted into an equivalent type specifier, in which numerical
data are only represented using ranges.

• Symbolic numeric type specifier — say U, replace it by (U *

*)5. Note the new “type specifier” is likely not to be valid
(e.g., (fixnum * *) is invalid). Because it is never exposed to
the user—as it is an intermediate, internal representation—
nothing bad can happen. However, it cannot be used with
other functions requiring a type specifier, such as typep.

• member type specifiers — e.g., (member a 1 2 :b) is converted
to (or (member a :b) (bit 1 1) (integer 2 2)). To do that,

(1) extract the numbers out of the expression,
(2) map each number, say n, to construct the type specifier

((type-of n) n n)6,
(3) and combine the remaining member expression and the

ranges with the or logical type specifier.
A subtlety to consider is that super-types of number also con-

tain numerical data that must be extracted. Indeed, the type atom

contains both numerical data—(number * *)—and non-numerical
data—(and atom (not (number * *))). Thus, its replacement in
the numeric type kingdom is straightforward: (number * *). In the
literal type kingdom however, its replacement is (or stream array

character function standard-object symbol structure-object

structure-class). The type t—which is (or atom sequence)—must
be converted similarily.

Yet another subtlety is that the type specifiers (and) and (or)

respectively describe the types t and nil. Hence every occurrence
of (and) must be replaced by the replacement of t described in the
previous paragraph. In order to remove that annoying corner case
completely, (or) is also replaced, by nil.

4.3 Splitting

Having reached this step, the input now only contains canonical
literal and range type specifiers, numeric types being only expressed
as ranges. The next stage—expert sub-procedures—requires literal
and numeric types to be separated.

Thus the top type t is divided into two7 disjoint subtypes—
“kingdoms” as Baker says. The previous step, described in Sec-
tion 4.2, ensures that the representation (in terms of type specifiers)
of the types in each kingdom is different. All numeric types are
5Implementations supporting the IEEE floating point raise many concerns with -0.0,
NaN , +∞ and −∞. Baker explains in detail how to handle these cases.
6The results of type-of are implementation-dependent. We suppose here that type-of
only returns the name (as a symbol) of the type of n (n being a number).
7One per kingdom actually, but since our implementation only supports two—literal
and range types—we only focus our attention on these.



Implementing Baker’s SUBTYPEP decision procedure ELS’19, April 01–02 2019, Genova, Italy

represented as ranges, and literal types as symbolic and member

(without numbers) type specifiers.
This step roughly consists of an in-depth traversal of the type

specifier, using pattern-matching to recognize which type specifier
represents which type. We use the implementation of [9] because
of its simplicity and versatility.

Our implementation uses a function type-keep-if which takes a
predicate P and a type specifierU and returns:

• U as it is when P(U ) = ⊤,
• nil when P(U ) = ⊥,
• (op U1 · · · Un) where Ui = (type-keep-if P Ui) when
U = (op U1 · · · Un) and op ∈ {and, or, not}.

Given the predicate literal-type-p and a type U , type-keep-if
returns U with every inner type specifier that describes a non-
literal type replaced by nil (interpreted as the empty type). The
result is then a subtype of (and (not number) (not (array * *))).
Likewise, given the predicate range-type-p, this function returns
U with every non-range inner type specifier replaced by nil (inter-
preted this time as the empty range). Thus, the result is a subtype
of number. Therefore, split can easily be implemented in terms of
type-keep-if.

4.4 Type reformulation

For any types U and V , U ⊆ V ⇔ U ∩V = ∅. Therefore, for any
type specifiers U and V, when (subtypep U V) returns T T, then
(subtypep ‘(and ,U (not ,V)) nil) also returns T T.

The results of the split function are zipped together using
(lambda (x y) ‘(and ,x (not ,y))) before being passed to the
expert sub-procedures. This way, they will not have to prove that
an arbitrary type is a subtype of another arbitrary subtype, but
rather whether one arbitrary type specifier describes the empty
type (which is substantially easier to reason about, and implement).

