
Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

CLOS solutions to binary methods

Didier Verna

didier@lrde.epita.fr
http://www.lrde.epita.fr/˜didier

March 21 2007

1/29

mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr/~didier

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Introduction
What are binary methods?

Binary Operation: 2 arguments of the same type
Examples: arithmetic / ordering relations (=,+,> etc.)
OO Programming: 2 objects of the same class
Benefit from polymorphism etc.
⇒ Hence the term binary method
However:

I problematic concept in traditional OO languages
I type / class relationship in the context of inheritance

2/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Table of contents

1 Problem: types, classes, inheritance
C++ implementation attempts
Explanation

2 The case of Common Lisp
CLOS implementation
Corollary: method combinations

3 Enforcing the concept – usage level
Introspection
Binary function class

4 Enforcing the concept – implementation level
Misimplementations
Strong binary functions

3/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

The test case
Used throughout this presentation

The Point class UML hierarchy

equal (ColorPoint) : Boolean

color : String

x, y : Integer

equal (Point) : Boolean

Point

ColorPoint

5/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

C++ implementation attempt #1
Details omitted

The C++ Point class hierarchy

class Poin t
{

i n t x , y ;

bool equal (Po in t& p)
{ return x == p . x && y == p . y ; }

} ;

class ColorPo in t : public Poin t
{

s td : : s t r i n g co lo r ;

bool equal (Co lo rPo in t& cp)
{ return co lo r == cp . co l o r && Poin t : : equal (cp) ; }

} ;

6/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

But this doesn’t work !
Overloading is not what we want

Looking through base class references

i n t main (i n t argc , char ∗argv [])
{

Point& p1 = ∗ new ColorPoint (1 , 2 , " red ") ;
Point& p2 = ∗ new ColorPoint (1 , 2 , " green ") ;

s td : : cout << p1 . equal (p2) << std : : endl ;
/ / => True . #### Wrong !

}

ColorPoint::equal only overloads Point::equal
in the derived class
From the base class, only Point::equal is seen
What we want is to use the definition from the exact
class

7/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

C++ implementation attempt #2
Details omitted

The C++ Point class hierarchy

class Poin t
{

i n t x , y ;

v i r t u a l bool equal (Po in t& p)
{ return x == p . x && y == p . y ; }

} ;

class ColorPo in t : public Poin t
{

s td : : s t r i n g co lo r ;

v i r t u a l bool equal (Co lo rPo in t& cp)
{ return co lo r == cp . co l o r && Poin t : : equal (cp) ; }

} ;

8/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

But this doesn’t work either !
We still get overloading, still not what we want

The forbidden fruit

v i r t u a l bool equal (Point& p) ;
v i r t u a l bool equal (ColorPoint& cp) ; / / #### Forbidden !

Invariance required on virtual methods argument types
Worse: here, the virtual keyword is silently ignored
And we get an overloading behavior, as before
Why ? To preserve type safety

9/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Why the typing would be unsafe
And lead to errors at run-time

Example of run-time typing error

{

 return p1.equal (p2);

}

bool foo (Point& p1, Point& p2)

But gets only a Point !The ColorPoint implementation

expects a ColorPoint argument

(ex. accesses the color field)

In fact, a ColorPoint Just a Point

10/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Constraints for type safety
covariance, contravariance. . . invariance

When subtyping a polymorphic method, we must
I supertype the arguments (contravariance)
I subtype the return value (covariance)

Note: Eiffel allows for arguments covariance
I But this leads to possible run-time errors

Note: C++ is even more constrained
I The argument types must be invariant

⇒ Implementing binary methods in traditional OO
languages is

I either impossible directly
I or possible but unsafe

11/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

CLOS: the Common Lisp Object System
A different object model

C++ methods vs. CLOS generic functions
I C++ methods belong to classes
I CLOS generic functions look like ordinary functions

