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Introduction
Myths and legends. . .

Facts:
I ”LISP is slow” . . . NOT ! (it’s been 20 years)
I Image processing libraries written in C or C++

(sacrificing expressiveness for performance)
I LISP achieving 60% speed of C

(recent studies)
⇒We have to do better:

I Studying behavior and performance of LISP
(part 1: full dedication)

I 4 simple image processing algorithms
I Pixel storage and access / arithmetic operations

⇒ Equivalent performance
(LISP 10% better in some cases)
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Experimental conditions

The algorithms: the “point-wise” class
I Pixel assignment / addition / multiplication / division
I Soft parameters: image size / type / storage / access
I Hard parameters: compilers / optimization level
I ⇒ More than 1000 individual test cases

The protocol
I Debian GNU Linux / 2.4.27-2-686 packaged kernel
I Pentium 4 / 3GHz / 1GB RAM / 1MB level 2 cache
I Single user mode / SMP off (no hyperthreading)
I Measures on 200 consecutive iterations
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C code sample

The add function

void add ( image ∗ to , image ∗ from , f l o a t va l )
{

i n t i ;
const i n t n = ima−>n ;

for ( i = 0 ; i < n ; ++ i )
to−>data [ i ] = from−>data [ i ] + va l ;

}

Gcc 4.0.3 (Debian package)
Full optimization: -O3 -DNDEBUG plus inlining
Note: inlining should be almost negligible
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Results
In terms of behavior

1D implementation slightly better (10%⇒ 20%)
Linear access faster (15⇒ 35 times)

I Arithmetic overhead: only 4x – 6x
I Main cause: hardware cache optimization

Optimized code faster (60%) in linear case, irrelevant
in pseudo-random access

I Causes currently unknown

Inlining negligible (2%)
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Results
In terms of performance

Fully optimized inlined C code

Algorithm Integer Image Float Image
Assignment 0.29 0.29

Addition 0.48 0.47
Multiplication 0.48 0.46

Division 0.58 1.93

Not much difference between pixel types
Surprise: integer division should be costly

I “Constant Integer Optimization” (with inlining)
I Do not neglect inlining !
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LISP code sample

The add function

( defun add ( to from va l )
( dec lare ( type ( simple−array s i n g l e− f l o a t ( ∗ ) ) to from ) )
( dec lare ( type s i n g l e− f l o a t va l ) )
( l e t ( ( s i ze ( array−dimension to 0 ) ) )

( dotimes ( i s i ze )
( set f ( aref to i ) (+ ( aref from i ) va l ) ) ) ) )

CMU-CL (19c), SBCL (0.9.9), ACL (7.0)
Full optimization: (speed 3), 0 elsewhere
Array type: 1D, 2D
Array access: aref, row-major-aref, svref
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Comparative results
In terms of behavior

6= Plain 2D implementation much slower (2.8x⇒ 4.5x)
= Linear access faster (30 times)

I Same reasons, same behavior. . .
= Optimized code faster in linear case, irrelevant in

pseudo-random access
6= Gain more important in LISP (3x⇒ 5x)
6= Gain more important on floating point numbers
⇒ In LISP, safety is costly

= Inlining negligible
6= No “Constant Integer Optimization”
6= Negative impact on performance (-15%), if any
⇒ Inlining still a “hot” topic (register allocation policies ?)
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Comparative results
In terms of performance

Pseudo-random access

Assignment Addition Multiplication Division
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Assignment: LISP 19% faster than C
Other: insignificant (5%)
Exception: integer division
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Comparative results
In terms of performance

Linear access

Assignment Addition Multiplication Division
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ACL: poor performance
CMU-CL, SBCL: strictly equivalent to C
C wins on integer division, loses on floating-point one
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Type inference
A weakness of COMMON-LISP . . .

Static typing cumbersome (source code annotations)
I Can we provide minimal type declarations . . .
I . . . and rely on type inference ?

Incremental typing by compilation log examination
Unfortunately:

I Compiler messages not necessarily ergonomic
I Type inference systems not necessarily clever
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Example of (missing) type inference

multiply excerpt

; ; . . .
( dec lare ( type ( simple−array f ixnum ( ∗ ) ) to from ) )
( dec lare ( type f ixnum va l ) )
; ; . . .
( set f ( aref to i ) ( the f ixnum (∗ ( aref from i ) va l ) ) ) ) ) )

(* fixnum fixnum) 6= fixnum in general, but. . .
I to declared as an array of fixnum’s,
I so the multiplication has to return a fixnum

CMU-CL and SBCL ok, ACL not ok.
I Need for further explicit type information
I worse in ACL:
declared-fixnums-remain-fixnums-switch
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Conclusion

In terms of behavior
I External parameters: no surprise
I Internal parameters: differences, attenuated by

optimization
In terms of performance

I Comparable results in both languages
I Very smart LISP compilers (given language

expressiveness)
However:

I Typing can be cumbersome
I Difficult to provide both correct and minimal information

(weakness of the COMMON-LISP standard)
I Inlining is still an issue
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Perspectives

Low level: try other compilers / architectures
(and compiler / architecture specific optimization
settings)
Medium level: try more sophisticated algorithms
(neighborhoods, front-propagation)
High level: try different levels of genericity
(dynamic object orientation, static meta-programming)

Do not restrict to image processing
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Quesλ ions ?

Logo by Manfred Spiller
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