How to make LISP go faster than C

Didier Verna*

Abstract

Contrary to popular belief, LisP code can be very ef-
ficient today: it can run as fast as equivalent C code
or even faster in some cases. In this paper, we explain
how to tune Lisp code for performance by introducing
the proper type declarations, using the appropriate
data structures and compiler information. We also
explain how efficiency is achieved by the compilers.
These techniques are applied to simple image process-
ing algorithms in order to demonstrate the announced
performance on pixel access and arithmetic operations
in both languages.

Keywords: Lisp, C, Numerical Calculus, Image Pro-
cessing, Performance

1 Introduction

More than 15 years after the standardization process
of CoMMON-LISP [5], and more than 10 years after
people really started to care about performance [, [4],
Lisp still suffers from the legend that it is a slow lan-
guage. Although perfectly justified back in the 60’s,
this idea has become obsolete long ago: today, Lisp
can run as fast, or even faster than C.

If this false idea of slowness is still widespread today,
it is probably because of the lack of knowledge, or
misunderstanding of the 4 key factors for getting per-
formance in Lisp:

Compilers While Lisp is mainly known to be an in-
terpreted language, there are very good and effi-
cient compilers out there, that can deliver not
only byte-code, but also native machine code
from LiSP source.

Static Typing While Lisp is mainly known for its
dynamically typed nature, the CoMMON-LIsp
standard provides means to declare variable types

*Epita Research and Development Laboratory, 14-16 rue
Voltaire, F-94276 Le Kremlin-Bicétre, France. Email: di-
dier@lrde.epita.fr

statically (hence known at compile-time), just as
you would do in C.

Safety Levels While dynamically typed Lisp code
leads to dynamic type checking at run-time, it
is possible to instruct the compilers to bypass
all safety checks in order to get optimum per-
formance.

Data Structures While LisP is mainly known for
its basement on list processing, the COMMON-
Lisp standard features very efficient data types
such as specialized arrays, structs or hash tables,
making lists almost completely obsolete.

Experiments on the performance of Lisp and C were
conducted in the field of image processing. We bench-
marked, in both languages, 4 simple algorithms to
measure the performances of the fundamental low-
level operations: massive pixel access and arithmetic
processing. As a result, we got at least equivalent
performance from C and Lisp, and even a 10% im-
provement with LISP code in some cases.

In this paper, we present the algorithms used for
benchmarking, and the experimental performance re-
sults we obtained. We also demonstrate how to prop-
erly tune the corresponding LiSP code by introducing
the proper type declarations, using the appropriate
data structures and compiler information, in order to
get the announced performance.

2 Experimental Conditions
2.1 The Algorithms

Our experiments are based on 4 very simple algo-
rithms: pixel assignment (initializing an image with a
constant value), and pixel addition / multiplication /
division (filling a destination image with the addition
/ multiplication / division of every pixel from a source
image by a constant value). These algorithms, while
very simple, are pertinent because they involve the
fundamental atomic operations of image processing:
pixel access and arithmetic processing.

mailto:didier@lrde.epita.fr
mailto:didier@lrde.epita.fr

The behavior of the algorithms is further controlled by
additional parameters such as image size, image type
(integers or floating point numbers), image represen-
tation (linear or multidimensional arrays) etc. For
the sake of conciseness, only a few pertinent results
are presented here. Nevertheless, people interested in
the precise parameters combination and benchmark
results we obtained can find the complete source code
and comparative charts of our experiments at the au-
thor’s website!.

In the remainder of this paper, we consider 800 x 800
integer or floating point images represented as 1D ar-
rays of consecutive lines only.

2.2 The Protocol

The benchmarks have been generated on a De-
bian GNU/Linux? system running a packaged
2.4.27-2-686 kernel version on a Pentium 4, 3GHz,
with 1GB RAM and 1MB level 2 cache. In order to
avoid non deterministic operating system or hardware
side-effects as much as possible, the PC was freshly re-
booted in single-user mode, and the kernel used was
compiled without symmetric multiprocessing support
(the cpU’s hyperthreading facility was turned off).

Also, in order to avoid benchmarking any program
initialization side-effect (initial page faults etc.), the
performances have been measured on 200 consecutive
iterations of each algorithm.

