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Introduction
What are binary methods?

Binary Operation: 2 arguments of the same type
Examples: arithmetic / ordering relations (=,+,> etc.)
OO Programming: 2 objects of the same class
Benefit from polymorphism etc.
⇒ Hence the term binary method
However:

I problematic concept in traditional OO languages
I type / class relationship in the context of inheritance
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The test case
Used throughout this presentation

The Point class UML hierarchy

equal (ColorPoint) : Boolean

color : String

x, y : Integer

equal (Point) : Boolean

Point

ColorPoint
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C++ implementation attempt #1
Details omitted

The C++ Point class hierarchy

class Poin t
{

i n t x , y ;

bool equal ( Po in t& p )
{ return x == p . x && y == p . y ; }

} ;

class ColorPo in t : public Poin t
{

s td : : s t r i n g co lo r ;

bool equal ( Co lo rPo in t& cp )
{ return co lo r == cp . co l o r && Poin t : : equal ( cp ) ; }

} ;
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But this doesn’t work !
Overloading is not what we want

Looking through base class references

i n t main ( i n t argc , char ∗argv [ ] )
{

Point& p1 = ∗ new ColorPoint (1 , 2 , " red " ) ;
Point& p2 = ∗ new ColorPoint (1 , 2 , " green " ) ;

s td : : cout << p1 . equal ( p2 ) << std : : endl ;
/ / => True . #### Wrong !

}

ColorPoint::equal only overloads Point::equal
in the derived class
From the base class, only Point::equal is seen
What we want is to use the definition from the exact
class
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C++ implementation attempt #2
Details omitted

The C++ Point class hierarchy

class Poin t
{

i n t x , y ;

v i r t u a l bool equal ( Po in t& p )
{ return x == p . x && y == p . y ; }

} ;

class ColorPo in t : public Poin t
{

s td : : s t r i n g co lo r ;

v i r t u a l bool equal ( Co lo rPo in t& cp )
{ return co lo r == cp . co l o r && Poin t : : equal ( cp ) ; }

} ;
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But this doesn’t work either !
We still get overloading, still not what we want

The forbidden fruit

v i r t u a l bool equal ( Point& p ) ;
v i r t u a l bool equal ( ColorPoint& cp ) ; / / #### Forbidden !

Invariance required on virtual methods argument types
Worse: here, the virtual keyword is silently ignored
And we get an overloading behavior, as before
Why ? To preserve type safety
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Why the typing would be unsafe
And lead to errors at run-time

Example of run-time typing error

{

  return p1.equal (p2);

}

bool foo (Point& p1, Point& p2)

But gets only a Point !The ColorPoint implementation

expects a ColorPoint argument

(ex. accesses the color field)

In fact, a ColorPoint Just a Point
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Constraints for type safety
covariance, contravariance. . . invariance

When subtyping a polymorphic method, we must
I supertype the arguments (contravariance)
I subtype the return value (covariance)

Note: Eiffel allows for arguments covariance
I But this leads to possible run-time errors

Note: C++ is even more constrained
I The argument types must be invariant

⇒ Implementing binary methods in traditional OO
languages is

I either impossible directly
I or possible but unsafe
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CLOS: the Common Lisp Object System
A different object model

C++ methods vs. CLOS generic functions
I C++ methods belong to classes
I CLOS generic functions look like ordinary functions

(outside classes)
C++ single dispatch vs. CLOS multi-methods

I C++ dispatch based on the first (hidden) argument type
(this)

I CLOS dispatch based on the type of any number of
arguments

Note: a CLOS “method” is a specialized
implementation of a generic function
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CLOS implementation
No detail omitted

The CLOS Point class hierarchy

( defclass po in t ( )
( ( x : i n i t a r g : x : reader point−x )
( y : i n i t a r g : y : reader point−y ) ) )

( defclass co lo r−po in t ( po i n t )
( ( co l o r : i n i t a r g : co l o r : reader po in t−co lo r ) ) )

( defgeneric po in t = ( a b ) )

( defmethod po in t = ( ( a po in t ) ( b po in t ) )
( and (= ( point−x a ) ( point−x b ) )

(= ( point−y a ) ( point−y b ) ) ) )

( defmethod po in t = ( ( a co lo r−po in t ) ( b co lo r−po in t ) )
( and ( str ing= ( po in t−co lo r a ) ( po in t−co lo r b ) )

( call−next−method ) ) )
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How to use it ?
Just like ordinary function calls

Using the generic function

( l e t ( ( p1 ( make−point : x 1 : y 2 ) )
( p2 ( make−point : x 1 : y 2 ) )
( cp1 ( make−color−point : x 1 : y 2 : co l o r " red " ) )
( cp2 ( make−color−point : x 1 : y 2 : co l o r " green " ) ) )

( values ( po i n t = p1 p2 )
( po in t = cp1 cp2 ) ) )

; ; => (T NIL )

Proper method selected based on both arguments
(multiple dispatch)
Function call syntax, more pleasant aesthetically
(p1.equal(p2) or p2.equal(p1) ?)
⇒ Hence the term binary function
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Applicable methods
There are ore than one. . .

