
TUGboat, Volume 0 (9999), No. 0 1001

TiCL: the Prototype

Didier Verna

Abstract

While TEX is unanimously praised for its typesetting
capabilities, it is also regularly blamed for its poor
programmatic offerings. Several solutions have been
proposed to modernize TEX on the programming
side. All of them currently involve a heterogeneous
approach in which TEX is mixed with a full-blown pro-
gramming language. This paper advocates another,
homogeneous approach in which the Common Lisp
language is used to implement a TEX-like typesetting
system. The underlying implementation language
serves both at the core of the program and at the
scripting level, hence removing the need for program-
matic macros on top of typesetting commands. A
prototype implementation is presented.

1 Introduction

Last year at TUG 2012, we presented some ideas
about using one of the oldest programming lan-
guages (Common Lisp [5, 1]), in order to modernize
one of the oldest typesetting systems (TEX). The
idea behind the term “modernization” here is to re-
tain the quality of TEX’s output (the typesetting
part) while providing a more consistent and power-
ful programmatic API. This idea is not new and
has led to several attempts at mixing TEX with
a full blown programming language, such as with
eval4tex1 and sTEXme2 (Scheme), PerlTEX [6, 7]
(Perl) and QaTEX/PyTEX [3] (Python).

While these approaches to modernization are
useful for the end-user who wishes to write his own
set of macros in a more practical way, there is more
to modernization than just the programmatic API.
Another room for improvement lies in the design and
flexibility (or lack thereof) of TEX’s internals. TEX
is an old program written in a way that doesn’t meet
today’s standards. For example, it’s full of corner
case optimization that could arguably be considered
obsolete on modern architectures, it lacks a potential
Object Oriented design that would make it easier to
extend it or even modify it, for example in order to
experiment with alternative typesetting algorithms.

Approaches such as LuaTEX3 attempt to address
both aspects of modernization: mixing Lua with TEX
provides both a scripting language on the surface
layer, and access to TEX’s internals at the same time.

1 http://www.ccs.neu.edu/home/dorai/eval4tex/
2 http://stexme.sourceforge.net/
3 http://www.luatex.org

In our opinion, this approach still suffers from the
following drawbacks.

1. Lua is not a full-blown, industrial scale program-
ming language. It’s a scripting language with a
limited set of programming paradigms.

2. The resulting system is heterogeneous. It’s a
complex mixture of two different languages pro-
viding some limited level of introspection / in-
tercession. Put differently, accessing TEX’s in-
ternals from Lua requires manual plumbing.

3. Even with a sufficient amount of introspection
/ intercession, what you end up with still is
“good ol’TEX”, with its lack of modern software
engineering concerns.

Last year at TUG 2012, we advocated the use
of Common Lisp as a better alternative for all these
aspects of “modernization”. We explained that Com-
mon Lisp is both a full-blown industrial language
suitable for a rewrite of TEX, and a scripting lan-
guage suitable as a replacement for TEX macros. We
then demonstrated the benefits of this homogeneous
approach, in which a single programming language is
involved: a re-implementation of TEX with modern
software engineering in mind, in a fully reflexive lan-
guage such as Common Lisp, would provide a system
very convenient for extension and / or modification
(hence experimentation). For more information, the
reader is referred to [8].

The purpose of the present paper is to apply the
ideas expressed last year in an actual prototype, in
order to assert the validity of the proposed approach.
Section 2 presents a general overview of the proto-
type. Section 3 on the next page gradually builds the
prototype’s programmatic layer, that is, the interface
that an author could use in order to actually program
a document. Section 4 on page 1005 presents an ad-
ditional layer on top of the programmatic one, called
the “textual layer”, in which plain text constitutes
the main entry, and calls to the programmatic layer
need to be escaped. Finally, section 5 on page 1006
illustrates the advantages of the proposed approach
in terms of extensibility, by enriching the prototype
with a rivers detection feature in a non-intrusive way.

The code for the prototype itself, along with all
the examples presented in this paper is available on
GitHub4.

2 Overview

One (obvious) conclusion from last year was that
re-implementing a complete TEX-like typesetting sys-
tem is a huge task. In particular, even for just a

4 https://github.com/didierverna/ticl-for-TUG2013

TiCL: the Prototype

1002 TUGboat, Volume 0 (9999), No. 0

Figure 1: TiCL current architecture

prototype with basic typesetting features and actual
output, an important question is: “where to start”.