3 C Programs and Benchmarks

For benchmarking the C programs, we used the GNU
C compiler, Gcce 2, version 4.0.3 (Debian package ver-
sion 4.0.3-1). Full optimization is obtained with the
-03 and -DNDEBUG flags, and by inlining the algorithm
functions into the 200 iterations loop. It should be
noted however that the performance gain from inlin-
ing is almost negligible. Indeed, the cost of the func-
tion calls is negligible compared to the time needed to
execute the functions themselves (i.e. the time needed
to traverse the whole images).

For the sake of clarity, a sample program (details re-
moved) is presented in listing the addition algo-
rithm for float images.

Figure [1| presents the execution times for all C algo-
rithms on both integer and floating point, 800 % 800

Thttp://www.lrde.epita.fr/~didier/comp/research/
*http://www.debian.org
Shttp://gcc.gnu.org

void add (image xto, image xfrom, float val)
int i;
const int n = ima—>n;

for (i = 0; i < n; 4++1i)

to—>data[i] = from—>data[i] + val;
}
Listing 1: float Pixel Addition, C Version
Algorithm | Integer Image | Float Image

Assignment 0.29 0.29
Addition 0.48 0.47
Multiplication 0.48 0.46
Division 0.58 1.93

Figure 1: Execution Times (s), C Implementation

images, and 200 consecutive iterations. These results
will serve as a reference for comparison purpose with
the upcoming LISP code.

The reader might be surprised by the performance of
integer division, otherwise known as a costly opera-
tion. The explanation is that with inlining enabled,
GCC is able to perform an optimization known as
the “constant integer division” optimization [6], which
actually removes the real division operation and re-
places it by a multiplication and some additional (but
cheaper) arithmetics.

4 First attempt at Lisp Code

For testing LISP code, we used the experimental con-
ditions described in section [2| We also took the op-
portunity to try several LisP compilers. For the sake
of conciseness, benchmarks presented in the remain-
der of this paper are obtained with CMu-CL * version
cvs 19c.

In this section, we describe our first attempt at writing
L1sP code equivalent to that of listing[I] This attempt
is shown in listing

(defun add (to from val)
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) val)))))

Listing 2: Pixel Addition, First Lisp Version

The CoOMMON-LIsP standard [5], besides the in-
evitable lists, provides more “modern” data types,

“http://www.cons.org/cmucl

http://www.lrde.epita.fr/~didier/comp/research/
http://www.debian.org
http://gcc.gnu.org
http://www.cons.org/cmucl

such as structs, arrays and hash tables. Arrays al-
low you to store and access LisP objects according to
a rectilinear coordinate system, and thus can be con-
sidered as the equivalent of malloc’ed or calloc’ed
memory areas in C. The Lisp function for creat-
ing arrays is make-array. In LISP, arrays can be
multidimensional. On listing 2] you can see a call
to array-dimension which retrieves the array’s first
rank size (no need to store this information in a data
structure as in C). Remember that we are using 1D
linear arrays to represent our images. The function
for accessing array elements is aref and assignation
is performed via setf. Unsurprisingly, dotimes is a
macro performing a loop in a manner similar to the
for language construct in C.

Running this function in a LISP interpreter shows
that it is approximately 2300 times slower than the
C version (system time and garbage collection ex-
cluded). The compiled version however is “only” 60
times slower than the equivalent C code. Finally, even
with optimization turned on (see section , we are
still 20 times slower than C.

To understand why we are getting this poor perfor-
mance, one has to realize that our Lisp code is un-
typed: contrary to C, the variables and function ar-
guments we used could hold any Lisp object. For
instance, we use array-dimension on the function
parameter to, but nothing prevents us from passing
something else than an array; we perform arithmetic
operations on the function parameter val, but noth-
ing prevents us from passing something else than a
number.

As a consequence, the compiled LispP code has to check
dynamically that the variables we use are of the proper
type with respect to the operations we want to apply
to them. Our next step should then be to provide
type information to the LISP compiler, just as we do

in C.

5 Typing Lisp Code
5.1 Typing mechanisms

The CoMMON-LIsp standard provides means to de-
clare the expected types of LISP objects at compile
time. It should be noted however that one is never
forced to declare the type of a variable: types can
be declared when they are known, or left unspecified
otherwise. The Lisp compilers are expected to do the
best they can according to the information they have.

In a way, since the standardization of COMMON-LISP,
it is not correct anymore to say that Lisp is a dynam-
ically typed language: it can be either dynamically or
statically typed at the programmer’s will.

