o

Binary
methods in
CLos

CLOS solutions to binary methods

Didier Verna

didier@Irde.epita.fr
http://www.Irde.epita.fr/"didier

March 21 2007

mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr/~didier

Introduction
PR What are binary methods?

methogein m Binary Operation: 2 arguments of the same type

o Examples: arithmetic / ordering relations (=, +, > efc.)

m OO Programming: 2 objects of the same class
Benefit from polymorphism efc.

m = Hence the term binary method

m However:

» problematic concept in traditional OO languages
» type / class relationship in the context of inheritance

Didier Verna

Introduction

Table of contents

Binary
methods in

Introduction

Problem: types, classes, inheritance
m C++ implementation attempts
m Explanation

The case of Common Lisp
m CLOS implementation
m Corollary: method combinations

Enforcing the concept — usage level
m Introspection
m Binary function class

Enforcing the concept — implementation level
m Misimplementations
m Strong binary functions

The test case
'R Used throughout this presentation

Binary]
methods in The Point class UML hierarchy
LOS
Didier Verna Point
X, y : Integer

Problem: C++

equal (Point) : Boolean

ColorPoint

color : String

equal (ColorPoint) : Boolean

; g C++ implementation attempt #1

Details omitted

Binary 0
methods n The C++ Point class hiera
LOS
Didier Verna class Point
{
int x, y;
Crr attempts bool equal (Point& p)

{ return x == p.x & y == p.y; }
15

class ColorPoint : public Point

{

std :: string color;

bool equal (ColorPoint& cp)
{ return color == cp.color && Point::equal (cp); }

b

But this doesn’t work !
PR Overloading is not what we want

Binary
methods in
CLos

Looking through base class references

Didier Verna int main (int argc, char xargv[])
{
Point& p1 = x new ColorPoint (1, 2, "red");
Point& p2 = * new ColorPoint (1, 2, "green");
C-++ attempts.
std ::cout << pl1.equal (p2) << std::endl;
// => True. #### Wrong !

B ColorPoint::equal only overloads Point: :equal
in the derived class

m From the base class, only Point: :equal is seen

m What we want is to use the definition from the exact
class

; g C++ implementation attempt #2

Details omitted

Binary q]
methods n The C++ Point class hiera
LOS
Didier Verna class Point
{
int x, y;
Ci+ attemps virtual bool equal (Point& p)

{ return x == p.x & y == p.y; }
15

class ColorPoint : public Point

{

std :: string color;

virtual bool equal (ColorPoint& cp)
{ return color == cp.color && Point::equal (cp); }

b

| g But this doesn’t work either !

We still get overloading, still not what we want

Binary
methods in
CLos

The forbidden fruit

Didier Verna virtual bool equal (Point& p);
virtual bool equal (ColorPoint& cp); // #### Forbidden !

e atmpts m Invariance required on virtual methods argument types
m Worse: here, the virtual keyword is silently ignored
m And we get an overloading behavior, as before

m Why ? To preserve type safety

And lead to errors at run-time

; g Why the typing would be unsafe

Binary 0 .
i Example of run-time typing error
LOS
Didier Verna In fact, a ColorPoint Just a Point
Explanion bool foo (Point& p1, Point& p2)
{
return p1.equal (p2);
}
The ColorPoint implementation But gets only a Point !
expects a ColorPoint argument
(ex. accesses the color field)

Constraints for type safety
'R covariance, contravariance. . . invariance

methocs n m When subtyping a polymorphic method, we must

oros » supertype the arguments (contravariance)
» subtype the return value (covariance)

m Note: Eiffel allows for arguments covariance
» But this leads to possible run-time errors

m Note: C++ is even more constrained
» The argument types must be invariant

Didier Verna

Explanation

m = Implementing binary methods in traditional OO
languages is
» either impossible directly
» or possible but unsafe