5 EXPERT SUB-PROCEDURES

Listing 3 shows how subtypep could be defined from a top-
down point of view. It shows that, according to Figure 1, both
type specifiers are processed independently, split into two king-
doms (literal and numeric types) and unified in an (and U (not

V)) fashion. The expert sub-procedures, null-literal-type-p and
null-numeric-type-p, each accept one argument—a type specifier,
say U—and returns a Boolean indicating whether U describes the
empty type (nil).

Each sub-procedure answers restricted to its kingdom—as no
type can (at this point of the procedure) belong to two different
kingdoms, as shown in section 4. With that piece of information,
we can (now) safely assert that:

• the literal type kingdom is the type described by (and (not

number) (not (array * *)))8, and,
• the numeric type kingdom is the type described by number9.

8Actually this is not completely accurate since the type string can be described using
array type specifiers. However, since the latter are not supported by our implementation
yet, we consider the types string and bit-vector as being literal types since their
symbolic representation is kept through the entire process. This is very likely to
change in the future.
9Our implementation does not support complex numbers yet, and considers the complex
type as being empty. Somewrong results arise from that supposition—such as (subtypep

(defun subtypep (a b)
(reduce (lambda (x y) (and x y))

(mapcar (lambda (expert t1 t2)
(funcall expert `(and ,t1 (not ,t2))))

(list #'null-literal-type-p
#'null-numeric-type-p)

(split (num-types->ranges (expand a)))
(split (num-types->ranges (expand b))))))

Listing 3: A top-down approach of subtypep

There are several properties that are derived from the preceding
pre-processing steps. First of all, both kingdoms’ procedures are
guaranteed to only ever receive argument canonical type specifiers.
These are also guaranteed to never contain atom or t type specifiers.
The occurrences of (and) and (or) have been replaced respectively
by t and nil. eql type specifiers have been replaced by equivalent
member expressions. member type specifiers only occur in the literal
type kingdom and contain no numerical data. Numerical data are
only expressed as intervals, which are likely not to be valid type
specifiers. Both kingdoms accept the type specifier nil but with a
different meaning: for literal types, nilmeans the empty type which
complement is t whereas for numeric types it represent the empty
range whose complement is (number * *).

In the following sections we describe in detail the implementa-
tion of the expert sub-procedures for the literal (Section 5.1) and
numeric (Section 5.2) type kingdoms. We also briefly discuss in Sec-
tion 5.3 the array type kingdom and the cons type specifier family,
which Baker ignores in his article.

5.1 Procedure for literal types

5.1.1 Theory. To represent types in the literal types kingdom, we
suppose at first that there is a way to enumerate every element in
t, say e1, e2, . . . , eω . Then, let u1,u2, . . . ,uω be all the (non-strict)
subtypes of the top-level type t. We associate to each pair

(
ui , ej

)
the bit bi j with the value 1 when ej ∈ ui and 0 when ej < ui . Let
bvi be the representative bit-vector associated to the typeui , defined
by [bi0,bi1, . . . ,biω ]. These bit-vectors are the rows of the infinite
matrix on Eq. Bωω which illustrates the system.

©«

e1 e2 e3 e4 · · · eω

u1 1 0 0 0 · · · 1
u2 0 1 1 0 · · · 0
u3 0 0 0 1 · · · 0
...

...
...
...
...
. . .

...

uω 1 0 1 0 · · · 0

ª®®®®®®¬
(Bωω )

Proof. Each type has a unique bit-vector representation.
Let ui and uj be two distinct types. Thus, (ui ∪uj )\(ui ∩uj ) , ∅.

Let ek ∈ (ui ∪uj )\(ui ∩uj ). By definition, we have bik , bjk . Hence
bvi , bvj . Two distinct types are represented by two different bit-
vectors.

