o

Lisp:
faster than C?

How to Make LisP Go Faster than C

Didier Verna

didier@Irde.epita.fr
http://www.Irde.epita.fr/ didier

Version 1.4 — June 13, 2006

mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr/~didier

Introduction
PR Myths and legends. ..

Lisp:

faster than C? m "LisPis slow”... NOT ! (it's been 20 years)
Hiderema m Why is LISp fast ?
Introduction » Smart compilers (= native machine code)

» Static typing (types known at compile-time)

» Safety levels (compiler optimizations)

» Efficient data structures (arrays, hash tables etc.)
m Demonstration:

» Comparative C and LIsp benchmarks

» 4 simple image processing algorithms

» Pixel storage and access / arithmetic operations
m = Equivalent performance

(LIsP 10% better in some cases)

Table of contents

Lisp:
faster than C?

Experimental Conditions

Introduction

C Programs and Benchmarks
LISP code, take 1

LISP code, take 2
m Typing mechanisms
m Optimization
m Results

Type inference

Experimental conditions

Lisp:

faster than G? m The algorithms: the “point-wise” class
Didier Verna » Pixel assignment / addition / multiplication / division
» Parameters: image size / type / storage

» Presented: 800+800 int / f1oat images

m The protocol

» Debian GNU Linux / 2.4.27-2-686 packaged kernel
» Pentium 4 3GHz / 1GB RAM / 1MB level 2 cache

» Single user mode / SMP off (no hyperthreading)

» Measures on 200 consecutive iterations

Experiments

Lisp:
faster than C?

Didier Verna

The case of C

The add function

void add (image =to, image *from, float val)
{

int i;

const int n = ima—n;

for (i = 0;

i ;o++i)
to—>data[i]

<n
= from—>data[i] + val;

m Gcc 4.0.3 (Debian package)
m Full optimization: -03 -DNDEBUG plus inlining
m Note: inlining should be almost negligible

Results (seconds)
e Time is of the Essence

Fully optimized inlined C code

Lisp:
faster than C?

e Algorithm | Integer Image | Float Image
Assignment 0.29 0.29
Addition 0.48 0.47
The case ot Multiplication 0.48 0.46
Division 0.58 1.93

m Surprise: integer division should be costly
m “Constant Integer Optimization” (with inlining)
m Do not neglect inlining !

i g First shot at LISP code
. CMuU-CL 19¢ (CVS)

Lisp:
faster than C?

The add function, take 1

Didier Verna

(defun add (to from val)
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) val)))))

Raw Lisp

m COMMON-LISP’s standard simple—array type

m Interpreted version: 2300x
m Compiled version: 60x
m Optimized version: 20x

Untyped code =- dynamic type checking !

ﬁ% Typing mechanisms

Lisp:

faster than C? m Typing paradigm:
Didier Verna » Type information (COMMON-LISP standard)
Declare the expected types of LISP objects
» Type information is optional
Declare only what you know; give hints to the compilers
» Both a statically and dynamically typed language
m Typing mechanisms:
e e » Function arguments:
(make-array size :element-type ’'single-float)
» Type declarations:
Function parameter / freshly bound local variable

> -

Declaring the types of function parameters

5 g Typed LISP code sample

Lisp:
faster than C?

The add function, take 2

Didier Verna
(defun add (to from val)

(declare (type (simple—array single—float (x))

to from))
(declare (type single—float val))
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) val)))))

B simple-arrays...
m of single-float’s...
m unidimensional.

; : Object representation

Why typing matters for performance

Lisp:

faster than C? m Dynamic typing = objects of any type (worse: any size)

Didier Verna

m LISP variables don’t carry type information: objects do

The “boxed” representation of LISP objects

Pointer to Lisp Object
Type information | @-———»| Actual value

Optimization

m Dynamic type checking is costly !
m Pointer dereferencing is costly !

Lisp:
faster than C?

Didier Verna

Optimization

The benefits of typing

2 examples

m Array storage layout:
» Homogeneous arrays of a known type
= native representation usable
» Specialization of the aref function
» “Open Coding”
m Immediate objects:
» Short (less than a memory word)
» Special “tag bits” (invalid as pointer values)
» = Encoded inline

Unboxed fixnum representation

[Tagbits |

Bits 1 ... 29 30 31 32

100

0

fixnum value (30 bits)

(dotimes (i 100) ...)

| : Example: optimizing a loop index

Lisp:
faster than C?

