o

Scientific
Computing in
Lisp

Scientific Computing in LISP: beyond the

performances of C

Didier Verna

didier@Irde.epita.fr
http://www.Irde.epita.fr/"didier

Version 1.3 — November 7, 2006

mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr/~didier

Introduction
PR Myths and legends. ..

Scientific

Computing in m Facts:

P > “LisP is slow” ... NOT! (it's been 20 years)
Hidervema - Smart compilers (= native machine code)
Introduction « Static typing (types known at compile-time)

» Safety levels (compiler optimizations)
« Efficient data structures (arrays, hash tables efc.)
» Image processing libraries written in C or C++
(sacrificing expressiveness for performance)
» LIsP achieving 60% speed of C
(recent studies)
m = We have to do better:
» Comparative C and LISp benchmarks
(part 1: full dedication)
» 4 simple image processing algorithms
» Pixel storage and access / arithmetic operations
m = Equivalent performance
(Li1sP 10% better in some cases)

Table of contents

Scientific
Computing in
Lisp

Experimental Conditions

Introduction

C Programs and Benchmarks

LiSP programs and benchmarks
m Raw Lisp
m Typed LISP
m Results

Type inference

Experimental conditions

Scientific

Computing in m The algorithms: the “point-wise” class

He » Pixel assignment / addition / multiplication / division
» Soft parameters: image size / type / storage / access
» Hard parameters: compilers / optimization level
Experiments » = More than 1000 individual test cases

m The protocol

» Debian GNU Linux / 2.4.27-2-686 packaged kernel
» Pentium 4 /3GHz / 1GB RAM / 1MB level 2 cache
» Single user mode / SMP off (no hyperthreading)

» Measures on 200 consecutive iterations

Didier Verna

Scientific
Computing in
Lisp

Didier Verna

The case of C

The add function

void add (image =to, image *from, float val)
{

int i;

const int n = ima—n;

for (i = 0;

i ;o++i)
to—>data[i]

<n
= from—>data[i] + val;

m Gcc 4.0.3 (Debian package)
m Full optimization: -03 -DNDEBUG plus inlining
m Note: inlining should be almost negligible

Results
'R In terms of behavior

Scientific
C°mf.”si”g in m 1D implementation slightly better (10% = 20%)
Sidier Verna m Linear access faster (15 = 35 times)
» Arithmetic overhead: only 4x — 6x
» Main cause: hardware cache optimization
m Optimized code faster (60%) in linear case, irrelevant
in pseudo-random access

» Causes currently unknown
m Inlining negligible (2%)

The case of C

Results
PR In terms of performance

Scientific

Didier Verna Algorithm | Integer Image | Float Image
Assignment 0.29 0.29
Addition 0.48 0.47
The case of C Multiplication 0.48 0.46
Division 0.58 1.93

m Not much difference between pixel types
m Surprise: integer division should be costly

» “Constant Integer Optimization” (with inlining)
» Do not neglect inlining !

First shot at LISP code

Scientifi a
compuingin I The add function, take 1

Lisp

Didier Verna (defun add (to from val)
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) val)))))

m COMMON-LISP’s standard simple—array type

m Interpreted version: 2300x
m Compiled version: 60x
m Optimized version: 20x

Untyped code =- dynamic type checking !

ﬁ% Typing mechanisms

Scientific

Computing in m Typing paradigm:
He » Type information (COMMON-LISP standard)
Declare the expected types of LISP objects
» Type information is optional
Declare only what you know; give hints to the compilers
» Both a statically and dynamically typed language
m Typing mechanisms:
» Function arguments:
(make-array size :element-type ’'single-float)
» Type declarations:
Function parameter / freshly bound local variable

4 -

Didier Verna

Typed Lisp

Declaring the types of function parameters

; g Typed LISP code sample

Scientific
Computing in
Lisp

Didier Verna (defun add (to from val)
(declare (type (simple—array single—float (%)) to from))
(declare (type single—float val))
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) val)))))

The add function, take 2

Tped Lise B simple-array’s...
m of single-float’s...
m unidimensional.

; : Object representation

Why typing matters for performance

Scientific
Gomputingn m Dynamic typing = objects of any type (worse: any size)

Lisp

Didier Verna m LISP variables don’t carry type information: objects do

The “boxed” representation of LISP objects

Pointer to Lisp Object
Type information | @———»| Actual value

Typed Lisp

m Dynamic type checking is costly !
m Pointer dereferencing is costly !

o

Scientific
Computing in
Lisp

Didier Verna

Typed Lisp

The benefits of typing

2 examples

m Array storage layout:
» Homogeneous arrays of a known type
= native representation usable
» Specialization of the aref function
» “Open Coding”
m Immediate objects:
» Short (less than a memory word)
» Special “tag bits” (invalid as pointer values)
» = Encoded inline

Unboxed fixnum representation

[Tagbits |

Bits 1 ... 29 30 31 32

100

0

fixnum value (30 bits)

(dotimes (i 100) ...)