(outside classes)
C++ single dispatch vs. CLOS multi-methods

I C++ dispatch based on the first (hidden) argument type
(this)

I CLOS dispatch based on the type of any number of
arguments

Note: a CLOS “method” is a specialized
implementation of a generic function

13/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

CLOS implementation
No detail omitted

The CLOS Point class hierarchy

(defclass po in t ()
((x : i n i t a r g : x : reader point−x)
(y : i n i t a r g : y : reader point−y)))

(defclass co lo r−po in t (po i n t)
((co l o r : i n i t a r g : co l o r : reader po in t−co lo r)))

(defgeneric po in t = (a b))

(defmethod po in t = ((a po in t) (b po in t))
(and (= (point−x a) (point−x b))

(= (point−y a) (point−y b))))

(defmethod po in t = ((a co lo r−po in t) (b co lo r−po in t))
(and (str ing= (po in t−co lo r a) (po in t−co lo r b))

(call−next−method)))

14/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

How to use it ?
Just like ordinary function calls

Using the generic function

(l e t ((p1 (make−point : x 1 : y 2))
(p2 (make−point : x 1 : y 2))
(cp1 (make−color−point : x 1 : y 2 : co l o r " red "))
(cp2 (make−color−point : x 1 : y 2 : co l o r " green ")))

(values (po i n t = p1 p2)
(po in t = cp1 cp2)))

; ; => (T NIL)

Proper method selected based on both arguments
(multiple dispatch)
Function call syntax, more pleasant aesthetically
(p1.equal(p2) or p2.equal(p1) ?)
⇒ Hence the term binary function

15/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Applicable methods
There are ore than one. . .

To avoid code duplication:
I C++: Point::equal()
I CLOS: (call-next-method)

Applicable methods:
I All methods compatible with the arguments classes
I Sorted by (decreasing) specificity order
I call-next-method calls the next most specific

applicable method
Method combinations:

I Ways of calling several (all) applicable methods
(not just the most specific one)

I Predefined method combinations: and, or, progn etc.
I User definable

16/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Using the and method combination
Comes in handy for the equality concept

The and method combination

(defgeneric po in t = (a b)
(: method−combination and)
)

(defmethod po in t = and ((a po in t) (b po in t))
(and (= (point−x a) (point−x b))

(= (point−y a) (point−y b))))

(defmethod po in t = and ((a co lo r−po in t) (b co lo r−po in t))
(and (call−next−method)

(str ing= (po in t−co lo r a) (po in t−co lo r b))
)

)

⇒ In CLOS, the generic dispatch is (re-)programmable

17/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Binary methods could be misused
Can we protect against it ?

The point= function used incorrectly

(l e t ((p (make−point : x 1 : y 2))
(cp (make−color−point : x 1 : y 2 : co l o r " red ")))

(po i n t = p cp))
; ; => T #### Wrong !

(point= <point> <point>) is an applicable
method (because a color-point is a point)
⇒ The code above is valid
⇒ And the error goes unnoticed

19/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Introspection in CLOS
Inquiring the class of an object

Using the function class-of

(unless (eq (c lass−of a) (c lass−of b))
(error " Objects not o f the same c lass . "))

When to perform the check ? (w/o code duplication)
I In the basic method: neither efficient, nor elegant
I In a before-method: not available with the and

method combination
I In a user-defined method combination: not elegant

Where to perform the check ? (a better question)
I Nowhere near the code for point= !
I Part of the binary function concept, not point=

⇒We should implement the binary function concept
I A specialized class of generic function?