There are different ways to specify types in COMMON-
Lisp. The first one is by passing specific arguments
to functions. For instance, if you want to create an
array and you know that this array will only contain
single precision floating point numbers, you can pass
the :element-type keyword parameter to the func-
tion make-array like this:

(make-array size :element-type ’single-float)

The next way to specify types is by means of “decla-
rations™ this mechanism is used to precise the type
of a function parameter or a freshly bound variable.
A type declaration should appear near the first oc-
currence of the variable it refers to. Listing [3| shows
the next version of our addition algorithm, with type
declarations issued.

(defun add (to from val)
(declare (type (simple—array single—float (x))
to from))
(declare (type single—float val))
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) val)))))

Listing 3: Pixel Addition, Typed Lisp Version

As you can see, we have declared the (expected)
type of the 3 function parameters: two arrays of
single-float values (in COMMON-LIsP, “simple ar-
ray” denotes the equivalent of C arrays; there are
other kinds of arrays that we will not describe here),
and a single-float parameter. The (*) specifica-
tion indicates that the arrays are 1D, but the actual
size is unknown (at compile-time). 2D arrays would
have been described with (* *) for instance.

A third way to provide type declarations will be de-
scribed in section

5.2 Objects Representation

To understand why type declarations matter for op-
timizing LI1SP performance, one has to realize the im-
plications of dynamic typing a bit. Since LISP objects
can be of any type (worse: of any size), the variables
in Lisp don’t carry type information. Rather, the
objects themselves are responsible for providing their
own type. This means that most of the time, Lisp

objects contain type information plus a pointer to the
real value. And obviously, pointer (de)referencing is
causing a major performance loss.

Provided that type information is available, several
techniques to avoid pointer representation can be
used [I]. Two of them are described below.

5.3 Array Storage Layout

The first example deals with the way Lisp objects are
stored in arrays: if the LiSP compiler knows that an
array only holds floating point numbers for example,
it can store the values directly in the array, in na-
tive machine format (just like in C), instead of storing
pointers to them. A special version of the aref func-
tion can then be used (and even inlined) in order to
access the values directly at the correct offset, instead
of dereferencing pointers. This process of specializ-
ing functions instead of using generic ones is called
“open-coding” in the LiSP community.

5.4 Immediate Objects

Our second example is that of “immediate objects”,
that is, objects that are small enough to be rep-
resentable without indirection (on a single memory
word). In a modern LISP implementation, not all val-
ues are valid pointers to LiSP objects: typically, the
3 least significant bits are reserved for type informa-
tion. In CoMMON-LISP, the standard integer type is
called “fixnum”. The CMU-CL compiler [3] represents
them as memory words ended by two zeroed bits. This
effectively gives a 30 bits precision on a 32 bits ma-
chine. Most operations on fixnums can be performed
directly; only a few of them require bit shifting, which
is a small overhead anyway.

Now, let us examine the assembly code generated by
CMmU-CL for a simple (dotimes (i 100) ...) loop.
This is shown in listing

The interesting lines appear with a gray background.
They correspond respectively to the incrementation
of the index, and the comparison with the upper limit
(100). Here, we realize that the compiler has adapted
the values in order to work directly on the shifted
integer representation, hence, as fast as with “real”
machine integers.

We see that in order to achieve good performance,
the Lisp compilers try to, and usually need to be es-
pecially smart and implement all sorts of elaborated
optimizations.

58701478: .ENTRY FOO()
90: POP DWORD PTR [EBP-3]
93: LEA ESP, |[EBP-32]
96: XOR EAX, EAX
98: JMP L1
9A: LO: ADD EAX, 4
9D: L1: CME EAX, 400
A2: JL Lo
Ad: MOV EDX, #x2800000B
A9: MOV ECX, [EBP-3]
AC: MOV EAX, [EBP—4]|
AF: ADD ECX, 2
B2: MOV ESP, EBP
B4: MOV EBP, EAX
B6: JMP ECX

Listing 4: Disassembly of a dotimes loop

5.5 Optimization

In order to evaluate the gain from typing, we have to
say a word about optimization first: the COMMON-
L1sp standard defines “qualities” that the user might
be interested in optimizing. The optimization level
is usually represented by an integer between 0 and
3, 0 meaning that the quality is totally unimportant,
3 meaning that the quality is extremely important.
Among those qualities are safety (that is, run-time
error checking) and speed (of the object code).

