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Don’t look at me. .. like that

m Not (particularly) interested in performance
m Not (at all) a Lisp implementer

» Merely an observer

y

Look at me. . . like this

m Surrounded by C++ gurus (Cf. 0lena)
m Performance does matter to them
m But you should see the code !

» This would be so much easier in LISP, but. ..




They wouldn’t dare to complain about paren

Because if you can read this,
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typename V>

template <template <class> class M, typename T,
struct ch_value_ <M <tag::value_<T>>, V>

Introduction { typedef M<V> ret; };
Experiments
template <template <class> class M, typename I, typename V>
Ct+ struct ch_value_ <M <tag::image_<I>>, V>
Lisp { typedef M <mln_ch_value (I, V)> ret; };

Structures
Classes template <template <class, class> class M, typename T,
X-Comp typename I, typename V>

Conclusion struct ch_value_ <M <tag::value_<T>, tag::image_<I>>, V>

{ typedef mln_ch_value(I, V) ret; };

Perspectives

Thanks! template <template <class, class> class M, typename P,
typename T, typename V>

struct ch_value_ <M <tag::psite_<P>, tag::value_<T>>, V>

{ typedef M<P, V> ret; };



They wouldn’t dare to complain about parens. ..

surely you can read that !
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(template (template (class) (class M) (typename T) (typename V))

(struct (ch_value_ (M (tag::value_ T)) V)
Introduction ( typedef (M V) ret)) )
Experiments
(template (template (class) (class M) (typename I) (typename V))
Ct+ (struct (ch_value_ (M (tag::image_ I)) V)
Lisp ( typedef (M (mln_ch_value I V)) ret)) )
Structures
Classes (template (template (class class) (class M) (typename T)
X-Comp (typename I) (typename V))
Conclusion (struct (ch_value_ (M (tag::value_ T) (tag::image_ I)) V)

( typedef (mln_ch_value I V) ret)) )

Perspectives

Thanks! (template (template (class class) (class M) (typename P)
(typename T) (typename V))
(struct (ch_value_ (M (tag::psite_ P) (tag::value_ T)) V)

( typedef (M P V) ret)) )



ﬁ% The performance “issue”
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Typical conversation

Yobbo: But LISP is slow right?
Me: How do you know that?
Yobbo: [choose your favorite answer]
X Huh, it’s a well known fact
X Well, that’s what | heard
X Last time | checked [...]
v It's dynamic, so it’s slow

4

The real problems

m Lack of strong evidence (don’t know / don’t care)
m From the ground up (micro-benchmarking)

» Where are we today in terms of performance?
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Class =*instance new Class;

(make—instance ...) J

m # compilers

m Class size (1, 7, 49 slots)

m Class hierarchy (plain, vertical, horizontal)
m Slot type (fixnums, single-floats)

m Slot initialization (yes, no)

m Slot allocation (instance, class)

m Optimization level (safe, optimized, inline)

» 1300+ individual tests
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m C++: GCC 4.3.2 (Debian package 4.3.2-1)

m Lisp:
» CMU-CL 19d (Debian package)
» SBCL 1.0.22.17
» AcL 8.1 Express Edition
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M- Class Class N+1 Class 1 Class 2 Class N
ntroduction

slot 1 [ ] st 1] [elet 2] .-
Experiments slot 2
C++ slot N
Lisp Class 1

Structures

Class N+1

Classes
X-Comp

Conclusion Class 2

Perspectives

Thanks!

Class N



ﬁ% Slot initialization / allocation
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m Compile-time constants
m LISP: :initformonly
C+ m C++: inside a provided constructor with no argument

Introduction

Experiments

Lisp
Structures

Classes

Shared slots

Conclusion u C++: StrICtIy Complle't|me

Perspectives m LiIsP: run-time, but hopefully during class finalization or
Thanks! first instance creation

X-Comp
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Lisp

(... 0)

» “optimized”: (speed 3) (...
m “inline”:

» “optimized” settings

>

(make—instance

"myclass)

—03 -DNDEBUG |

m Notinlined: (make-instance some-class)
» “safe”. (safety 3)

0)
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B C++: struct <= class
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Introduction

m LISP: struct # class

Experiments

C++

Lisp

Meta-classes
Structures

s LisP-specific
X-Comp

Conclusion

Memory management
Thanks! ® C++: manual
m LisP: automatic through (different) GC

Perspectives

» Avoid benchmarking




ﬁ!\;: Experimental conditions
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Instantiation m Debian GNU Linux / 2.6.26-1-686 packaged kernel
Heren m 686 DualCore CPU

Introduction » 2.13GHz
Experiments » 2GB RAM
C++ » 2MB level 2 cache

Lisp

Sruchrse m Single user mode

Classes

X-Comp m All benchmarks at least 1s
Gonelusion m Avoid memory exhaustion / swapping (C++)

Perspectives

Thanks! » 10% significance margin
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C++ Results
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m Immune to slot type
m Optimization mode flattens timings

» Small effect of initialization remains
m Safe mode very sensitive to:

» Slot initialization
» Class hierarchy

» Morphology of constructor call chain
m Shared slots: all flat



LISP structure results
10,000,000 objects, inline mode
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LiSP structure behavior
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Instantiation m Dependence on slot type

Didier Verna Internal representation / (un)boxing

Introduction m Immune to (£ixnum) slot initialization

ST Slots always initialized to ni1 (not required)

C++ .

e m Immune to structure hierarchy

Swucres struct < vector

X-Comp . 0

: Discrepancies

Conclusion

Perspectives | Type CheCking:

Thanks! » CMU-CL: always (except fixnums in 19d)
» SBCL: depends on compiler settings
» ACL: never

m CMU-CLoONn single—float ???




LISP class results

SBCL, 5,000,000 objects, standard class, local slots
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LisSP class behavior
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Instantiation m Immune to slot type / class hierarchy

S No special representation, instance vector lookup +
Introduction access

ST m Slots always initialized (secret unbound value)

o But only slot access time visible

LisP

Stuctures E Inline mode: (make-instance ’class)

Classes

e Improvement 15x to 100x !!

-Comp

Conclusion m Shared slots: all flat

Perspectives Bug (fixed): dependent on class size
Thanks!
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m Type checking:
» CMU-CL: not in safe mode, in contradiction with the
manual (fixed)
» SBCL: missing on shared slots (fixed)
» ACL: never
m Meta-class:
» CMU-CL sensitive (30 — 50% degradation)

m Slot initialization:
Makes AcL faster (20% in inline mode)
m AcL on shared slots:

» Dependence on class size (10x from small to big class)
» Dependence on slot initialization

+ Safe/optimized mode: degradation of 3.5x

* Inline mode: improvement by 2x

» Sometimes slower than local slots



Cross-language comparison

5,000,000 objects, inline mode
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Hidleriems m LISP instantiation is faster than in C++ (1.2x)
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Conclusion
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Instantiation m Safe mode: Lisp and C++ behave differently
» C++ sensitive to class hierarchy

Introduction > LISP sensitive to slot type

Experiments m Optimized mode:

Ci+ » Convergence in both behavior and performance

Lisp » (make—instance ’class) !l
S » faster instantiation in Lisp

Classes

X-Comp » Kudos to LISP implementers. ..

Conlusion m The dark side of the force:

AR > Type checking (has an impact on performance)
e » COMMON-LISP standard underspecified
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Thanks!

Any quesAions?
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m Duane Rettig
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s This is not a work of fiction. Any resemblance between the

characters and persons, living or dead, is purely intentional.
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