It so happens that a Common Lisp typeset-
ting system already exists. This system, called
cl-typesetting5 provides a fair amount of features,
including the obligatory paragraph and page break-
ing algorithms, and also PDF output thanks to a
back-end called cl-pdf6, from Marc Battyani, the
same author.

cl-typesetting is very different from TEX, in
ways that we will see later on, but nevertheless pro-
vides a convenient starting point for a TEX-like pro-
totype. We would even go as far as claiming that
it is even more interesting to start from something
completely different from TEX, precisely because
“bending” the system towards a TEX-like engine will
illustrate the flexibility of the proposed approach.

Figure 1 depicts the current architecture of the
prototype. TiCL is built on top of the existing type-
setting system in order to reuse its core algorithms
and its PDF output capabilities. Please note that
at the time of this writing, it is unclear whether
cl-typesetting would be retained in a real prod-
uct.

The first TiCL layer, called the “programmatic
layer”, provides a set of commands mimicking some
core LATEX functionality such as \documentclass,

5 http://www.fractalconcept.com/asp/cl-typesetting
6 http://www.fractalconcept.com/asp/cl-pdf

\maketitle, sectioning commands etc. The purpose
here is to have just enough features to be able to pro-
duce minimal documents such as basic articles. This
layer will be described in more detail in section 3.

The second TiCL layer is called the “textual
layer”. When using this layer, a document author
is provided with a text-oriented interface: the main
input at that layer is the actual text to be typeset
(this is exactly what TEX does). In order to execute
commands, one can access the programmatic layer
via an escape character (similar to category code 0
in TEX). This layer will be described in more detail
in section 4 on page 1005.

As shown in figure 1, the particularity of this
architecture is that it is possible to create a document
directly at the programmatic layer, that is, without
using the textual layer at all. The reasons why
we think this is an interesting feature, and why it
is possible at all will be explained at the end of
section 3.

3 Programmatic Layer

Listing 1 presents a typical cl-typesetting Hello
World program.

1 (defun h e l l o (&key (f i l e "/tmp/output . pdf "))
2 (t t : with−document ()
3 (l e t ((content (t t : compile−text ()
4 (t t : paragraph ()
5 "Some text . . . "))))
6 (t t : draw−pages content)
7 (when pdf :∗ page∗
8 (t t : f i na l i z e−page pdf :∗ page ∗))
9 (t t : write−document f i l e))))

Listing 1: cl-typesetting’s Hello World

As you can see, we are quite far from the world
of TEX. The details are unimportant, but there are
a couple of interesting things to note.

• The most important one is that in order to
create a document, you need to write an actual
Lisp program, or at least a function which does
so.

• Everything happens within a call to a macro
called with-document (line 2), which bears some
resemblance with LATEX’s document environment.

• Lines 6 to 9 contain some boilerplate filling pages
and writing the result to a file.

• Finally, the only textual content in this docu-
ment is provided as a Lisp string (line 5) to a
macro called paragraph.

3.1 Basic LATEX functionality

The first thing we are going to do is provide some
basic LATEX-like functionality. To do that, we create

Didier Verna

TUGboat, Volume 0 (9999), No. 0 1003

some global variables for storing the title, author
etc. Following the Lisp convention, these variables
will be called *title*, *author* and so on. Then,
we create several functions such as document-class,
make-title, table-of-contents etc., the purpose
of which should be obvious. Next, we provide a
with-document macro taking care of the boilerplate
mentioned previously, and several sectioning macros,
among which with-section and with-subsection
and with-par. Finally, just for the fun of it, we add
two functions, textbf and textit, the purpose of
which should also be obvious. With this infrastruc-
ture in place, we are able to create a basic article as
depicted in listing 2.

1 (document−class : a r t i c l e
2 : paper : l e t t e r : pt 12)
3
4 (setq ∗ t i t l e ∗ "An Ar t i c l e ")
5 (setq ∗author∗ " Did i e r Verna")
6
7 (with−document
8
9 (make−t it le)

10 (table−of−contents)
11
12 (with−sect ion "Lorem Ipsum"
13 (with−subsect ion " S i t Amet"
14 (with−par "Lorem " (t ex tb f " ipsum") " "
15 (t e x t i t " do lo r ") " s i t amet , . . . ")
16 (with−par "Lorem " (t ex tb f " ipsum") " "
17 (t e x t i t " do lo r ") " s i t amet , . . . ")))
18
19
20 ; ; other sec t ions . . .)