Note that optimization qualities can be set globally,
by means of declamations, but also on a per-function
basis, by means of declarations similar to the type
declarations we saw earlier. Here is how you would
globally request fully safe and instrumented code for
instance:

(declaim (optimize (speed 0)
(compilation-speed 0)
(safety 3)
(debug 3)))

When instructed to produce safe code, a modern
Lisp compiler will treat type declarations as asser-
tions and trigger an error when values are not of the
expected type; this run-time checking process takes
time. When instructed to produce fast and unsafe
code however, the same compiler will “trust” the pro-
vided type declarations and activate all sorts of opti-
mizations, like avoiding the use of pointer representa-
tion for L1SP objects when possible, open-coding func-
tions etc.. As a consequence, the behavior is undefined
if the values are not of the expected type, just as in

C.

Our experiments show that completely safe Lisp code
runs 30 times slower than the equivalent C code. On

Integer Image | Float Image

Algorithm | C Lisp C Lisp

Assignment | 0.29 0.29 0.29 0.29
Addition | 0.48 0.48 0.47 0.46
Multiplication | 0.48 0.48 0.46 0.45
Division | 0.58 1.80 1.93 1.72

Figure 2: Execution Times (s), All Implementations

the other hand, figure [2| presents the results for fully
optimized (unsafe) code. For reference, results from
C code are also redisplayed.

In the case of integer images, we see that C and Lisp
perform at ezactly the same speed, apart from the
case of division which is 3 times slower in Lisp. After
further investigation and disassembly of the generated
binary code, it appears that none of the tested Lisp
compilers are aware of the constant integer division
optimization that GCcC is able to perform, so they use
the slow idiv instruction of the x86 CPU family. This
is regrettable, but it shouldn’t be too hard to improve
those compilers on this particular case.

The case of floating point images, however, comes
with a little surprise: we see that the first 3 algo-
rithms run at identical, or slightly better (although
not very significantly) in LisP than in C. However, the
division algorithm performs 10% faster in Lisp than
in C. Other cases not presented here were also found
in which Lisp performs significantly faster. These re-
sults should help us in getting C people’s attention.

6 Type Inference

The mechanism by which typing helps the compiler
optimize is not as simple as it seems. For instance,
notice, on listing |3, that not all our variables were
explicitly typed. Actually, two problems in this code
were silently skipped until now: firstly, no informa-
tion is provided about the array size, so the needed
integer capacity for variables size and i is unknown.
Secondly, the result of an arithmetic operation might
not be of the same type as the operands.

When not all types are provided by the programmer,
modern Lisp compilers try to infer the missing ones
from the available information. Unfortunately (and
this is a weakness of COMMON-LIsP), the standard
leaves too much freedom on what to do with type
declarations, so the type inference systems may differ
in behavior and quality across the different compilers.
As an illustration of this, two potential problems with

typing are described below.
6.1 Loop Arithmetics

Without any type declaration provided, CmMuU-CL is
able to do inline arithmetics on the loop index of a
dotimes macro, which explains why we did not pro-
vide an explicit type declaration for i in listing
However, when two dotimes loops are nested, CMU-
CL issues a note requesting an explicit declaration
for the first index. On the other hand, no declara-
tion is requested for the second one. The reason for
this behavior is currently unknown (even by the CMmuU-
CL maintainers we contacted). In such a case, it is
difficult to know if the bug lies in the type inference
system or in the compilation notes mechanism. The
only way to make sure that all possible optimizations
are performed is to disassemble the suspicious code.

6.2 Arithmetic results

On the other hand, the type inference system of CMU-
CL has its strengths. Consider the integer multipli-
cation algorithm, applied to integer images, in listing

(defun mult (to from val)
(declare (type (simple—array fixnum (x))
to from))
(declare (type fixnum val))
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (x (aref from i) val)))))

Listing 5: Pixel Multiplication, Typed Lisp Version

It should be noted that the result of the multiplica-
tion of two fixnums might be bigger than a fixnum
(a “bignum” actually). However, the type inference
system of CMU-CL notices that we store the result
of this multiplication in an array declared as contain-
ing fixnums only. As a consequence, it assumes that
we expect this multiplication to remain a fixnum, and
continues to use optimized arithmetics.

Unfortunately, not all type inference systems are that
smart. For instance, given the same code, the Alle-
gro compiler (AcL)® will use a generic multiplication
function which has the ability to return a bignum if
needed, only at the cost of speed. Since we know that
the result of the multiplication remains a fixnum, we
have to tell that explicitly to Acr, by using another
type declaration mechanism defined by the COMMON-
Lisp standard, as illustrated by listing [6}

Shttp://www.franz.com

http://www.franz.com

(defun mult (to from val)

(declare (type (simple—array fixnum (x))

to from))
(declare (type fixnum val))
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i)
(the fixnum (* (aref from i) val))))))

Listing 6: Pixel Multiplication, Second Lisp Version

This is unfortunate, because it forces programmers to
clutter the code with ideally non needed declarations,
only for questions of portability.