20/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

The CLOS Meta-Object Protocol
aka the CLOS MOP

CLOS itself is object-oriented
I The CLOS MOP: a de facto implementation standard
I The CLOS components (classes etc.) are

(meta-)objects of some (meta-)classes
I Generic functions are meta-objects of the
standard-generic-function meta-class

⇒We can subclass standard-generic-function

The binary-function meta-class

(defclass b inary− func t ion (standard−gener ic− funct ion)
()
(: metaclass funca l lab le−standard−c lass))

(defmacro de fb ina ry (function−name lambda− l i s t &rest opt ions)
‘ (defgeneric , function−name , lambda− l i s t

(: gener ic− funct ion−c lass b inary− func t ion)
, @options))

21/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Back to introspection
Hooking the check

Calling a generic function involves:
I Computing the list of applicable methods
I Sorting and combining them
I Calling the resulting effective method

compute-applicable-methods-using-classes
I Does as its name suggests
I Based on the classes of the arguments
I A good place to hook

We can specialize it !
I It is a generic function

Specializing the c-a-m-u-c generic function

(defmethod c−a−m−u−c : before ((b f b inary− func t ion) c lasses)
(assert (equal (car c lasses) (cadr c lasses))))

22/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Binary methods could be misimplemented
Can we protect against it ?

We protected against calling
(point= <point> <color-point>)

Can we protect against implementing it ?
add-method

I Registers a new method (created with defmethod)
I Is a generic function
I Can be specialized

Specializing the add-method generic function

(defmethod add−method : before ((b f b inary− func t ion) method)
(assert (apply # ’ equal (method−specia l izers method))))

24/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Binary methods could be forgotten
Can we protect against it ?

Strong binary functions:
I Every subclass of point should specialize point=
I Late checking: at generic function call time

(preserve interactive development)
Binary completeness:

1 There is a specialization on the arguments’ exact class
2 There are specializations for all super-classes

Introspection:
I Binary completeness of the list of applicable methods
I c-a-m-u-c returns this !

Hooking the check

(defmethod c−a−m−u−c ((b f b inary− func t ion) c lasses)
(mul t ip le−value−bind (methods ok) (call−next−method)

; ; . . .
(values methods ok)))

25/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Is there a bottommost specialization ?
Check #1

classes = ’(<exact> <exact>)

method-specializers returns the arguments
classes from the defmethod call
⇒We should compare <exact> with the specialization
of the first applicable method

Check #1

(l e t ∗ ((method (car methods))
(c lass (car (method−specia l izers method))))

(assert (equal (l i s t c lass c lass) c lasses))
; ; . . .
)

26/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Are there specializations for all super-classes ?
Check #2

find-method retrieves a generic function’s method
given a set of qualifiers / specializers
method-qualifiers does as its name suggests
class-direct-superclasses as well

Check #2

(labels ((check−binary−completeness (c lass)
(find−method bf (method−qual i f ie rs method)

(l i s t c lass c lass))
(do l is t

(c l s (remove− i f
’ (lambda (e l t)

(eq e l t (f ind−c lass
’ standard−object)))

(c lass−di rect−superc lasses c lass)))
(check−binary−completeness c l s))))

(check−binary−completeness c lass))

27/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Conclusion

Binary methods problematic in traditional OOP
Multi-methods as in CLOS remove the problem
CLOS and the CLOS MOP let you support the concept:

I make it available
I ensure a correct usage
I ensure a correct implementation

But the concept is implemented explicitly
I CLOS is not just an object system
I CLOS is not even just a customizable object system

CLOS is an object system designed to let you program
new object systems

28/29

Binary
methods in

CLOS

Didier Verna

Introduction

Problem: C++
C++ attempts

Explanation

Solution: CL
CLOS solution

Method comb.

Usage
Introspection

Binary function class

Implementation
Misimplementations

Strong bin. functions

Conclusion

Quesλ ions ?

Logo by Manfred Spiller

29/29

	Introduction
	Problem: types, classes, inheritance
	C++ implementation attempts
	Explanation

	The case of Common Lisp
	Clos implementation
	Corollary: method combinations

	Enforcing the concept -- usage level
	Introspection
	Binary function class

	Enforcing the concept -- implementation level
	Misimplementations
	Strong binary functions

	Conclusion

