Efficiency of
Instantiation

Didier

Introduction
Experiments CLos Efficiency: Instantiation
C++

Lisp

Structures

Didier Verna
X-Comp

Conclusion didier@Irde.epita.fr
Perspectives http://www.Irde.epita.fr/"didier
Thanks!

ILC 2009 — Tuesday, March 20th

mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr/~didier

Efficiency of
Instantiation

Didier Verna

Introduction
Experiments
C++

Lisp
Structures
Classes

X-Comp
Conclusion

Perspectives

Thanks!

Don’t look at me. .. like that

m Not (particularly) interested in performance
m Not (at all) a Lisp implementer

» Merely an observer

y

Look at me. . . like this

m Surrounded by C++ gurus (Cf. 0lena)
m Performance does matter to them
m But you should see the code !

» This would be so much easier in LISP, but. ..

They wouldn’t dare to complain about paren

Because if you can read this,

Efficiency of
Instantiation

typename V>

template <template <class> class M, typename T,
struct ch_value_ <M <tag::value_<T>>, V>

Introduction { typedef M<V> ret; };
Experiments
template <template <class> class M, typename I, typename V>
Ct+ struct ch_value_ <M <tag::image_<I>>, V>
Lisp { typedef M <mln_ch_value (I, V)> ret; };

Structures
Classes template <template <class, class> class M, typename T,
X-Comp typename I, typename V>

Conclusion struct ch_value_ <M <tag::value_<T>, tag::image_<I>>, V>

{ typedef mln_ch_value(I, V) ret; };

Perspectives

Thanks! template <template <class, class> class M, typename P,
typename T, typename V>

struct ch_value_ <M <tag::psite_<P>, tag::value_<T>>, V>

{ typedef M<P, V> ret; };

They wouldn’t dare to complain about parens. ..

surely you can read that !

Efficiency of
Instantiation

(template (template (class) (class M) (typename T) (typename V))

(struct (ch_value_ (M (tag::value_ T)) V)
Introduction (typedef (M V) ret)))
Experiments
(template (template (class) (class M) (typename I) (typename V))
Ct+ (struct (ch_value_ (M (tag::image_ I)) V)
Lisp (typedef (M (mln_ch_value I V)) ret)))
Structures
Classes (template (template (class class) (class M) (typename T)
X-Comp (typename I) (typename V))
Conclusion (struct (ch_value_ (M (tag::value_ T) (tag::image_ I)) V)

(typedef (mln_ch_value I V) ret)))

Perspectives

Thanks! (template (template (class class) (class M) (typename P)
(typename T) (typename V))
(struct (ch_value_ (M (tag::psite_ P) (tag::value_ T)) V)

(typedef (M P V) ret)))

ﬁ% The performance “issue”

Efficiency of
Instantiation

Didier Verna

Introduction
Experiments
C++

Lisp
Structures

lasses

Conclusion

Perspectives

Thanks!

Typical conversation

Yobbo: But LISP is slow right?
Me: How do you know that?
Yobbo: [choose your favorite answer]
X Huh, it’s a well known fact
X Well, that’s what | heard
X Last time | checked [...]
v It's dynamic, so it’s slow

4

The real problems

m Lack of strong evidence (don’t know / don’t care)
m From the ground up (micro-benchmarking)

» Where are we today in terms of performance?

My (not so) secret agenda

On the behavior and performance of LISP

Efficiency of
Instantiation

Introduction

Experiments
C++

Lisp
Structures The ELW’06 Paper

Classes =

X-Comp
Conclusion
Perspectives

Thanks!

ﬁ’& Table of contents

Efficiency of
Instantiation

The experiments

Introduction
Experiments

Ci+ C++ Grounding

Lisp
Structures
Classes

X-Comp LISP surprises
Conclusion m Structures
Perspectives m Classes

Thanks!

Cross-language comparison

Efficiency of
Instantiation

Introduction
Experiments
C++

Lisp
Structures
Classes

X-Comp

Conclusion

Perspectives

Thanks!