7 Conclusion

In this paper, we explained how to achieve efficiency
in L1SP by using the appropriate data structures, type
declarations and optimization settings.

Since [1} 4], considerable work has been done in the
Lisp compilers, to the point that equivalent Lisp and
C code entails strictly equivalent performance, or even
better performance in Lisp sometimes. We should
also mention that when we speak of “equivalent C and
LisP” code, this is actually quite inaccurate. For in-
stance, we are comparing a language construct (for)
with a programmer macro (dotimes); we are compar-
ing sealed function calls in C with calls to functions
that may be dynamically redefined in LiSP efc.. This
means that given the inherent expressiveness of LisP,
compilers have to be even smarter to reach the effi-
ciency level of C, and this is really good news for the
Lisp community.

Lisp still has some weaknesses though. We saw that it
is not completely obvious to type LisP code both cor-
rectly and minimally (without cluttering the code),
and a fortiori portably. Compilers may behave very
differently with respect to type declarations and may
provide type inference systems of various quality. Per-
haps the CoMMON-LISP standard leaves too much
freedom to the compilers in this area.

8 Perspectives

From a low-level point of view, it would be interest-
ing to extend our benchmarks to other compilers and
architectures, and also to dig into each compiler’s spe-
cific optimization options to see if performance can be
improved even more.

From a medium-level point of view, benchmarking
very simple algorithms was necessary to isolate the

parameters we wanted to test (namely pixel access
and arithmetic operations). The same experiments
should now be conducted on more complex algorithms
in order to figure out the impact on performance.

From a high-level point of view, we should also run
performance tests at different degrees of genericity.
Typically, it would be interesting to compare dynamic
object orientation with C++ and Cros [2]. In a sec-
ond step, the static meta-programming functionalities
of the C++ templating system should be compared
with the ability of LiSP to generate and compile new
functions on the fly.

Finally, one should note that the performance results
we obtained are not specific to image processing: any
kind of application which involves numerical compu-
tation on large sets of contiguous data might be in-
terested to know that LiSp has caught up with per-
formance.

References

[1] Richard J. Fateman, Kevin A. Broughan, Di-
ane K. Willcock, and Duane Rettig. Fast
floating-point processing in COMMON-LISP.
ACM Transactions on Mathematical Software,
21(1):26-62, March 1995. Downloadable ver-
sion at http://openmap.bbn.com/ kanderso/
performance/postscript/lispfloat.psl

[2] Sonja E. Keene. Object-Oriented Programming in
CoOMMON-LISP: a Programmer’s Guide to CLOS.
Addison-Wesley, 1989.

[3] Robert A. Mac Lachlan. The python compiler for
CMU-CL. In ACM Conference on 1Li1sP and Func-
tional Programming, pages 235-246, 1992. Down-
loadable version at http://www-2.cs.cmu.edu/
“ram/pub/1fp.ps.

[4] J.K. Reid. Remark on “fast floating-point process-
ing in CoMMON-L1sP”. In ACM Transactions on
Mathematical Software, volume 22, pages 496-497.
ACM Press, December 1996.

[5] Guy L. Steele. COMMON-LISP the Language, 2nd
edition. Digital Press, 1990. Online and download-
able version at http://www.cs.cmu.edu/Groups/
AI/html/cltl/cltl2.htmll

[6] Henry S. Warren. Hacker’s Delight. Addison
Wesley Professional, July 2002. http://wuw.
hackersdelight.org.

http://openmap.bbn.com/~kanderso/performance/postscript/lispfloat.ps
http://openmap.bbn.com/~kanderso/performance/postscript/lispfloat.ps
http://www-2.cs.cmu.edu/~ram/pub/lfp.ps
http://www-2.cs.cmu.edu/~ram/pub/lfp.ps
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://www.hackersdelight.org
http://www.hackersdelight.org

	Introduction
	Experimental Conditions
	The Algorithms
	The Protocol

	C Programs and Benchmarks
	First attempt at Lisp Code
	Typing Lisp Code
	Typing mechanisms
	Objects Representation
	Array Storage Layout
	Immediate Objects
	Optimization

	Type Inference
	Loop Arithmetics
	Arithmetic results

	Conclusion
	Perspectives