Similarly, let bvi and bvj be two different bit-vectors. Then
it necessarily exists a k such as bik , bjk . Therefore
∃ek ,

(
ek < ui ∨ ek < uj

)
∧ ek < ui ∩ uj . Hence ui , uj . □

’number ’real) returning true. This will change as soon as complex numbers are
supported.



ELS’19, April 01–02 2019, Genova, Italy Léo Valais, Jim E. Newton, and Didier Verna

Proof. Type intersection, union and complement are equivalent to bitwise
Boolean operations “and”, “or” and “not” on representative bit-vectors.

Let two types ui and uj in:
(1) Let uk = ui ∪ uj . By definition, ∀l ∈ N ∪ {ω},bkl = 1 iff

bil = 1 or bjl = 1, that is bkl = bil ∨ bjl . Thus, also by
definition:

bvk = [bk0,bk1, . . . ,bkω ]

=
[
bi0 ∨ bj0,bi1 ∨ bj1, . . . ,biω ∨ bjω

]
= bvi ∨ bvj

(2) We proceed similarly for the intersection and the Boolean
logical operator “and” (∧).

(3) Let uk = ui . We have by definition ∀l ∈ N∪ {ω},bkl = ¬bil .
Then:

bvk = [¬bi0,¬bi1, . . . ,¬biω ]

= ¬bvi □

5.1.2 Implementation. Common Lisp cannot enumerate all the
possible subtypes of t nor all of its elements. Fortunately, we do
not need them all. We only need to consider the types mentioned
in the input type specifier to determine its emptiness.

We also do not need to enumerate all the elements of these types. It
is that aspect of the procedure of Baker that makes it both powerful
and difficult to understand at first. We only need sufficiently many
elements from a type to distinguish it from the other types. Because
we are now considering only a finite number of types, sayu1, . . . ,un ,
to register a new typeun+1 to our (now finite) matrix, we only need
to find an element e ∈ un+1 such as e < u1 ∪ · · · ∪ un .

Now let’s suppose that the type specifier ofun+1 is in fact (member
e), that e is itself chosen as a representative element for another
type, say uk , and that uk is only distinguished from the other reg-
istered types by that element e . un+1 and uk would then have the
same bit-vector representation when these types are likely to be
distinct. The general solution for that kind of problem is to regis-
ter all the elements found inside the member type specifier. When
there is a conflicting element e already registered as a representa-
tive for another types, we generate additional representatives for
these types. That precaution ensures that this kind of conflict never
happens and greatly simplifies the implementation of member type
specifiers.

To implement that registration matrix system, we use two
functions: B : type name 7−→ bit-vector, with B(ui ) = bvi , and
I : representative 7−→ bit index, with I (ei ) = i − 1. Baker suggests
in his small example [3] using the operator set which is depre-
cated in modern Common Lisp programming. Instead, we use hash
tables to represent these functions. Type names are symbols, bit-
vectors are bit-vectors and element indexes are positive integers.
To register a new type un+1, it is added to the B hash table and
its bit-vector content b(n+1)i is evaluated for all the existing repre-
sentatives (i ∈ J1;mK). To register a new representative em+1, it is
added to the I hash table with the indexm. Then we add one bit
(them-th bit) to each bit-vector bvi and evaluate it in respect to the
type ui . Thus, to retrieve the bit-vector of a registered primitive or
user-defined type t , we just lookup its value B(t). To compute the
bit-vector of a member expression (member e1 · · · en), we use the

value B((member e1 · · · en)) =
∨n
i=1 β (I (ei )), where β(x) returns

the null bit-vector with the x-th bit activated.
The bit-vector of logical type specifiers are given in Eq. 1, Eq. 2

and Eq. 3 thereafter.

B ((and U1 · · · Un)) =
n∧
i=1

B(Ui ) (1)

B ((or U1 · · · Un)) =
n∨
i=1

B(Ui ) (2)

B ((not U )) = ¬B(U ) (3)

5.1.3 Issues. The method for choosing the representative elements
for a type depends of its nature: it can be a primitive type, a user-
defined type (class, structure or condition) or a member expression.