Class =*instance new Class;

(make—instance ...) J

m # compilers

m Class size (1, 7, 49 slots)

m Class hierarchy (plain, vertical, horizontal)
m Slot type (fixnums, single-floats)

m Slot initialization (yes, no)

m Slot allocation (instance, class)

m Optimization level (safe, optimized, inline)

» 1300+ individual tests

Efficiency of
Instantiation

Didier Verna

Introduction
Experiments
C++

Lisp
Structures
Classes

X-Comp

Conclusion

Perspectives

Thanks!

m C++: GCC 4.3.2 (Debian package 4.3.2-1)

m Lisp:
» CMU-CL 19d (Debian package)
» SBCL 1.0.22.17
» AcL 8.1 Express Edition

Efficiency of
Instantiation

el verica |

M- Class Class N+1 Class 1 Class 2 Class N
ntroduction

slot 1 [] st 1] [elet 2] .-
Experiments slot 2
C++ slot N
Lisp Class 1

Structures

Class N+1

Classes
X-Comp

Conclusion Class 2

Perspectives

Thanks!

Class N

ﬁ% Slot initialization / allocation

Efficiency of

Instantiation TINT .
_ Initialization
Didier Verna

m Compile-time constants
m LISP: :initformonly
C+ m C++: inside a provided constructor with no argument

Introduction

Experiments

Lisp
Structures

Classes

Shared slots

Conclusion u C++: StrICtIy Complle't|me

Perspectives m LiIsP: run-time, but hopefully during class finalization or
Thanks! first instance creation

X-Comp

Efficiency of
Instantiation

Didier Verna

Introduction
Experiments
C++

Lisp
Structures

Classes
X-Comp
Conclusion
Perspectives

Thanks!

Lisp

(... 0)

» “optimized”: (speed 3) (...
m “inline”:

» “optimized” settings

>

(make—instance

"myclass)

—03 -DNDEBUG |

m Notinlined: (make-instance some-class)
» “safe”. (safety 3)

0)

Efficiency of
Instantiation

structures vs classes
B C++: struct <= class

Didier Verna

Introduction

m LISP: struct # class

Experiments

C++

Lisp

Meta-classes
Structures

s LisP-specific
X-Comp

Conclusion

Memory management
Thanks! ® C++: manual
m LisP: automatic through (different) GC

Perspectives

» Avoid benchmarking

ﬁ!\;: Experimental conditions

Efficiency of

Instantiation m Debian GNU Linux / 2.6.26-1-686 packaged kernel
Heren m 686 DualCore CPU

Introduction » 2.13GHz
Experiments » 2GB RAM
C++ » 2MB level 2 cache

Lisp

Sruchrse m Single user mode

Classes

X-Comp m All benchmarks at least 1s
Gonelusion m Avoid memory exhaustion / swapping (C++)

Perspectives

Thanks! » 10% significance margin

Efficiency of
Instantiation

Introduction
Experiments
C++

Lisp
Structures
Classes

X-Comp
Conclusion

Perspectives

Thanks!

C++ Results
5,000,000 objects, local slots

3s

2s

1s

[Ssafe

- | Optimized

- N
I S §é§ ”’8}8
2 FRAIIA

- SRR

B PN ICA A

LRRRRAN

no slot 1dlot 7 slots 49 dots

Efficiency of
Instantiation

Didier

Introduction
Experiments
C++

Lisp
Structures
Classes

X-Comp

Conclusion

Perspectives

Thanks!

m Immune to slot type
m Optimization mode flattens timings

» Small effect of initialization remains
m Safe mode very sensitive to:

» Slot initialization
» Class hierarchy

» Morphology of constructor call chain
m Shared slots: all flat

LISP structure results
10,000,000 objects, inline mode

Efficiency of
Instantiation

] CMUCL
Introduction L O ACL
Experiments B B ssCL
C++ s
Lisp -
Structures -
Classes
L &
X-Comp 25— ﬁs ?’?
Conclusion B ‘§ g
_ L &5 8§ &
Perspectives S @g
[b’ Q\ \g
Thanks! o 5 5 g‘}: d‘T
5 F o3 <
1s— S 2L 8
I %5 0§ §o &
S &5 S S
I 5 &£ §
3 & &<

no slot 1dlot 7 dlots 49 dlots

LiSP structure behavior

Efficiency of

Instantiation m Dependence on slot type

Didier Verna Internal representation / (un)boxing

Introduction m Immune to (£ixnum) slot initialization

ST Slots always initialized to ni1 (not required)

C++ .

e m Immune to structure hierarchy

Swucres struct < vector

X-Comp . 0

: Discrepancies

Conclusion

Perspectives | Type CheCking:

Thanks! » CMU-CL: always (except fixnums in 19d)
» SBCL: depends on compiler settings
» ACL: never

m CMU-CLoONn single—float ???

