
Multicast Support in XEmacs

Didier Verna
The XEmacs Project

<didier@xemacs.org>

April 19, 1999

Abstract

This paper describes the recent multicast support that have been
added to XEmacs, publicly available for the first time in XEmacs
21.0. First, a general overview of the “multicast” technology is given.
Then, the internal support within XEmacs is described and the first
multicast package for XEmacs is presented. The current problems
and perspectives with this support are finally detailed.

Introduction

Aside from its incredible capabilities for text edition and extensibility, one
of the greatest features of XEmacs is probably its capacity to communicate
with the rest of the world: thanks to the process abstraction layer, you can
browse the web, compile programs, run shells inside an XEmacs frame.
Until XEmacs 21.0, only one type of network connection was supported:
the traditional TCP streams. This paper presents the support for “mul-
ticast”, a special type of network connection that was recently added to
XEmacs. Section 1 gives a general overview of what multicast is and why it
is useful. Section 2 describes how the multicast support is implemented in
XEmacs, and section 3 presents MChat, the first multicast package written
for XEmacs. As this feature is still experimental, the last section describes
current problems that should be solved in order to get a satisfactory and
complete support, and future work that is currently planned.

1 The Multicast Technology: a General Overview

1.1 Multicast vs. Unicast and Broadcast

Multicast is a special kind of network connection, based on the UDP pro-
tocol, which lets you establish a “group” connection rather than a “point”

1



connection. Figure 1 illustrates the conceptual difference between unicast
and multicast connections.

Me Me

You

Multicast Group

You You You

Unicast Multicast

Figure 1: Unicast vs. Multicast

In a traditional unicast network connection, you want to contact an-
other address (say, a client wants to contact a server) and establish a con-
nection for writing and reading to and from this remote address. This phi-
losophy is called “point-to-point”. On top of this, we find “broadcast”
connections. Broadcasting means that you send a message to several re-
mote addresses at the same time. In that case, the connections are usually
unidirectional, meaning that only you will write messages to the other ad-
dresses. Moreover, you actually need to know and connect to all the remote
addresses, and send the message once for each remote address.

Multicast is a different philosophy. In multicast, you connect to a “group”
rather than to a remote address, and other people do the same. Whereas the
procedure to open a multicast connection is very similar to that of unicast,
there are crucial differences between the two technologies:

� A multicast group address does not correspond to a real machine
address. Those are virtual addresses used by the multicast routers
to dispatch the messages to the terminal machines that requested a
group connection.

� Connecting to a group does not mean that you actually contact some-
body. You could be the only member of the group (in which case you
are considered as the group creator). Consequently, you never send
or receive a message to or from anybody. You just send and receive
messages to and from the group itself.

2



� Unless you explicitly require this information, there is no reason why
you should know who are the other group members, or even if there
are any of them. Consequently, when you send a message to the
group, you don’t know a priori who might receive it. Similarly, when
you receive a message from the group, you don’t know a priori who
sent it.

The multicast technology, while recent, is already widely used. The
most important field of application is currently audio-video conferencing
(see the vic and vat applications), but any kind of groupware application is
potentially subject to multicasting.

1.2 Anatomy of a Multicast Group Address

To contact a multicast group, you must know its address. A multicast ad-
dress is not much different from a standard unicast network address, apart
from the presence of an additional field. The standard syntax for a multi-
cast address is “address/port/ttl”.

� address is an IP-like address, ranging from 224.0.0.0 to239.255.255.
Addresses beginning with 224 and 239 should not be used, as they are
reserved for administration purpose. Other addresses are available to
the public, which gives about 250 millions possibilities.

� port is a usual port number.

� ttl stands for “time-to-live”. This field defines the scope of the mul-
ticast group, or more precisely how far the messages you send will be
propagated. This scope can vary from sender-only to world-wide.

Figure 2 presents the possible values and their corresponding scope. As
the ttl can vary from sender-only to world-wide, you can potentially have
different groups using the same address: indeed, the same address could
be used in different countries, with a ttl inferior to 64. In such a case, each
group member would only see the other members from the same country,
and consequently, the address could be used for totally different things.

1.3 The multicast C API

Here, we would like to draw the outlines of the procedure needed to create
a multicast connection, and show how simple it is, notably compared to the
standard procedure for creating a point-to-point connection.

In a first step, we have to create the sockets. While in unicast, one socket
is enough, you need different sockets for reading and writing on a multicast
group, because they will be used slightly differently.