Since primitive types are known (c.f. table 4.2 of [2]), their repre-
sentative elements are chosen at compile-time. The un+1 subtlety
above should still be kept in mind. For instance, the type null is a
subtype of both symbol and list ; so three representative elements
are needed: nil, a non-empty list and a symbol other than nil. Note
that some primitive types are an exhaustive partition of other types
(e.g., character ≡ (or base-char extended-char)). Obviously, in
that case, such a precaution does not apply.

For user-defined types, Baker suggests to extend the type cre-
ation mechanism—thus modifying the implementation’s internal
functions—to register a dummy element as a representative. We
decided not to follow his approach because of the poor portability
of his solution. Indeed, this work, often non-trivial, would have
to be repeated for each targeted Common Lisp implementation.
(We would like to avoid modifying the Sbcl internal mechanisms.)
Moreover, it would register a representative for every class created,
thus increasing bit-vectors’ size uselessly since only a few of these
classes are likely to appear in a subtypep type specifier. But more
importantly, the main drawback of his solution is that creating that
dummy element might have unexpected side-effects, as it may need
to use slot’s default values and/or initialize-instance. We decided
instead to use the Meta Object Protocol (Mop) [6], more specifically
class prototypes. Class prototypes are pseudo-instances of a class,
created without executing initialize-instance and which typep

and eql view as traditional instances. However, to create a class
prototype, the class needs to be finalized and it cannot be guaran-
teed until it is instantiated. Since that class may be involved in a
subtypep call before that happens, when a new class is encountered,
we force its finalization using the function ensure-finalized from
the (portable) closer-mop package10. Then, we create the proto-
type of the class using sb-mop:class-prototype and register it. This
method is much more portable than Baker’s and does not require
to hook inside the implementation.

Since (in Sbcl11) conditions are classes, they are supported au-
tomatically. The Common Lisp standard [1] states that “defstruct
without a :type option defines a class with the structure name as
its name”, hence in that case no additional work is required. The
standard also states that “Specifying this option [...] prevents the

10http://common-lisp.net/project/closer/
11Every major lisp implementations implement conditions as Clos classes—the most
obvious way to do it. We ignore exotic condition implementations.

http://common-lisp.net/project/closer/


Implementing Baker’s SUBTYPEP decision procedure ELS’19, April 01–02 2019, Genova, Italy

structure name from becoming a valid type specifier recognizable by
typep.” Thus, subtypep is not concerned by these types of structures.

To address the misrepresentation problem when member type
specifiers are involved, as discussed in Section 5.1.3, we must ensure
that a new representative element is generated and registered. The
Common Lisp standard ([1]) states that the member type specifier
is defined in terms of eql. That is, (typep e ’(member e1 · · · en))
uses eql to compare e to the successive ek to check the membership.
That precise property reduces the misrepresentation problem to
only two types: symbol and character (and their subtypes).

To better understand why it is the case, first consider a reduced
version of the top-level type t: t = (or string list symbol). Then,
let R = ("hello" (1 2 3) foo) be our list of representatives.

(1) Let’s ask the question (subtypep ’symbol ’(member foo)).
(2) As discussed in Section 5.1.3, we add the elements of the

member expression to R. To conform with the specification,
we first check whether or not foo is already in R eql-wise:
foo ∈eql R, so R does not change.

(3) As shown in Eq. 4, the emptiness check passes, meaning
that symbol is indeed a subtype of (member foo), which is
obviously wrong.

B(symbol) ∧ ¬B((member foo)) = 001 ∧ ¬001 (4)
= 001 ∧ 110
= 000
= B(nil)

However, for lists, that problem does not appear, thanks to the
eql-wise comparison.