LISP class results

SBCL, 5,000,000 objects, standard class, local slots

Efficiency of
Instantiation
Didier Verna
0 Safe N
Introduction [Optimized # (ﬁég N
L ’ S -
SIS | [MInline b$é§§®§é¢
C++ ‘é ‘ébe 'éveb“@ &
N SRINGE Y ERmRERR
10s|— '?,@A@@&QA@
Lise a SELESE s &
— L S SESES o
a
X-Comp L
Conclusion o
Pe i
erspectives 1s
Thanks! E
0.1s

no slot 1dot 7 dlots 49 dots

LisSP class behavior

Efficiency of

Instantiation m Immune to slot type / class hierarchy

S No special representation, instance vector lookup +
Introduction access

ST m Slots always initialized (secret unbound value)

o But only slot access time visible

LisP

Stuctures E Inline mode: (make-instance ’class)

Classes

e Improvement 15x to 100x !!

-Comp

Conclusion m Shared slots: all flat

Perspectives Bug (fixed): dependent on class size
Thanks!

Efficiency of
Instantiation

Didier Verna

Introduction
Experiments
C++

Lisp
Structures
Classes

X-Comp

Conclusion

Perspectives

Thanks!

m Type checking:
» CMU-CL: not in safe mode, in contradiction with the
manual (fixed)
» SBCL: missing on shared slots (fixed)
» ACL: never
m Meta-class:
» CMU-CL sensitive (30 — 50% degradation)

m Slot initialization:
Makes AcL faster (20% in inline mode)
m AcL on shared slots:

» Dependence on class size (10x from small to big class)
» Dependence on slot initialization

+ Safe/optimized mode: degradation of 3.5x

* Inline mode: improvement by 2x

» Sometimes slower than local slots

Cross-language comparison

5,000,000 objects, inline mode

Efficiency of
Instantiation
M Local slots
Introduction [Shared slots
Experiments 10— N
C++ | —
Lisp
Structures 75+ N
Classes
8
X-Comp r = 1
. Fo5 &
Conclusion 5L L \Q g S —
Perspectives § 2 f : ﬁ @
g &+ + T o
Thanks! T £8°° g5 |
5 g 33
25 £ & |
g &
L :l -~]
7 dots 49 dots

0
1dlot

ﬁ’ﬁ: Cross-language behavior

Efficiency of

Instantiation m LISP structures instantiate faster for smaller objects
Hidleriems m LISP instantiation is faster than in C++ (1.2x)
Iniroduction m Even more so with shared slots (30%)

Experiments

C++

Lisp
Structures
Classes

X-Comp

Conclusion

Perspectives

Thanks!

Conclusion

Efficiency of

Instantiation m Safe mode: Lisp and C++ behave differently
» C++ sensitive to class hierarchy

Introduction > LISP sensitive to slot type

Experiments m Optimized mode:

Ci+ » Convergence in both behavior and performance

Lisp » (make—instance ’class) !l
S » faster instantiation in Lisp

Classes

X-Comp » Kudos to LISP implementers. ..

Conlusion m The dark side of the force:

AR > Type checking (has an impact on performance)
e » COMMON-LISP standard underspecified

Efficiency of

Instantiation m Finish investigation
Didier Verna u Other Compllers

Introduction m Other architectures
St m Regression surveillance
G m The rest of the path. ..
Lisp
o . 2
X-Comp - \\ \\\‘~__//
Conclusion = S, N \ .
Perspectives &/\ - ,\;
Thanks! o -
/ \
7 \
7 \
7 \
/ \
/ \
/ \
1 1
1 - P PN I

Thanks!

Any quesAions?

Efficiency of
Instantiation

m Nikodemus Siivola
Introduction u Raymond Toy
Experiments .

m Duane Rettig

C++

Lisp
Structures
Classes

X-Comp
Conclusion
Perspectives

s This is not a work of fiction. Any resemblance between the

characters and persons, living or dead, is purely intentional.

	Introduction
	The experiments
	C++ Grounding
	Lisp surprises
	Structures
	Classes

	Cross-language comparison
	Conclusion
	Perspectives
	Thanks!