; : CLos: the Common Lisp Object System

A different object model

Bi . .
e m C++ methods vs. CLOS generic functions

CLos
» C++ methods belong to classes
» CLOS generic functions look like ordinary functions
(outside classes)

m C++ single dispatch vs. CLOS multi-methods

» C++ dispatch based on the first (hidden) argument type
Solution: CL (this)
» CLOs dispatch based on the type of any number of

arguments

Didier Verna

m Note: a CLOS “method” is a specialized
implementation of a generic function

CLOS implementation
'R No detail omitted

The CLOS Point class hierarchy

Binary
methods in
CLos

Didier Verna (defclass point ()
((x :initarg :x :reader point—x)
(y :initarg :y :reader point-y)))

(defclass color—point (point)
((color :initarg :color :reader point—color)))

CLos solution

(defgeneric point= (a b))

(defmethod point= ((a point) (b point))
(and (= (point—x a) (point—x b))
(= (point—y a) (point—y b))))

(defmethod point= ((a color—point) (b color—point))
(and (string= (point—color a) (point—color b))
(call-next—method)))

o

Binary
methods in
CLos

Didier Verna

CLos solution

How to use it ?
Just like ordinary function calls

Using the generic function

(let ()

(make—point :x 1 :y)
y 2))

i

1

(p1
(p2 (make—point :x 1
(cp1 (make—color—point
(cp2 (make—color—point
(values (point= p1 p2)
(point= cp1 cp2)))
;5 => (T NIL)

2
2
IX iy 2 :color "red"))

X iy 2 :color "green")))

m Proper method selected based on both arguments
(multiple dispatch)

m Function call syntax, more pleasant aesthetically
(pl.equal (p2) orp2.equal (pl) ?)
m = Hence the term binary function

Applicable methods
PR There are ore than one. ..

Bi . - .
G m To avoid code duplication:

CLos

» C++: Point::equal ()
» CLOS: (call-next-method)

m Applicable methods:

» All methods compatible with the arguments classes
» Sorted by (decreasing) specificity order

» call-next-method calls the next most specific
Method comb. applicable method

m Method combinations:
» Ways of calling several (all) applicable methods
(not just the most specific one)
» Predefined method combinations: and, or, progn etc.
» User definable

Didier Verna

o

Binary
methods in
CLos

Didier Verna

Using the and method combination

Comes in handy for the equality concept

The and method combination

(defgeneric point= (a b)
(: method—combination and)

)

(defmethod point= and ((a point)
(and (= (point—x a)
(= (point-y a)

(defmethod point= and ((a color—

(string= (point—color a)

(point—x b))
(point—y b))))

(b point))

point) (b color—point))

(point—color b))

m = In CLOS, the generic dispatch is (re-)programmable

| : Binary methods could be misused

Can we protect against it ?

Binary
methods in
CLos

The point= function used incorrectly

Didier Verna (let ((p (make—point :x 1 :y 2))
(cp (make—color—point :x 1 :y 2 :color "red")))
(point=p cp))
;o => T #### Wrong !

B (point= <point> <point>) is an applicable
method (because a color-point isa point)

m = The code above is valid
m = And the error goes unnoticed

Introspection in CLOS
IR Inquiring the class of an object

Binary
methods in
CLos

Using the function class-of

Didier Verna (unless (eq (class—of a) (class—of b))
(error "Objects _not_of_the_same_class."))

m When to perform the check ? (w/o code duplication)

» In the basic method: neither efficient, nor elegant

» In abefore-method: not available with the and
method combination

S » In a user-defined method combination: not elegant

m Where to perform the check ? (a better question)

» Nowhere near the code for point=!
» Part of the binary function concept, not point=

m = We should implement the binary function concept
» A specialized class of generic function?