3



Value Scope

0 Sender

1 Local Network

16 Site

32 Region

48 Country

64 Continent

128 World

Figure 2: Time-To-Live value/scope correspondence

r = socket (..., SOCK_DGRAM, ...);
w = socket (..., SOCK_DGRAM, ...);

Next, some setup on the sockets is needed. In unicast, you generally
only have to “connect” the socket. In multicast, you must tell the reading
socket to receive the messages from the group, and bind it. You must also
set the ttl for the writing socket.

setsockopt (r, IP_PROTO_IP, IP_ADD_MEMBERSHIP, ...);
bind (r, ...);

setsockopt (w, IP_PROTO_IP, IP_MULTICAST_TTL, ...);

Once the connection is established, you will read and write to and from the
group. In multicast, which is based on UDP, it is preferable to use the non con-
nected system calls, notably for reading (see the last section).

rcvfrom (r, ...);
sendto (w, ...);

Finally, when the connection is no longer needed, you close the sockets. In
multicast, it is also a good idea to inform the system that the reading socket will
leave the multicast group.

setsockopt (r, IP_PROTO_IP, IP_DROP_MEMBERSHIP, ...);
close (r);
close (w);

As you can see, opening a multicast connection costs only a few more system
calls than in unicast. Several options are also available for setting up a multicast
connection. Here are the most useful:

� You can allow multiple connections from the same machine by setting the
SOL SOCKET SO REUSEADDR socket option on the reading socket before bind-
ing it. This actually allow several applications to reuse the same port.

� The IP PROTO IP IP MULTICAST LOOP socket option will allow you to
receive your own messages.

4



2 Multicast Support in XEmacs

XEmacs features a process abstraction that allows you to start external processes
and communicate with them. As a special kind of process (which are not actually
children of the XEmacs process), TCP stream network connections are already
supported, thanks to the open-network-stream function. When implementing
the multicast support, the idea was obviously to keep as much compatibility as
possible with the current process abstraction in order to make multicast support
just another particular case of network connection.

2.1 Multicast Group Creation

The work needed to implement the multicast support is actually rather simple.
It consists mainly in one internal function plus a Lisp wrapper around it. The
internal function is called open-multicast-group-internal. This function
is written in C in process.c and has two purposes: creating the actual network
connection (this functionality is split across system-specific files like process-
unix.c) and associating it with an XEmacs process that will be handled from the
Lisp level.

The Lisp wrapper is called open-multicast-group, resides in multicast.el
(which is dumped) and only differs from the internal C function in the required
arguments. While the internal function takes the group parameters as separate
arguments, the Lisp wrapper takes a single argument describing the connection in
the standard multicast form: a Lisp String of the form "dest/port/ttl". Thus,
we get a prototype very similar to that of open-network-stream:

- open-multicast-group (NAME BUFFER ADDRESS)

Open a multicast connection on the specified address.
Returns a subprocess-object to represent the connection.
Input and output work as for subprocesses; ‘delete-process’
closes it. Args are NAME BUFFER ADDRESS.

NAME is a name for the process. It is modified if necessary
to make it unique.

BUFFER is the buffer (or buffer-name) to associate with the
process. Process output goes at the end of that buffer, unless
you specify an output stream or filter function to handle the
output. BUFFER may be also nil, meaning that this process is not
associated with any buffer.

ADDRESS specifies a standard multicast address "dest/port/ttl":
dest is an internet address between 224.0.0.0 and 239.255.255.255
port is a communication port like in traditional unicast
ttl is the time-to-live.

5



2.2 Multicast Group Manipulation

After the multicast connection is created, you can manipulate it with just the same
functions as for any other XEmacs process. The most important ones are:

� process-send-string or process-send-region, which will send a
string to the group,

� set-process-filter, which allows you to manipulate any received mes-
sage instead of directly inserting it into a buffer,

� for a Mule-ized XEmacs, set-process-coding-systemalong with some
input method would allow you to create textual groups in any language,

� and finally, delete-process which will close the connection.

3 MChat, the first multicast package for XEmacs

In this section, we would like to present the first (and currently only) XEmacs
package using the internal multicast support. MChat stands for “Multicast Chat-
ting”. This package allows you exchange textual messages on a multicast group
with other participants. Figure 3 shows an XEmacs frame dedicated to an MChat
group.

3.1 Description of the package

The purpose of this package is to implement a group conversation facility based
on the multicast technology. By calling the mchat function, you join a multicast
group in which you can send and receive small textual messages (typically less
than 500 octets, see the next section). This function sets up an XEmacs frame with
2 MChat buffers dedicated to this group.