To avoid code duplication:
I C++: Point::equal()
I CLOS: (call-next-method)

Applicable methods:
I All methods compatible with the arguments classes
I Sorted by (decreasing) specificity order
I call-next-method calls the next most specific

applicable method
Method combinations:

I Ways of calling several (all) applicable methods
(not just the most specific one)

I Predefined method combinations: and, or, progn etc.
I User definable
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Using the and method combination
Comes in handy for the equality concept

The and method combination

( defgeneric po in t = ( a b )
( : method−combination and )
)

( defmethod po in t = and ( ( a po in t ) ( b po in t ) )
( and (= ( point−x a ) ( point−x b ) )

(= ( point−y a ) ( point−y b ) ) ) )

( defmethod po in t = and ( ( a co lo r−po in t ) ( b co lo r−po in t ) )
( and ( call−next−method )

( str ing= ( po in t−co lo r a ) ( po in t−co lo r b ) )
)

)

⇒ In CLOS, the generic dispatch is (re-)programmable
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Binary methods could be misused
Can we protect against it ?

The point= function used incorrectly

( l e t ( ( p ( make−point : x 1 : y 2 ) )
( cp ( make−color−point : x 1 : y 2 : co l o r " red " ) ) )

( po i n t = p cp ) )
; ; => T #### Wrong !

(point= <point> <point>) is an applicable
method (because a color-point is a point)
⇒ The code above is valid
⇒ And the error goes unnoticed
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Introspection in CLOS
Inquiring the class of an object

Using the function class-of

( unless ( eq ( c lass−of a ) ( c lass−of b ) )
( error " Objects not o f the same c lass . " ) )

When to perform the check ? (w/o code duplication)
I In the basic method: neither efficient, nor elegant
I In a before-method: not available with the and

method combination
I In a user-defined method combination: not elegant

Where to perform the check ? (a better question)
I Nowhere near the code for point= !
I Part of the binary function concept, not point=

⇒We should implement the binary function concept
I A specialized class of generic function?
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The CLOS Meta-Object Protocol
aka the CLOS MOP

CLOS itself is object-oriented
I The CLOS MOP: a de facto implementation standard
I The CLOS components (classes etc.) are

(meta-)objects of some (meta-)classes
I Generic functions are meta-objects of the
standard-generic-function meta-class

⇒We can subclass standard-generic-function

The binary-function meta-class

( defclass b inary− func t ion ( standard−gener ic− funct ion )
( )
( : metaclass funca l lab le−standard−c lass ) )

( defmacro de fb ina ry ( function−name lambda− l i s t &rest opt ions )
‘ ( defgeneric , function−name , lambda− l i s t

( : gener ic− funct ion−c lass b inary− func t ion )
, @options ) )
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Back to introspection
Hooking the check

Calling a generic function involves:
I Computing the list of applicable methods
I Sorting and combining them
I Calling the resulting effective method

compute-applicable-methods-using-classes
I Does as its name suggests
I Based on the classes of the arguments
I A good place to hook

We can specialize it !
I It is a generic function

Specializing the c-a-m-u-c generic function

( defmethod c−a−m−u−c : before ( ( b f b inary− func t ion ) c lasses )
( assert ( equal ( car c lasses ) ( cadr c lasses ) ) ) )
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Binary methods could be misimplemented
Can we protect against it ?

We protected against calling
(point= <point> <color-point>)

Can we protect against implementing it ?
add-method

I Registers a new method (created with defmethod)
I Is a generic function
I Can be specialized

Specializing the add-method generic function

( defmethod add−method : before ( ( b f b inary− func t ion ) method )
( assert ( apply # ’ equal ( method−specia l izers method ) ) ) )
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Binary methods could be forgotten
Can we protect against it ?

Strong binary functions:
I Every subclass of point should specialize point=
I Late checking: at generic function call time

(preserve interactive development)
Binary completeness:

1 There is a specialization on the arguments’ exact class
2 There are specializations for all super-classes

Introspection:
I Binary completeness of the list of applicable methods
I c-a-m-u-c returns this !

Hooking the check

( defmethod c−a−m−u−c ( ( b f b inary− func t ion ) c lasses )
( mul t ip le−value−bind ( methods ok ) ( call−next−method )

; ; . . .
( values methods ok ) ) )
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Is there a bottommost specialization ?
Check #1

classes = ’(<exact> <exact>)

method-specializers returns the arguments
classes from the defmethod call
⇒We should compare <exact> with the specialization
of the first applicable method

Check #1

( l e t ∗ ( ( method ( car methods ) )
( c lass ( car ( method−specia l izers method ) ) ) )

( assert ( equal ( l i s t c lass c lass ) c lasses ) )
; ; . . .
)
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Are there specializations for all super-classes ?
Check #2

find-method retrieves a generic function’s method
given a set of qualifiers / specializers
method-qualifiers does as its name suggests
class-direct-superclasses as well

Check #2

( labels ( ( check−binary−completeness ( c lass )
( find−method bf ( method−qual i f ie rs method )

( l i s t c lass c lass ) )
( do l is t

( c l s ( remove− i f
# ’ ( lambda ( e l t )

( eq e l t ( f ind−c lass
’ standard−object ) ) )

( c lass−di rect−superc lasses c lass ) ) )
( check−binary−completeness c l s ) ) ) )

( check−binary−completeness c lass ) )
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Conclusion

Binary methods problematic in traditional OOP
Multi-methods as in CLOS remove the problem
CLOS and the CLOS MOP let you support the concept:

I make it available
I ensure a correct usage
I ensure a correct implementation

But the concept is implemented explicitly
I CLOS is not just an object system
I CLOS is not even just a customizable object system

CLOS is an object system designed to let you program
new object systems
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Quesλ ions ?

Logo by Manfred Spiller
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