4 g The CLOS Meta-Object Protocol

aka the CLOS MOP

Binary

methods in m CLos itselfis object-oriented
CLos . .
» The CLOS MOP: a de facto implementation standard
» The CLOS components (classes elc.) are
(meta-)objects of some (meta-)classes
» Generic functions are meta-objects of the
standard-generic—-function meta-class

m = We can subclass standard-generic—-function

The binary—-function meta-class

Binary function class (defclass binary—function (standard—generic—function)
()

(:metaclass funcallable—standard—class))

Didier Verna

(defmacro defbinary (function—name lambda—Ilist &rest options)
‘(defgeneric ,function—name ,lambda-list
(:generic—function—class binary—function)
,@options))

Back to introspection
'R Hooking the check

Binary
methods in m Calling a generic function involves:

oros » Computing the list of applicable methods
» Sorting and combining them
» Calling the resulting effective method

Didier Verna

B compute-applicable-methods-using-classes

» Does as its name suggests
» Based on the classes of the arguments
» A good place to hook

m We can specialize it !
s ninees > It is a generic function

Specializing the c—a-m-u-c generic function

(defmethod c—a—m-u—-c :before ((bf binary—function) classes)
(assert (equal (car classes) (cadr classes))))

| : Binary methods could be misimplemented

Can we protect against it ?

Binary . .
methods in m We protected against calling

CLos

(point= <point> <color-point>)
m Can we protect against implementing it ?
B add-method

» Registers a new method (created with defmethod)
» Is a generic function
» Can be specialized

Didier Verna

Specializing the add-method generic function

(defmethod add—method :before ((bf binary—function) method)
Misimplementations (assert (apply #’'equal (method—specializers method))))

; g Binary methods could be forgotten

Can we protect against it ?

Bi . .
G m Strong binary functions:

CLos T .
» Every subclass of point should specialize point=
» Late checking: at generic function call time
(preserve interactive development)

m Binary completeness:

There is a specialization on the arguments’ exact class

There are specializations for all super-classes
m Introspection:

» Binary completeness of the list of applicable methods
» c—a-m-u-c returns this !

Didier Verna

Hooking the check

Strong bin. functions

(defmethod c—a—m-u-c ((bf binary—function) classes)
(multiple—value—bind (methods ok) (call-next—method)

(values methods ok)))

Is there a bottommost specialization ?
R Check #1

Binary
meéhLoodssin B classes ="' (<exact> <exact>)
Didier Verna B method-specializers returns the arguments

classes from the defmethod call

m = We should compare <exact > with the specialization
of the first applicable method

(letx ((method (car methods))
(class (car (method—specializers method))))
(assert (equal (list class class) classes))

Strong bin. functions)

i g Are there specializations for all super-classes ?
R Check #2

Binary

L B find-method retrieves a generic function’s method
given a set of qualifiers / specializers

Didier Verna

B method-qualifiers does as its name suggests

B class-direct-superclasses as well

Check #2

(labels ((check—binary—completeness (class)
(find—method bf (method—qualifiers method)
(list class class))

(dolist
(cls (remove-—if

#’(lambda (elt)

SR 2 (ST (eq elt (find—class

‘standard—object)))
(class—direct—superclasses class)))

(check—binary—completeness cls))))

(check—binary—completeness class))

ﬁ% Conclusion

methog n m Binary methods problematic in traditional OOP

CLos

Didier Verna m Multi-methods as in CLOS remove the problem

m CLOS and the CLOS MOP let you support the concept:
» make it available
» ensure a correct usage
» ensure a correct implementation

m But the concept is implemented explicitly

» CLOS is not just an object system
» CLOS is not even just a customizable object system

CLos is an object system designed to let you program
Geeligian new object systems

Binary
methods in
CLos

Conclusion

Logo by Manfred Spiller

	Introduction
	Problem: types, classes, inheritance
	C++ implementation attempts
	Explanation

	The case of Common Lisp
	Clos implementation
	Corollary: method combinations

	Enforcing the concept -- usage level
	Introspection
	Binary function class

	Enforcing the concept -- implementation level
	Misimplementations
	Strong binary functions

	Conclusion