Listing 2: A basic article

Note that this document is in fact a Lisp pro-
gram. In order to generate the corresponding PDF,
you need to execute (evaluate) this program. In
Common Lisp, one can simply evaluate expressions
at the REPL (the “Read Eval Print Loop”), or store
programs in files and load them. By convention,
we will store this document in a file with extension
ticl. The current prototype allows you to compile
your documents interactively at the REPL, but also
provides a standalone command-line executable for
creating foo.pdf automatically from foo.ticl.

This program is full of Lisp idioms, and of course
very far from what a casual LATEX user would be
willing to type in an alternate typesetting system.
One first, very simple improvement is to wrap global
variables access into function calls, so that we can use
(title "An Article") instead of (setq *title*
"An Article"). The title function looks like a
getter instead of a setter, so it is not very lispy, but
that is the way LATEX does it. In the remainder of

this section, we gradually move away from the Lisp
WayTM and get closer the LATEX one.

3.2 Lisp macros for symbolic options

The next thing we can do is to make command ar-
guments look a little better. Consider again our
equivalent to \documentclass:
(document-class :article

:paper :letter :pt 12)

This function takes one mandatory argument, and
a list of optional, named ones. Symbols of the form
:name in Lisp are called “keywords” and are used
for naming optional arguments to functions. They
also have the property that they evaluate to them-
selves, which makes them a good choice for denoting
symbolic constants. This, however, would proba-
bly confuse a casual user. For example, :article
is an option, but :paper is an option’s name, and
:letter is its value. We can arrange this by creating
a Lisp wrapper macro on top of the document-class
function. Lisp macros look like functions but don’t
evaluate their arguments unless you require so. This
allows us to write something like this:
(documentclass article

:paper letter :pt 12)

The documentclass macro will prevent the evalu-
ation of the symbols article and letter, which
would otherwise be interpreted as (unknown) vari-
able names.

3.3 Symbol macros for 0-ary functions

In Lisp, (foo) is a function call whereas foo is a vari-
able call. This syntactic difference doesn’t exists in
TEX, which is a macro expansion system. The actual
behavior of \foo simply depends on how the macro
is defined. We can get closer to this idea in Lisp by
using so-called symbol macros. A symbol macro is a
symbol which behaves as a macro, that is, which ex-
pands into an arbitrary Lisp form, including function
calls. We can use this facility to define maketitle
and tableofcontents as symbol macros expanding
to (make-title) and (table-of-contents) respec-
tively.

3.4 Less environments, less macros

Listing 2 introduced a number of with-foomacros, a
typical Lisp idiom. Such macros usually wrap around
a body of code, doing some pre- and post-processing
around it. This idea is actually quite close to the
concept of “environment” in LATEX, but we will get
back to this later.

Even though we think that sectioning environ-
ments are a better approach (for one thing, they are

TiCL: the Prototype

1004 TUGboat, Volume 0 (9999), No. 0

more friendly to PDF), LATEX only provides section-
ing commands. Replacing our with- macros with
regular functions is not very difficult. Most of the
time, it boils down to getting rid of the macro layer
and just use its expansion directly. We hence provide
regular functions such as (section ...) and (par),
and we also take the opportunity to implement a
par symbol macro which will expand to the (par)
function call.

At that point, we are able to rewrite our original
document generating program into a new, intermedi-
ate form, depicted in listing 3. We are getting closer
to LATEX, although we’re not quite there yet.

1 (documentclass a r t i c l e : paper l e t t e r : pt 12)
2
3 (t i t l e "An Ar t i c l e ")
4 (author " Did i e r Verna")
5
6 (with−document
7
8 maket i t l e
9 t ab l e o f c on t en t s

10
11 (s e c t i o n "Lorem Ipsum")
12 (subsec t i on " S i t Amet")
13 "Lorem " (t ex tb f " ipsum") " "
14 (t e x t i t " do lo r ") " s i t amet , . . . "
15 par
16 "Lorem " (t ex tb f " ipsum") " "
17 (t e x t i t " do lo r ") " s i t amet , . . . "
18
19
20 ; ; other sec t ions . . .)

Listing 3: Intermediate program state

3.5 OO hot-patching for empty lines

One very convenient syntactic trick in TEX, and one
of its rare concessions to the WYSIWYG approach,
is its treatment of empty lines as calls to \par. Doing
the same thing in TiCL would be nice, but is less
straightforward than what we’ve done until now,
because strings are processed by cl-typesetting
directly. We hence need to modify it instead of just
build on top of it.