(1) (subtypep ’list ’(member (1 2 3)))

(2) (1 2 3) <eql R ⇒ R = ("hello" (1 2 3) foo (1 2 3))

(3) As shown in Eq. 5, the emptiness check fails and the answer
is correct.

B(list) ∧ ¬B((member (1 2 3))) = 0101 ∧ ¬0001 (5)
= 0101 ∧ 1110
= 0100
, B(nil)

Within the literal types kingdom, the only types for which this
problem occurs—since the representatives are not supposed to be
accessible to the user of subtypep—are then symbol and character.
Therefore, only the representatives of these types need to be actually
checked when registering member’s elements.

To generate a new symbol, we use alexandria:symbolicate12.
The keyword subtype of symbol is also subject to the problem. (Ac-
tually, solving the problem for keywords also solves the problem
for symbols.) To generate a new character, we first need to know
whether it is a base-char or an extended-char. Then we pick a char-
acter of that type not registered yet. When all the characters of that
type are registered there is nothing to do (since the type is fully
represented in the matrix, no misinterpretation can occur).

We have not addressed the problem of a type specifier involving a
user classC and a member expression containing the class prototype
of C yet.

12https://common-lisp.net/project/alexandria/

5.2 Procedure for numeric types

Unlike the literal type kingdom, the range type kingdom does not
need an internal state to represent numeric types. Indeed, the expert
sub-procedure takes as input an already precise enough representa-
tion of the type described. Range type specifiers allow to describe
which kind of number is specified (its type, e.g., integer, ratio,
etc.), its bounds (inclusive and exclusive, e.g., (integer (0) 6)) and
is able to represent non-bounded intervals through the symbol *
meaning infinity (e.g., (float * 0.0) ≡ [−∞; 0.0]). The range type
specifier is as precise as the mathematical range notation. Addition-
ally, the mathematical union, the intersection and complement of
these ranges can be expressed equally using the corresponding
logical type specifier.

Therefore, to assert about the emptiness of the input type spec-
ifier, checking whether the canonicalized version of this interval
expression describes the empty range (i.e., nil) is sufficient. The cal-
culation is performed by three successive steps, which we describe
in the following sections.

This algorithm suffers from an exponential time and space com-
plexity. However, Baker claims that in practice, that theoretical
complexity is not an issue (it only appears for “highly artifical
cases”). We have not tried to prove (or invalidate) his statement but
Section 6 shows some early results that tend to support his claim.

We use a custom abstraction, the interval class, closer to the
mathematical object (with type, bounds and limits slots). Thus
we avoid the annoying manipulation of lists (with the many
standardized ranges syntaxes). The first step is to write a func-
tion range->interval that converts (using pattern matching) a
range type specifier to its corresponding interval instance. This
function also takes care of the exotic compound forms—such as
(unsigned-byte s) which describes the integer range [0; 2s − 1].
We also use a similar structure for interval operations to fully dis-
card the list representation.

We also need the following interval functions:

• (interval-and I1 I2) — returns I1 ∩ I2 if their types are eql,
or ∅ otherwise.

• (interval-or I1 I2) — returns I1 ∪ I2 if their types are eql

and I1 ∩ I2 , ∅, or ∅ otherwise.
• (interval-minus I1 I2) — returns I1 − I2 (may return two
values when I2 ⊂ I1) if their types are eql, or I1 otherwise.

• (interval-empty-p I) — returns whether I = ∅.

5.2.1 Type diversity reduction. Functions working with intervals
must be aware of the relationship of the types of these inter-
vals. For example, the intersection of two integer intervals might
be non-empty whereas the intersection of one integer and one
single-float intervals is always null as these two types are disjoint.
However, integer and fixnum are different types but the intersec-
tion of intervals of such types might be non-empty. The subtype
relationship of the types of intervals needs to be introspected to
accurately apply some operations (such as intersection or union).