| : Example: optimizing a loop index

Scientific

G Disassembly of a dot imes macro

Didier Verna 58701478: .ENTRY FOO()
90: POP DWORD PTR [EBP-8]
93: LEA ESP, [EBP-32]
96: XOR EAX, EAX
98: JVP L1
9A: LO: ADD EAX, 4
9D: L1: CMP EAX, 400
A2: JL LO

TpedLise A4: MoV EDX, #x2800000B
A9: MoV ECX, [EBP-8]
AC: MoV EAX, [EBP-4]
AF: ADD ECX, 2
B2: MoV ESP, EBP
B4: MoV EBP, EAX

B6: JMP ECX

ﬁ% Activating optimization

Scientific

Computing in m “Qualities” (COMMON-LISP standard): between 0 and 3

Lisp

Didier Verna | Safety, Speed ele.

m Global or local declarations in source code
(no compiler flag)

Global qualities declaration

(declaim (optimize (speed 3)
Typed Lise (compilation-speed 0)
(safety 0)

(debug 0)))

m Safe code: declarations treated as assertions
m Optimized code: declarations trusted

ﬁ% Final LisP code sample

Scientific
Computing in
Lisp

Didier Verna (defun add (to from val)
(declare (type (simple—array single—float (%)) to from))
(declare (type single—float val))
(let ((size (array—dimension to 0)))
(dotimes (i size)
(setf (aref to i) (+ (aref from i) val)))))

The add function

m CMmU-CL (19¢), SBcL (0.9.9), AcL (7.0)

m Full optimization: (speed 3), 0 elsewhere

m Array type: 1D, 2D

| Array access: aref, row—major—-aref, svref

Comparative results
'R In terms of behavior

Scientific

ol # Plain 2D implementation much slower (2.8x = 4.5x)
= Linear access faster (30 times)
» Same reasons, same behavior. ..
= Optimized code faster in linear case, irrelevant in
pseudo-random access

Gain more important in LISP (3x = 5x)
Gain more important on floating point numbers
= In LISP, safety is costly

= Inlining negligible
=% No “Constant Integer Optimization”

= Negative impact on performance (-15%), if any
= Inlining still a “hot” topic (register allocation policies ?)

Didier Verna

Results

Comparative results
PR In terms of performance

Scientific
Computing in
Lisp

Pseudo-random access

Rear to Front: ACL / SBCL / CMU-CL / C

Didier Verna s

E [Integer E
25— | O Floating Point 1

Execution time (seconds)

Results

Assignment Addition Multiplication Division

m Assignment: LISP 19% faster than C
m Other: insignificant (5%)
m Exception: integer division

Comparative results
PR In terms of performance

Scientific
Computing in
Lisp

Linear access

Rear to Front: ACL / SBCL / CMU-CL / C

21~ @ Integer _ 7
O Floating Point -l

Didier Verna

Execution time (seconds)

Results

Assignment Addition Multiplication Division

m AcL: poor performance
m CMU-CL, SBCL: strictly equivalent to C
m C wins on integer division, loses on floating-point one

Type inference
e A weakness of COMMON-LISP ...

Scientific

Computing in m Static typing cumbersome (source code annotations)
- » Can we provide minimal type declarations ...
» ...and rely on type inference ?
m Incremental typing by compilation log examination
m Unfortunately:

» Compiler messages not necessarily ergonomic
» Type inference systems not necessarily clever

Didier Verna

Type inference

ﬁ% Example of (missing) type inference

Scientific
Computing in
Lisp

multiply excerpt

Didier Verna 549 o000
(declare (type (simple—array fixnum (%)) to from))
(declare (type fixnum val))

(setf (aref to i) (the fixnum (x (aref from i) val))))))

B (x fixnum fixnum) # fixnum in general, but...
» to declared as an array of fixnum’s,

Type inference » so the multiplication has to return a fixnum

m CMU-CL and SBCL ok, ACL not ok.

» Need for further explicit type information
» worse in ACL:

declared-fixnums—-remain-fixnums—-switch

ﬁ% Conclusion

Scientific

Computing in m In terms of behavior
He » External parameters: no surprise
» Internal parameters: differences, attenuated by
optimization
m In terms of performance
» Comparable results in both languages
» Very smart LISP compilers (given language
expressiveness)

m However:

» Typing can be cumbersome

» Difficult to provide both correct and minimal information
(weakness of the COMMON-LISP standard)

» Inlining is still an issue

Didier Verna

Conclusion

ﬁ% Perspectives

Scientific

GempEiTy m Low level: try other compilers / architectures
Ser Vorn (and compiler / architecture specific optimization
settings)

m Medium level: try more sophisticated algorithms
(neighborhoods, front-propagation)

m High level: try different levels of genericity
(dynamic object orientation, static meta-programming)

Conclusion m Do not restrict to image processing

Scientific
Computing in
Lisp

Conclusion

Logo by Manfred Spiller

	Introduction
	Experimental Conditions
	C Programs and Benchmarks
	Lisp programs and benchmarks
	Raw Lisp
	Typed Lisp
	Results

	Type inference
	Conclusion