This, however, turns out to be not so difficult,
which is in fact the whole point of this article. The
two key factors in making this modification trivial
are the facts that 1. cl-typesetting is designed
on top of CLOS, the Common Lisp Object System
[2, 4], and that 2. Lisp is a dynamic language.

1 (defmethod t t : : i n s e r t− s t u f f ((obj string))
2 ‘ (put−str ing , obj))

Listing 4: A method for typesetting strings

Listing 4 shows how cl-typesetting handles
regular strings of text. There is a global generic
function called insert-stuff in charge of typeset-
ting all sorts of Lisp objects (strings, glues, boxes
etc.). This function has a different method (in the
object-oriented sense) for every kind of typesettable
object.

As a consequence, what we need to do is simply
to override the method for strings with our own, and
also provide our own version of put-string, dealing
with consecutive newlines. This new function can
also reuse the original one for strings containing only
one paragraph. Needless to say, the simplicity of this
approach comes from the fact that cl-typesetting
is an object-oriented library, and as such, our mod-
ifications are localized and contained only in very
specific software components.

Another important thing here is the fact that
Lisp is a dynamic language. Consider for a minute
the equivalent problem in a language such as C++.
One would need to get the source code of the original
library, modify it, recompile it, and ship the modified
version along with the new system (in either source or
executable form). In the case of a dynamic language,
the required modifications can be done at run-time,
when the system loads-up. The original library is
not needed (not even in source form) in order to
implement the modifications to it. One just overrides
one of its components on the fly, pretty much like
any TEX macro can be rewritten at any time.

At that point, we are able to rewrite our docu-
ment generating program into yet another interme-
diate form, depicted in listing 5. Note the string
starting on line 14 and ending on line 16. It contains
an implicit paragraph.

1 (documentclass a r t i c l e : paper l e t t e r : pt 12)
2
3 (t i t l e "An Ar t i c l e ")
4 (author " Did i e r Verna")
5
6 (with−document
7
8 maket i t l e
9 t ab l e o f c on t en t s

10
11 (s e c t i o n "Lorem Ipsum")
12 (subsec t i on " S i t Amet")
13 "Lorem " (t ex tb f " ipsum") " "
14 (t e x t i t " do lo r ") " s i t amet , . . .
15
16 Lorem " (t ex tb f " ipsum") " "
17 (t e x t i t " do lo r ") " s i t amet , . . . "
18
19
20 ; ; other sec t ions . . .)

Listing 5: Another intermediate program state

Didier Verna

TUGboat, Volume 0 (9999), No. 0 1005

3.6 Syntax extension with macro-characters

The final problem we need to address is that of the
document environment. For technical reasons that
are too complex to explain here, it is not possible,
or at least, it would be very difficult to get rid of the
macro with-document and replace it with commands
like begin-document and end-document. However,
we would still like to have something closer to LATEX’s
environment syntax.

Fortunately, Lisp offers a way out via syntax
extension. The syntax of Lisp code is governed by so-
called readtables. A readtable defines the syntactic
status of every character the parser can encounter.
It is possible to modify or extend the standard Lisp
syntax by providing a custom readtable. You can
then make any character syntactically “active” by
turning it into a so-called macro-character. Every
time the Lisp reader encounters such a character,
a user-provided routine (called a “reader macro”)
takes over parsing, and returns a new syntactic form
modified at will.

The resemblance of this with TEX’s notion of
category codes should be striking. We can use this
facility to solve our problem as follows: we will make
the brace characters ({ and }) active, and let them
read forms such as {begin env} and {end env}.
Our reader macro will then read the environment’s
contents, and wrap it inside a call to the correspond-
ing with-env macro. Essentially, we are turning
this:

{begin env} ... {end env}

into this:

(with-env ...)

And again, note that this is done during the parsing
phase, so this really is some kind of source-to-source
transformation. One drawback of this approach is
that it makes the syntax a little bit more compli-
cated, less regular. Another slightly more intrusive
possibility is to modify the original reader macro
for the left parenthesis character, in order to recog-
nize forms like (begin env) and (end env). This
requires modifying the Lisp engine itself with the
exact same technique, but we now know we can do
that.

At that point, we are able to rewrite our docu-
ment generating program into its final form, depicted
in listing 6. Whether we use our specific brace syn-
tax or modify the standard parenthesis one will only
affect lines 6 and 20.