The type number (complex numbers being ignored) is an ex-
haustive partition of six mutually disjoint types: integer, ratio,
single-float, short-float, double-float, and long-float. Baker ad-
vises to define what he calls “simple intervals”, that is intervals
guaranteed to have their type equal to one of these six types. This

https://common-lisp.net/project/alexandria/


ELS’19, April 01–02 2019, Genova, Italy Léo Valais, Jim E. Newton, and Didier Verna

Supertype Conversion
number (or rational float)

real (or rational float)

rational (or integer ratio)

float (or short-float single-float double-float long-float)

bignum (or integer (not fixnum))

Table 1: Conversion table for supertypes

way, as these types are mutually disjoint, operations on intervals
of such types have their implementation greatly simplified.

To convert each numeric type into its equivalent using only the
six types above, a two-step conversion is required.

(1) For intervals whose type is a supertype of one of these
types, the conversion table 1 is used. E.g.: the conversion of
(rational a b) gives (or (integer a b) (ratio a b)).

(2) For intervals whose type is a bounded subtype (i.e.: having
defined bounds, not infinity) of these six types, their actual
bounds have to be constrained to fit within the bounds of
their type, before being converted to their corresponding su-
pertype. For example, (fixnum 12 2100), has to be converted
to (integer most-negative-fixnum most-positive-fixnum),
where most-positive-fixnum < 2100, as 2100 is a bignum,
thus discarding the numbers in between. A similar proce-
dure is applied to the types bit, short-float, single-float,
double-float and long-float.

Eventually, the type of every interval is constrained to one of
the six types above, with the bounds (if some) of their original type
preserved.

5.2.2 Canonicalization. To check the emptiness of the interval ex-
pression, it is canonicalized. Let Γ be the canonicalization function.
Its parameter is either an interval I or an operation on intervals χ
(intersection, union or complement). Γ either returns ∅, an interval

or a union of disjoint intervals—the three possible outcomes of a
mathematical interval canonicalization.

First and foremost, anytime Γ encounters or returns a union,
it must ensure that it is flattened (no nested unions). It must also
ensure that the intervals inside the union are disjoint. As shown in
Section 5.2.1, intervals with different types are necessarily disjoint.
Touching intervals [3] are merged using interval-or.

Γ(∅) and Γ(I ) are straightforward, as shown in Eq. end-∅ and
Eq. end-I . These are the terminal cases of the recursion of Γ.

Γ(∅) = ∅ (end-∅)
Γ(I ) = I (end-I )

Intersections (and logical type specifiers) are reduced as soon as
they are encountered. Their operands need to be processed by Γ
first (hence the implicit mapping “k → n”). Eq. and-apply shows
how to reduce intersections. The Φf operator denotes a fold [5]
operation using the function f . Γ ◦ ∩ denotes the composition of
the Γ function and the intersection operator. To break it down in a
bottom-up fashion:

(1) Eq. and-final — the application of the intersection function.

(2) Eq. and-distribution′ — the distribution of the intersection
over the union. Next step is Eq. and-final.

(3) Eq. and-distribution— also the distribution of the intersection
over the union. However, Γ(χ ) may return an union, leading
the execution either to Eq. and-distribution′ or directly to
Eq. and-final.

(4) Eq. and-apply — the canonicalization of the χn forms us-
ing mapping. The results are then folded using Γ ◦ ∩, thus
initiating the recursive intersection distribution.

Γ

(⋂
n

χn

)
= ΦΓ◦∩ Γ(χk )k→n (and-apply)

Γ

(
χ ∩

⋃
n

In

)
=

⋃
n

Γ (Γ(χ ) ∩ In ) (and-distribution)

Γ

(⋃
n

In ∩ I

)
=

⋃
n

Γ(In ∩ I ) (and-distribution′)

Γ(I1 ∩ I2) = (interval-and I1 I2) (and-final)

Complements (not logical type specifiers) are also reduced as
soon as they are encountered. Their only operand is first canon-
icalized. Complementing U in number (the top-level type of the
range type kingdom) is equivalent to the difference number − U ,
as shown in Eq. not-apply. The difference canonicalization goes
through a similar recursive distribution path than the intersection,
that is Eq. minus-distribution and then Eq. minus-apply. Note that
this path is taken every time since the interval difference is an
internal operation and that its left-hand operand is alwaysU.