The bottom buffer is called the “message buffer”. It is in a text edition major
mode. This is where you edit your own messages before sending them. An MChat
minor mode in this buffer gives you key bindings to send the message, circulate
in the old messages cache and perform other operations on the group, like ringing
a bell, display the list of known participants, quitting the group. . .

The top buffer is called the “group buffer”. This is where the conversation
takes place. You receive messages from the other participants, along with your
own messages in this buffer. Each message is prefixed with a “tag” defaulting
to the sender’s full name (user-full-name). You also get “control messages” in
this buffer, for instance a line informing you that such person has joined the group.

3.2 The MChat protocol

The protocol used for implementing this functionality is pretty simple, and cur-
rently handled entirely in Lisp. This is not really a feature however, but rather a
consequence of the current limitations of the process abstraction with respect to
multicast connections. Those limitations will be detailed in the next section.

An overview of the MChat communication protocol is given below in pseudo
BNF format:

6



Figure 3: A screenshot of MChat in an XEmacs frame

MSG := PROTO_VERSION USER_ID LENGTH DATA
PROTO_VERSION := MAJOR MINOR
USER_ID := USER_IP USER_PID
DATA := ATOM CONTENTS

The USER ID part permits to identify uniquely each participant. Please refer
to the next section to see why it is currently needed. LENGTH gives the length of
the following data (a protection against possible messages concatenation), and the
data consists of a protocol atom and the atom contents, if any. Figure 4 gives a
list of the protocol atoms currently implemented. The join atom is used when
you arrive on a group. It also provides the other participants with your own tag.
The ring and msg atoms allow you to produce an audio signal or send a message
to the group. whois might be used to require information about a member for
whom you don’t have the tag information (which happens if the person was here
before you) and this user should then reply with the iam atom and provide his
tag. A heart bit should be sent whenever you have not sent anything else for
a certain amount of time. If one participant is quiet for a long enough time, other
members will assume that he has died.

7



Atom Contents

join user tag

quit (none)

whois user tag

iam user tag

ring (none)

msg text

heart bit (none)

Figure 4: MChat protocol atoms, version 2.0

Problems and Perspectives

Although already pretty usable, the multicast support is not completely satisfac-
tory. The main problems we are currently facing actually come from the way the
original process abstraction was designed. The 2 most important problems are
detailed below.

3.3 Identifying the message sender

The multicast technology is designed in a way that a single network connection
(namely, a single socket) is used to receive messages from any group members.
Although not theoretically required, you probably want to figure out the identity
of the sender of each message. Since the XEmacs process abstraction was orig-
inally designed to support only TCP streams, the systems calls used to retrieve
information from the network work in “connected” mode (read or recv) and do
not allow you to get the identity of the sender. The only way to get an authen-
tic sender identity would be to use recvfrom for multicast connections, which is
not currently possible without reworking the process abstraction. This is why the
MChat protocol currently contains a user identity part, which is not secure since it
could be modified at the application level.

3.4 Implementing application protocols

The multicast technology is based on UDP. This means in particular that since this
protocol is insecure (you can loose UDP packets), more work needs to be done
at the application level. Nowadays, we can see different application level proto-
cols appearing, suited to different purpose. For example, real time applications
interested in always having the last information and for which loosing data is not
fatal often use RTP and RTCP (Real Time Transport [Control] Protocol). On the
other hand, applications like MChat would prefer to ensure that the data is not
corrupted, and would probably prefer using RMP (Multicast Reliable Protocol).

In any case, implementing those protocols should definitely not be up to the
Lisp layer. Most of the time, multicast messages need to be fragmented in stand-
alone UDP packets, and reconstituted when received. The Lisp layer should only
receive full messages that are known not to be corrupted, and should not see the
details of such or such protocol implementation.

8



3.5 Reworking the process abstraction

The preceding remarks show that the current process abstraction is too limited to
provide a completely satisfactory multicast support, and should be reworked. In
the future, we should be able to support not only multicast connection, but any
other kind of network connection, and it should not be difficult to add new ones.
What we need to do is:

� provide a more flexible way of creating XEmacs processes and associating
them with external programs, network connections of different kinds. . .

� provide different process “backends”, that is different methods to send and
receive data to and from a network connection. This also includes the ability
to manipulate the data before passing it to the Lisp layer.

The recent developments on the ability to integrate dynamically loadable C mod-
ules to XEmacs is a good opportunity to start reworking the design of the external
processes interface.

9