If we wanted to get even closer to TEX, we could
also use the same reader technique to change the
comment character from ; (standard Lisp) to % . . .

1 (documentclass a r t i c l e : paper l e t t e r : pt 12)
2
3 (t i t l e "An Ar t i c l e ")
4 (author " Did i e r Verna")
5
6 { begin document} ; ; or (begin document)
7 maket i t l e
8 t ab l e o f c on t en t s
9

10 (s e c t i o n "Lorem Ipsum")
11 (subsec t i on " S i t Amet")
12 "Lorem " (t ex tb f " ipsum") " "
13 (t e x t i t " do lo r ") " s i t amet , . . .
14
15 Lorem " (t ex tb f " ipsum") " "
16 (t e x t i t " do lo r ") " s i t amet , . . . "
17
18
19 ; ; other sec t ions . . .
20 {end document} ; ; or (end document)

Listing 6: Final programmatic form

3.7 Wrap-up

Listing 6 is probably the closest we can get to a LATEX-
looking program, while maintaining a conventional
and reasonably regular Lisp syntax. Of course, it
is doubtful that non-programmers (let alone non-
lispers) would ever want to use a system like that.
There are nevertheless some interesting points to be
made here.

First, the fact that this document really is a
program brings a lot of perspectives in terms of
automation. One can envision all sorts of typesetting
applications made easy, such as reference manual
generators or database dumpers, in which instead of
hand-typing all strings of text manually, you program
the extraction of the text to be typeset.

Next, and still because we’re in front of a Lisp
program, we can reuse the standard Lisp tool-chain
on this document. For example, generating the ac-
tual PDF is a simple matter of calling the function
load on the document’s source file. But we can also
do more. We can also compile the code and even
generate a standalone executable out of it, that we
can distribute. Relate this to the idea of creating a
LATEX document that people could actually typeset
without having to install LATEX locally. . .

4 Textual Layer

Section 3 described the programmatic layer of TiCL.
In this section, we present the textual layer, that
is, the layer which an end-user would use to create
documents. In this layer, just as in TEX, text is the
main component, and access to the programmatic
layer needs to be escaped. The idea is actually quite

TiCL: the Prototype

1006 TUGboat, Volume 0 (9999), No. 0

simple and requires only a 42 lines long function in
the TiCL prototype.
• A convert function reads a textual source file
(extension ltic, for “literate TiCL”) character
by character.

• Every time a backslash is encountered, the sub-
sequent expression is read in as a piece of Lisp
code (presumably accessing the programmatic
layer). Note that we don’t have to write any
code for reading Lisp source, as Lisp itself al-
ready provides the required API.

• When the expression in question is of the form
(begin ...), we turn that into (with-.... When
it is of the form (end ...), we turn that into
a closing parenthesis.

• In any other case, the characters are accumu-
lated as Lisp strings.

That is basically it. This function allows us to rewrite
our document as depicted in listing 7.

1 \(documentclass a r t i c l e : paper l e t t e r : pt 12)
2
3 \(t i t l e "An Ar t i c l e ")
4 \(author " Did i e r Verna")
5
6 \(begin document)
7 \ maket i t l e
8 \ t ab l e o f c on t en t s
9

10 \(s e c t i o n "Lorem Ipsum")
11 \(subsec t i on " S i t Amet")
12 Lorem \(t ex tb f " ipsum")
13 \(t e x t i t " do lo r ") s i t amet , . . .
14
15 Lorem \(t ex tb f " ipsum")
16 \(t e x t i t " do lo r ") s i t amet , . . .
17
18
19 %% other s e c t i o n s . . .
20 \(end document)

Listing 7: The textual form

Given the simplicity of the syntax, we believe
it would be easy for a casual LATEX user to adapt to
this new surface. Note in particular that thanks to
symbol macros (section 3.3 on page 1003), calls like
\maketitle look exactly the same in TiCL and in
LATEX.

5 Extensibility

One last thing we want to illustrate here is the
virtues of Lisp for extensibility. As an example of
this, our prototype extends the original system with
a rivers detection feature in less than 75 lines of
code. The reader interested in the technical details
may look at the example files called rivers.ticl or

rivers.ltic in the distribution. In this article, we
only provide an outline of the implementation.