Γ (χ ) = Γ (U − Γ(χ )) (not-apply)
U = ⟨type diversity reduction of (number * *)⟩

Γ

(
χ −

⋃
n

In

)
=

⋃
n

Γ(χ − In ) (minus-distribution)

Γ

(⋃
n

In − I

)
=

⋃
n

(interval-minus In I) (minus-apply)

5.2.3 Range emptiness check. Once an interval expression
canonicalized, checking its emptiness is trivial. The predicate
interval-empty-p, given the result of the first Γ call, just returns
the Boolean that null-numeric-type-p has to return.

5.3 Array types and cons type specifiers

This section presents some preliminary work and research results
found on array and cons type specifiers. Obviously, since the im-
plementation of the expert sub-procedures for these kingdoms is
still a work in progress, no result nor implementation guidelines
are provided here. It does, however, give some insights about how
Baker procedure applies to modern Common Lisp implementations
such as Sbcl.

Array type specifiers are complex to handle because they are
bi-dimensional: it has an element type and bounds (e.g., (array
integer (* 2 *))). Internally, Common Lisp implementations do
not store which exact type specifier is specified but rather only store



Implementing Baker’s SUBTYPEP decision procedure ELS’19, April 01–02 2019, Genova, Italy

101 102 103

10−4

10−3

10−2

10−1

100
Subtypes of NUMBER

101 102

10−4

10−3

10−2

10−1

100

MEMBER types

101 102 103 104

10−4

10−3

10−2

10−1

100

Subtypes of T

100 101 102 103

10−4

10−3

10−2

10−1

100

Subtypes of CONDITION

Algorithm 1 with cl:subtypep

Algorithm 1 with baker:subtypep

Algorithm 2 with cl:subtypep

Algorithm 2 with baker:subtypep

Figure 3: Comparative efficiency measures of our subtypep

implementation

the result of the function upgraded-array-element-type returns giv-
ing that type. E.g, for (make-array 2 :element-type ’list), the
implementation does not makes an array of list but rather an ar-
ray of (upgraded-array-element-type ’list). For every value that
might return this function, Baker requires that we store a bit matrix
(instead of bit vectors) because of the complex bounds logic of the
type specifier. As for the literal type procedure, it seems to be an
efficient type representation system—albeit more complex—which
nonetheless requires an extra registration step and a global state.

Baker does not mention the cons type specifier family at all
in his article because it appeared after he released his article [4].
An accurate expert sub-procedure for this kingdom would have
an exponential complexity. More investigation is needed to assert
whether or not that exponential time is “acceptable” (as it is for
ranges) before rejecting it. The accuracy of existing subtypep pro-
cedures for the cons type specifier also needs to be studied.

6 EARLY RESULTS

Our implementation of subtypep is still in active development and
very experimental. No serious optimization work has been made.
Nonetheless, Newton has compared in [7] the performances of
several subtypep highly dependent algorithms, both using the im-
plementation of Sbcl and ours.

These results, shown in Figure 3, are only presented here as
complementary information. On the horizontal axis is the size of
the type specifiers and on the vertical axis is the measured exe-
cution time. Hence, the lower a curve is, the better. As expected,
our implementation is often slower, but not dramatically, which is
encouraging.

• Our implementation is overall slower in the range type king-
dom.

• Heavy users of member seems to experience a slower execu-
tion. Perhaps, as predicted by Baker, the reason is that the
systematic registration of the elements makes the size of
the bit-vectors grow quickly, thus making every subsequent
operation slower.

• For the symbolic type specifiers—primitive types, Clos
classes and conditions—our implementation already outper-
forms Sbcl’s.