Disassembly of a dot imes macro

Didier Verna
58701478: .ENTRY FOO()

90: POP DWORD PTR [EBP-8]
93: LEA ESP, [EBP-32]
96: XOR EAX, EAX
98: JMP L1
9A: LO: ADD EAX, 4
9D: L1: CMP EAX, 400
A2: JL Lo

Optimization A4 : MoV EDX, #x2800000B
A9: MoV ECX, [EBP-8]
AC: MoV EAX, [EBP—4]
AF: ADD ECX, 2
B2: MoV ESP, EBP
B4: MoV EBP, EAX
B6: JMP ECX

Lisp:
faster than C?

Didier Verna

Optimization

Activating optimization

m “Qualities” (COMMON-LISP standard): between 0 and 3
B safety, speed elc.

m Global or local declarations in source code
(no compiler flag)

Global qualities declaration

(declaim (optimize (speed 3)
(compilation-speed 0)
(safety 0)
(debug 0)))

m Safe code: declarations treated as assertions
m Optimized code: declarations trusted

Results
'R And here comes a little surprise. ..

C and Lisp comparative performance

Lisp:
faster than C?

Didier Verna

Integer Image | Float Image
Algorithm | C Lisp C Lisp
Assignment | 0.29 0.29 0.29 | 0.29
Addition | 048 | 0.48 | 0.47 | 0.46
Multiplication | 0.48 0.48 0.46 | 0.45
Division | 0.58 1.80 1.93 | 1.72

m |dentical performances from C and LISP

m C better at integer division
(no “constant integer optimization” in LISP compilers)

m Surprise: LISP 10% faster at floating-point division

Type inference
IR Static typing is not as easy as it seems. ..

Lisp:

faster than C? = What to do when not all types are provided ?
Didier Verna » What about the type of i and size ?

» What about the type of (fixnum fixnum) ?
m = Figure out at run-time

» Stay dynamically typed

» Use boxed representations
m = Infer the missing types ... but

» Type inference systems of various behavior and quality
» COMMON-LISP standard too weak about type
declarations

Type inference

Example of type inference

Lisp:

faster than C? multiply excerpt

Didier Verna

Eae.cllzlare (type (simple—array fixnum (%)) to from))
(declare (type fixnum val))

(setf (aref to i) (the fixnum (x (aref from i) val))))))

B (x fixnum fixnum) # fixnumin general...but
» to declared as an array of fixnum’s

Type inference » So the multiplication has to return a fixnum
m Sadly, not all type inference systems are that smart
(e.g. Allegro)

» Need for further explicit type information
» Type declarations for intermediate values: the

ﬁ% Conclusion

Lisp:

faster than G? m Optimizing LiSP code:
Didier Verna data structures, type declarations, optimization

m Today’s compilers are smart:
performance can be equivalent to (or better than) C

m Typing can be cumbersome
(source code annotation)

m Difficult to provide both correct and minimal information
Conelusion (weakness of the COMMON-LISP standard)

ﬁ% Perspectives

Lisp:

faster than C? m Low level: try other compilers / architectures

Didier Verna (and compiler / architecture specific optimization
settings)

m Medium level: try more sophisticated algorithms
(neighborhoods, front-propagation)

m High level: try different levels of genericity
(dynamic object orientation, static meta-programming)

Conelusion m Do not restrict to image processing

In greater detail. ..
e For the interested reader

Lisp:

faster than C? m Beating C in Scientific Computing Applications

Dl Vi On the Behavior and Performance of Lisp, Part I.
Verna, D. (2006). In Third European LisP Workshop at
ECOOR Nantes, France.
http://lisp-ecoopl6.bknr.net/.

Conclusion

Logo by Manfred Spiller

http://lisp-ecoop06.bknr.net/

	Introduction
	Experimental Conditions
	C Programs and Benchmarks
	Lisp code, take 1
	Lisp code, take 2
	Typing mechanisms
	Optimization
	Results

	Type inference
	Conclusion