As we have already seen, cl-typesetting pro-
vides different kinds of typesettable objects (strings,
glues etc.). One such kind of objects is the vbox
(vertical box). Our idea is to provide a specific kind
of vertical box on which to perform rivers detection.
In order to do that, we define a new class of typeset-
table object called riversbox, which we implement
as a subclass of cl-typesetting’s vbox class (again,
we see here the importance of the OO design):
(defclass riversbox (tt::vbox) ())

Next, we implement a macro called with-rivers
which collects all of its content and puts it inside a
fresh riversbox. This automatically makes it possi-
ble to use the corresponding rivers environment as
follows:
\(begin rivers)
Paragraph material...
\(end rivers)

The next thing we want to do is to draw rivers
in red in this environment (in addition to drawing
the content as usual). cl-typesetting draws its
material thanks to a generic function called stroke.
There is a specific method for vertical boxes that
riversboxes will automatically inherit, as they are
a subclass of vertical boxes. Hence, we don’t have
anything to do in this regard.

What we have to do is actually draw the rivers
on top of the regular text. We can plug this into the
typesetting engine easily, thanks to CLOS’s notion
of before method : methods that are called before the
primary ones, in addition to them:
(defmethod tt::stroke :before

((box riversbox) x y)
(draw-rivers box x y))
Finally, the additional function draw-rivers,

introspects the contents of the riversbox, collects the
spaces and draws red lines where appropriate in 33
lines of code.

Again, the important thing here is that this
extension is hot-plugged into the system, in a non
intrusive way, thanks to the dynamic nature of the
underlying language. In fact, in the prototype’s
distribution, this extension is not implemented in
the typesetting system, but directly in the preamble
of one of the sample documents!

6 Conclusion

Last year at TUG 2012, we presented some ideas
about using one of the oldest programming languages
(Common Lisp), in order to modernize one of the
oldest typesetting systems (TEX), the idea being to

Didier Verna

TUGboat, Volume 0 (9999), No. 0 1007

retain the quality of TEX’s output (the typesetting
part) while providing a more consistent and powerful
programmatic API.

We advocated the use of Common Lisp as a
better alternative for all aspects of modernization:
Common Lisp is both a full-blown industrial lan-
guage suitable for a rewrite of TEX, and a scripting
language suitable as a replacement for TEX macros.
The use of a single language allows to design an im-
plement a homogeneous system: a re-implementation
of TEX with modern software engineering in mind, in
a fully reflexive way, providing easy extension and /
or modification capabilities (hence experimentation).

Our purpose this year was to validate the pro-
posed approach by implementing a working proto-
type, which we did. TiCL has a simple syntax making
the transition from regular TEX easy. It lets you use
the whole Lisp language for programming. It can be
accessed both at the programmatic and at the textual
layer, depending on the kind of practical application
you have in mind. Finally, it is inherently extensible,
due to the dynamic and reflexive nature of Lisp, as
demonstrated in section 5 on the preceding page.

We find those results encouraging, and we defi-
nitely want to continue investigating in that direc-
tion.

References
[1] Common Lisp. American National Standard:

Programming Language. ANSI X3.226:1994
(R1999), 1994.

[2] Daniel G. Bobrow, Linda G. DeMichiel, Richard P.
Gabriel, Sonya E. Keene, Gregor Kiczales, and
David A. Moon. Common Lisp Object System
specification. ACM SIGPLAN Notices, 23(SI):1–142,
1988.

[3] Jonathan Fine. TEX forever! In Proceedings
EuroTEX, pages 140–149, Pont-à-Mousson, France,
2005. DANTE e.V.

[4] Sonya E. Keene. Object-Oriented Programming in
Common Lisp: A Programmer’s Guide to CLOS.
Addison-Wesley, 1989.

[5] John MacCarthy. Recursive functions of symbolic
expressions and their computation by machine,
part I. Communications of the ACM, 3:184–195,
1960. Online version at http://www-formal.
stanford.edu/jmc/recursive.html.

[6] Andrew Mertz and William Slough. Programming
with PerlTEX. TUGboat, 28(3):354–362, 2007.

[7] Scott Pakin. PerlTEX: Defining LATEX macros using
Perl. TUGboat, 25(2):150–159, 2004.

[8] Didier Verna. Star TEX: the next generation. In
Barbara Beeton and Karl Berry, editors, TUGboat,
volume 33. TEX Users Group, 2012.

� Didier Verna
EPITA / LRDE
14-16 rue Voltaire
94276 Le Kremlin-Bicêtre Cedex
France
didier (at) lrde dot epita dot fr
http://www.lrde.epita.fr/~didier

TiCL: the Prototype