7 CONCLUSION AND FUTURE WORK

Throughout this article we presented our implementation of Baker’s
decision procedure. In Section 2 we introduced the Common Lisp
type system, the notion of type specifier and some vocabulary. In
Section 4 we explained how to pre-process the caller’s type speci-
fiers to make the work of the expert sub-procedures presented in
Section 5 easier. We described our implementation for the symbolic,
member, range and logical type specifiers.We also gave some insights
about the implementation for the array and cons type specifiers.
We finally presented some early efficiency measures, which are
globally encouraging.

Our implementation is still a work in progress and highly exper-
imental. But with some cleaning and the implementation of both
array and cons expert sub-procedures, it could be a viable alter-
native to existing subtypep implementations. We will have open
sourced its code by then. We still have to find a solution for the
satisfies type specifier and the related uncertainty. Indeed, in some
situations, subtypep still can answer even though the type speci-
fier is involved. For example, in (subtypep ’string ’(and number

(satisfies evenp))), as the second operand is guaranteed to be
a subtype of number, the predicate can safely return false. Finally,
a lot of measures on accuracy and efficiency are needed to assert
whether Baker’s intuition about his procedure was correct or not.

Even if, in the future, we are to conclude that our implementation
is less efficient than those which already exists, Baker’s algorithm
would still likely to improve the predicate’s accuracy. Lispers would
then have the ability to choose whichever subtypep implementation
fits their needs the best.

REFERENCES

[1] Ansi. American National Standard: Programming Language – Common Lisp.
ANSI X3.226:1994 (R1999), 1994.

[2] Ansi. American National Standard: Programming Language – Common Lisp –
Type Specifiers (Section 4.2.3). ANSI X3.226:1994 (R1999), 1994. http://www.
lispworks.com/documentation/lw50/CLHS/Body/04_bc.htm.

[3] Henry G. Baker. A Decision Procedure for Common Lisp’s SUBTYPEP Predicate.
Lisp and Symbolic Computation, 1992.

[4] Paul F. Dietz. “subtypep tests” discussion on gcl-devel, 2005. https://lists.gnu.org/
archive/html/gcl-devel/2005-07/msg00038.html.

[5] Graham Hutton. A tutorial on the universality and expressiveness of fold. Journal
of Functional Programming, 9(4):355–372, July 1999. URL http://dblp.uni-trier.de/
db/journals/jfp/jfp9.html#Hutton99.

[6] Gregor J. Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, 1991.

[7] Jim Newton. Representing and Computing with Types in Dynamically Typed Lan-
guages. PhD thesis, Sorbonne Université, Paris, France, November 2018.

[8] Jim Newton and Didier Verna. Approaches in typecase optimization. In European
Lisp Symposium, Marbella, Spain, April 2018.

[9] Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in
Common Lisp. Morgan Kaufmann, 1992.

http://www.lispworks.com/documentation/lw50/CLHS/Body/04_bc.htm
http://www.lispworks.com/documentation/lw50/CLHS/Body/04_bc.htm
https://lists.gnu.org/archive/html/gcl-devel/2005-07/msg00038.html
https://lists.gnu.org/archive/html/gcl-devel/2005-07/msg00038.html
http://dblp.uni-trier.de/db/journals/jfp/jfp9.html#Hutton99
http://dblp.uni-trier.de/db/journals/jfp/jfp9.html#Hutton99

	Abstract
	1 Introduction
	2 The Common Lisp type system
	2.1 Type specifiers
	2.2 Vocabulary

	3 Procedure's mechanisms overview
	4 Pre-processing
	4.1 Alias expansion
	4.2 Numeric type specifiers conversion
	4.3 Splitting
	4.4 Type reformulation
	5 Expert sub-procedures
	5.1 Procedure for literal types
	5.2 Procedure for numeric types
	5.3 Array types and []cons type specifiers

	6 Early results
	7 Conclusion and Future Work

	References




